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Abstract

We analyze Malthus�(1798) model when labor demand shifts persistently. The Malthu-

sian ideas are formalized and derived in terms of stationarity and cointegration, and the

implied restrictions are tested against English pre-industrial data 1560-1760. The evidence

suggests a negligible marginal productivity e¤ect of population on real income, implying

that the Malthusian "check" relations should be analyzed as cointegrating relations. The

data support highly signi�cant preventive checks working via marriages, but weak (in-

signi�cant) positive checks. These results are remarkably clear-cut. We suggest a simple

interpretation for the lack of response of real income to population, which is consistent

with positive feed back e¤ects from population on technology, à la Boserupian- and/or

Smithian mechanisms. Recursive estimation con�rms stable parameters and identify the

end of our modi�ed Malthusian regime.
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1 Introduction

Malthus� (1798) ideas of the interaction between population and the economy still occupy

central stage in the economist�s understanding of the pre-industrial economy. Malthusian as-

sumptions are routinely invoked by growth theorists when modelling the pre-industrial world

(see for example the survey by Galor 2005). Some have even gone so far as to claim that all of

economic history before 1800 can be explained by the �Malthusian model�(Clark 2007).

The modern version of the Malthusian model explains the growth of real income and popu-

lation. It involves three core assumptions: Higher labor income per capita increases the number

of births (the preventive check), lowers the number of deaths (the positive check), and labor

exhibits diminishing marginal returns due to the �xity of available land. According to the

classical interpretation, higher income results from increasing labor demand which raises wage

incomes (Lee 1997). This makes for population growth via the "checks", and eventually, implies

a higher labor supply o¤setting the initial wage increase cf. the diminishing returns. Hence,

the core assumptions imply that labor demand at given real wages, is the driving force of

population growth, and that individual living standards stay unaltered in the long run.

This paper shows how to analyze the Malthusian ideas when this driving force evolves per-

sistently, which we shall model by a unit root process. Persistence seems a plausible assumption

since the level of labor demand has usually been associated with the accumulation of technical

knowledge (methods of cultivation and fertilization), and the level of capital per worker (see

e.g. Lee 1997). By formalizing the persistence with a unit root I(1) process, the Malthusian

ideas can be interpreted in terms of stationary and cointegrated Vector-Autoregressive (VAR)

models. This enables a detailed understanding of the empirically observed persistence of income

and vital rates based on the Malthusian framework, which has been absent in the literature.

Our approach also allows a systematic and explicit treatment of existing problems and issues

in the literature, such as endogeneity of all variables (Lee 1973 and recently Nicolini 2007),

dynamic persistence (Lee 1993a, for example), di¤erent orders of integration of interacting

variables (Bailey and Chambers 1993)1.

We confront our Malthusian model with the well-known English data from Wrigley and

Scho�eld (1989) on births, marriages and deaths, and from Allen (2001), on real wages. For the

period 1560-1760 the data suggest a negligible marginal productivity e¤ect of population on the

real wage rate. As a result, the real wage inherits the persistence of labor demand. This implies

that the Malthusian check relations should be analyzed as cointegrating relations. The results

support strongly signi�cant preventive checks working via marriages, but weak (insigni�cant)

positive checks. These conclusions are remarkably clear-cut, and recursive estimation con�rms

stable parameters.

We suggest a simple and tentative interpretation of the lacking response of real income to

population, allowing for positive feedback e¤ects from population on technology, i.e. supposedly

Boserupian (and/or Smithian) mechanisms (See e.g. Simon 1977).

The next section presents a simple Malthusian model with persistent labor demand. Section

1For a concise survey of such problems see Lee (1997) or Lee and Anderson (2002), p. 198.
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2.2 elaborates the preventive check with the marriage rate. Section 2.3 shows that these models

are equivalent to 1) Cointegrated VARs in population and labor demand (section 2.3.1), and

2) Stationary VARs in the observable real wage and vital rates (section 2.3.2). The necessary

condition of stationarity is then tested against the English data, and rejected (section 3). Given

the evidence of non-stationarity we analyze how the Malthusian model (of the real wage rate

and vital rates) can generate such persistence (section 4.1). Two explanations exist: Either it

is the sum of the check e¤ects or the marginal productivity e¤ect of population on real wages

that is too weak. Both of these "persistence restrictions" are accepted by the data (section 4.2).

We argue in favour of a negligible marginal productivity e¤ect and our tentative interpretation

of the evidence is suggested in section 5. The results are discussed in section 6, the robustness

is analyzed in section 7, while section 8 concludes.

2 Formalization of the Malthusian ideas

Our �rst model is akin to the models in Lee (1993a), Lee (1997) and Lee and Anderson (2002),

and corresponds to the traditional diagrams found in text books (e.g. Miller and Upton 1986,

Clark 2007). The distinguishing feature is the persistence of labor demand shifts.

2.1 A simple Malthusian theory model

Our baseline Malthusian model is denoted by M1; with the equations,

wt = c0 � c1 lnNt + lnAt; (1)

bt = a0 + a1wt + "bt; (2)

dt = a2 � a3wt + "dt; (3)

lnAt = lnAt�1 + "At; (4)

lnNt = lnNt�1 + bt�1 � dt�1; (5)

where wt is the natural logarithm of the real wage, bt; the crude birth rate, dt; the crude death

rate, and Nt is total population. In general, At comprises all determinants of labor demand

at given real wages2. All parameters are stated as positive. The shocks, "bt and "dt; represent

unmodelled unsystematic in�uences on births and deaths respectively.

To give substance to M1; we can imagine a simple classical economy which is closed with

respect to both trade and migration. It has a household sector and a production sector, in-

teracting in markets for output and inputs. All prices are fully �exible and output is supply

determined. As is typical when modeling pre-industrial economies it is assumed that the supply

of available land is �xed (Lee 1973, p. 587, Clark 2007, p. 24, Galor 2005). Aggregate labor

supply is assumed to be proportional to total population.

2We allow for a constant in (4), i.e. a deterministic linear trend in lnA in the empirical analysis (section 6).

3



Equation (1) describes the real wage at labor market equilibrium. The aggregate labor

demand schedule is downward sloping due to diminishing marginal returns (c1 > 0), and shifts

when At changes. The evolution of At is modelled as the simple I(1) unit root process - the

random walk in (4). This is the distinguishing feature of our exposition that captures the

persistence in labor demand shifts.

Population, and hence, labor supply, evolve according to (5). Via bt�1�dt�1 it is determined
by economic conditions, i.e. the preventive check, a1; in (2), and the positive check, �a3 in (3).
There are many explanations of a positive e¤ect of real wages on births, ranging from biological

to institutional circumstances (See e.g. Lee 1977, the introduction). We shall focus on the

popular one based on marriages: At higher real wages more people marry, resulting in more

births (section 2.2). The positive check is usually thought to work through nutrition, infant

mortality, etc. (See e.g. Lee 1997, p. 1065, Schultz 1981).

If the production function is the constant-returns-to-scale Cobb-Douglas with capital, land

and labor as inputs, c1 in equation (1), will be the sum of the income shares to capital and

land. In this case the real wage is proportional to real income per capita, and hence, both can

be used as determinants of population growth, b� d.

This makes up the static equilibrium of M1:More importantly, the Malthusian economy also

has a steady state, de�ned by zero population growth, towards which it converges in the absence

of disturbances (" shocks). With respect to the analysis of cointegration and stationarity below

it is illuminating to consider this deterministic steady state.

When no shocks occur and A is �xed at A, M1 implies the steady state values;

w� =
a2 � a0
a1 + a3

; b� = d� =
a0a3 + a1a2
a1 + a3

; lnA� = lnA; lnN� =
1

c1
(c0 + lnA�

a2 � a0
a1 + a3

); (6)

where, as is usual, w� is referred to as the subsistence level3.

In M1; the three Malthusian core assumptions are that c1 > 0 (diminishing marginal pro-

ductivity), a1 > 0 and a3 > 0 (the check mechanisms). From (6) we see that these three as-

sumptions ensure existence of steady state. This steady state is stable when 0 < c1(a1+a3) < 2.

Oscillations occur when 1 < c1(a1 + a3) < 2; which we de�ne as "Malthusian Oscillations"4.

The model is illustrated in Figure 1. Graphically the shocks "bt and "dt correspond to

stochastic intercepts of the two graphs in the left panel, and "At, to shifts in the downward

sloping labor demand curve (right panel).

For later, we note that the steady state comparative static e¤ect of a permanent unit rise

in lnA� on lnN� is 1
c1
, while this has no e¤ect on w�: A unit rise in lnA� shifts the labor

demand schedule to the right by 1
c1
; and thus, in the long run the vertical labor supply schedule

(population) must shift by this amount for the real wage to stay unaltered.

There are two ways to interpret the time horizon: The �rst, which we adopt in the theoretical

3This subsistence level may be above the minimal physiological requirements (Galor 2005, p. 179).
4Malthusian Oscillations have actually been claimed to be part of Malthus�core predictions (see e.g. Lee

1977, p. 347, Lee 1987, Lin Lee and Loschky 1987). We do not, however, �nd empircal support for their
existence.
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Figure 1: The simple Malthusian model, M1: The positive check relation (downward sloping) to-
gether with the preventive check relation (upward sloping) in the left panel. The downward slop-
ing labour demand and vertical labour supply in the right panel.

analysis, is to choose the length of period to make the theoretical assumptions defensible. For

example, births in period t should only matter for the real wage in period t + 1 if the periods

are 10-20 years long, i.e. the time it takes to enter the work force. However, given yearly data

(section 3.2), it seems a tremendous loss of information to aggregate into periods of 10-20 years.

Hence, the second possibility is to take the length of the period as given and instead allow for

gradual dynamic adjustment by adding lags. This is the approach in the empirical analysis.

2.2 Adding the marriage rate

It has been widely believed that a considerable part of the preventive check worked through

marriages, also by Malthus himself (Malthus (1798), Lee 1997 p. 1065). We therefore augment

M1 with the crude marriage rate, mt: We denote the resulting model M2; which is simply M1

with (2) replaced by (9) and (14) below.

From the breadwinner�s point of view, marriage implied provision of spouse and children

for several years, and hence, expected future income was a crucial determinant in the marriage

decision. Here, we shall assume that income expectations are adaptive, and of the form,

wet+i = wt; (7)

where superscript e denotes the (subjective) expectation. The assumption in (7) seems rea-

sonable in light of the observed persistence of the real wage (see section 3.3), and provides a

simple and manageable point of departure. An alternative could be Rational Expectations, or

Model Consistent Expectations in the sense of Muth (1961). As this implies that agents form

expectations about the interaction between income and vital rates, we believe that this is not

a natural point of departure. However, when the real wage rate is a random walk, which is

accepted empirically (see section 3.3), the two types of expectations formation coincide.
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We assume that the share of marriages in the population, mt; depends positively on the

expected future income pro�le, i.e. that,

mt = �01 + �11wt + �12w
e
t+1::::+ �1jw

e
t+j�1 + "mt: (8)

The coe¢ cients, �11; ::::�
1
j are positive and capture some kind of discounting. The scalar; j;

can be interpreted as life expectancy at the age of marriage, or perhaps more likely, as a shorter

planning horizon. The error term, "mt; captures unmodelled unsystematic in�uences.

From (7) and (8) it follows that,

mt = a4 + a5wt + "mt; (9)

where a5 thus depends on j and �
1
i (a5 > 0). Note that, if the real wage rate has a linear

deterministic trend this will be captured by a4:

The coe¢ cient, a5; in (9) thus describes part of the preventive check e¤ect, i.e. from income

to marriages. The rest depends on how marriages a¤ect births.

Bailey and Chambers argue that, though tempting, one should not include the marriage

rate in a birth rate relation, as the relevant variable is the stock of fertile marriages, and not

the �ow measure, mt (Bailey and Chambers 1993, p. 346). Since data of mt are available

only, they choose not to model the e¤ect from marriages on births. We agree that the relevant

measure is the stock of fertile marriages. However, it is possible to relate the birth rate, b; to

the marriage rate, m, as the stock of fertile marriages depends on the sum of marriages over

say, the last s years, and hence, on the marriage rates, mt�s; ::::;mt�1:

We de�ne a fertile marriage as a marriage in which the woman is in her fertile age (the age

between menarche and menopause). The stock of fertile marriages at the beginning of period

t is denoted by M f
t : The total number of births (apart from an error term) in period t; Bt; is

assumed to be proportional to this, i.e.,

Bt = �M f
t ; � > 0; (10)

abstracting from illegitimacy, which was probably negligible (3-4%, according to Clark 2007).

Assume now that the age distribution in period t; of women married in period t; is approx-

imately independent of t. If the number of new marriages during period t � i is Mt�i (a �ow

measure), and the minimum age of the marrying women is x; we can write,

M f
t = �1Mt�1 + �2Mt�2 + :::+ �sMt�s; (11)

where s = z � x; z being the (average) age at menopause. The weights, �i > 0; decline for two

reasons: First, the e¤ect fromMt�i onM
f
t will be smaller the greater i is, as fewer of the women

married in period t� i will be in their fertile age in period t. Second, some "discounting" due

to deaths, divorce, declining fecundity etc., also seems natural. The decline in weights implies

that empirically we can probably approximate the dynamics with less than s lags.
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Divide (11) by Nt; and use that
Mt�i
Nt

= Nt�i
Nt

Mt�i
Nt�i

= 1
(1+nt�1)�:::�(1+nt�i)mt�i; to obtain,

M f
t

Nt
=

�1
1 + nt�1

mt�1 +
�2

(1 + nt�1)(1 + nt�2)
mt�2 + :::+

�s
(1 + nt�1) � ::: � (1 + nt�s)

mt�s; (12)

where nt�i is the population growth rate, equal to bt�i� dt�i. It now follows directly from (10)
and (12) that our birth rate relation (plus a disturbance) becomes,

bt =
��1

1 + bt�1 � dt�1
mt�1 + :::+

��s
(1 + bt�1 � dt�1) � :: � (1 + bt�s � dt�s)

mt�s + "bt: (13)

This is a non-linear di¤erence equation of order s: For the empirical analysis below, we thus

have two possibilities: Either we can use (13) directly in the econometric model, or we can

make a linear approximation of it, which �ts into the usual framework of the VAR.

A linear approximation requires some point of (b;m; d) to approximate around. Under

stability of the deterministic steady state, wt; bt; dt and mt are stationary, and their steady

state values (means) can be used to approximate around. Using that b� = d� or n� = 0;

we �nd, from a �rst order Taylor approximation of (13) around steady state (b�; d�;m�); or

equivalently, around (n�;m�); that,

bt ' e0 + e1bt�1 � e1dt�1 + f1mt�1 + e2bt�2 � e2dt�2 + f2mt�2 + :: (14)

:::::+ esbt�s � esdt�s + fsmt�s + "bt;

where e0 � b� + e1, el � �m��
Ps

i=l �i and fl = ��l for l = 1; 2; ::; s:

Given existence of the stable steady state, the empirical adequacy of (14) as an approxima-

tion of (13), will depend on the degree of non-linearity of (13) within the realistic range of data

variation. If this is not too pronounced the approximation is useful. This is likely to be the

case here: To see this, assume that s = 1 in (13). The expression to be approximated is then,

F (nt�1;mt�1) �
��1

1 + nt�1
mt�1; (15)

and the approximation, de�ned as F a(nt�1;mt�1); becomes,

F a(nt�1;mt�1) = �
m�

(1 + n�)2
��1(nt�1 � n�) +

��1
1 + n�

mt�1: (16)

First note from (15), that F is linear in mt�1 at a given nt�1: Hence, the approximation is

independent of the variation in mt�1. In contrast, F is not linear in nt�1 given mt�1; and thus,

for deviations in the nt�1-direction the adequacy of the approximation will depend on both the

degree of non-linearity at (n�;m�) and the variation range around this. Since population is

non-negative, n > �1 always, but for n close to �1 the slope of F changes very fast, and hence,
the constant slope implied by the linear approximation is inappropriate. Fortunately, in the

Malthusian equilibrium, n� = 0; and the empirical variation of nt is located within �0:02. The
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curvature in the nt�1-direction also depends on m�; but if the model is to have any empirical

relevance this will probably lie within a limited range, 0.005-0.02 say, (the observed range of

mt is 0.005-0.015). When s > 1 the same arguments apply. Altogether, for the empirically

relevant region of data variation the linear approximation seems adequate.

The approximation will still work if bt and dt are I(1), provided that nt = bt � dt is I(0),

i.e. that bt and dt cointegrate. Also, if some (combination of) variables are "stationary" when

corrected for level shifts, as is typical in applications, one can think of the linear approximation

as being around the corrected mean. This will imply non-linear restrictions on the coe¢ cients

of the dummies in the estimation equation which we shall ignore.

Analogously to M1; the steady state of M2 for s � 1 is given by (6) with a0 and a1 replaced
by a�0 � e0 + fa4 and a�1 � fa5 respectively, where f � f1 + :::fs: The steady state marriage

rate is m� = a4+ a5w
�: As in M1 existence is thus guaranteed by the core assumptions, c1 > 0;

a3 > 0; and, in this case, a�1 = fa5 > 0:

2.3 Implications in terms of stationarity and cointegration

When labor demand is driven by persistent forces modeled by the random walk in (4), the

Malthusian ideas can be formulated as M1; or M2 when the marriage rate is included. We

shall now show that each of these models are equivalent to, 1) a cointegrated VAR model in the

stocks, (lnNt; lnAt)0; with one cointegrating relation, and lnAt as the common stochastic trend,

and 2) a stationary VAR model in the rates, (wt; bt; dt); or (wt; bt; dt;mt)
5. Corresponding to

Mi; i = 1; 2; we denote the cointegrated VARs by MS
i ; and the stationary VARs by M

R
i : As At

is unobserved only models in the rates are taken to the data (section 3.3).

The VAR(k) with a constant in Error-Correction-Mechanism (ECM) form is given by,

�xt = �xt�1 + �1�xt�1 + :::+ �k�1�xt�(k�1) + �+ "t; (17)

where xt is p-dimensional6. If the characteristic roots, z; are always either at 1 or outside

the unit disc, then xt is non-stationary when at least one root is at 1, or equivalently, when

det(�) = 0. This implies reduced rank, r < p; of �; which is parameterized as the non-linear

restriction � = ��0: The matrices � and � are p�r of rank r; and for 0 < r < p; r cointegration

relations exist. Stationarity of xt is thus equivalent to det(�) 6= 0 (� has full rank).
The essential mechanisms can be studied based on M1 alone. As M2 does not change the

long-run dynamics, this is treated brie�y in continuation of M1.

5By stationary we generally mean "asymptotically stationary" (See Johansen 1996, p 15 for example).
6For technical details we generally refer to Johansen (1996).
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2.3.1 The cointegrated VARs of population and labor demand, MS
1 and M

S
2

Solving M1 with respect to (� lnNt;� lnAt)0 we immediately obtain MS
1 :

� lnNt = �0 + �1(lnNt�1 � �1 lnAt�1) + "Nt; (18)

� lnAt = "At;

where �1 � �c1(a1 + a3); �1 � 1
c1
, �0 � (a0 � a2) + c0(a1 + a3) and "Nt � "bt�1 � "dt�1: With

xt = (lnNt; lnAt)
0 this involves the parameters,

MS
1 : � =

 
�1 ��1�1
0 0

!
; � =

 
�1

0

!
; � =

 
1

��1

!
: (19)

The roots are z1 = 1; and z2 = 1
1+�1

for �1 6= �1; and z = 1 for �1 = �1: If the steady state
in (6) is stable, it follows that jz2j > 1; where j�j denotes the modulus. Given this, and since
det(�0?�?) 6= 0; where �? and �? are the orthogonal complements, (lnNt; lnAt)0 will be I(1)
with cointegrating vector (1;��1)0: See theorem 4.2 in Johansen (1996).

The adjustment vector in MS
1 is �

0 = (�1; 0); which implies that lnAt is strongly exogenous

(see Johansen 1992), and that
Pt

i=1 "Ai is the common stochastic trend. This captures that

labor demand drives population. Since � is proportional to �, xt contains no linear deterministic

trend. Equivalently, adding an intercept in the equation for lnAt introduces such a trend in

both variables.

The long-run impact matrix, C = �?(�
0
?�?)

�1�0?; is,

C =

 
0 �1

0 1

!
; (20)

which shows that the long-run impact of a unit shock to labor demand, i.e. "At = 1; on lnN is

�1 =
1
c1
: This is the steady state comparative static e¤ect computed from (6). The transition

period in the wake of such a shock, i.e. the sequences of "short run" equilibria, may be brief

or prolonged, depending on whether �1 is "large" or "small" respectively.

The C matrix also shows that there is no long-run impact on population from "bt and "dt:

For example, a positive population - or labor supply shock lowers real wages which reduces

population as long as w < w�:

It is important to note that the unit root, i.e. z1 = 1; results solely because lnA in equation

(4) is a unit root process. If (4) were to be replaced by, say the stationary AR(1) process,

lnAt = � lnAt�1 + "At; z1 would equal 1� (z2 unchanged). If A is interpreted as the level of

technical knowledge, � = 1 would be a natural assumption. As a result, z1 = 1; which would

thus be an example of a structural unit root. On the other hand, A is more likely to comprise

many other determinants, for which � is probably below 1, but supposedly close to 1, i.e. lnA

is persistent. In that case, z1 = 1 (or � = 1) is viewed as a useful statistical approximation,

in the sense of delivering more reliable inference given the data at hand, than that based on
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stationarity (see e.g. Møller 2008).

To derive MS
2 we assume that s = 1. In terms of long-run dynamics there is no substantial

di¤erence when s > 1 (Appendix A.1). In light of the analysis of M1 we proceed in two steps:

First, we insert (9) into (14) to obtain a modi�ed birth relation,

bt = �a0 + e1(bt�1 � dt�1) + �a1wt�1 + �"bt; (21)

where �a0 � e0 + f1a4; �a1 � f1a5 > 0 and �"bt � "bt + f1"mt�1: Equation (21) can be compared

to (2). First, note that it is wt�1 that enters (21), and not wt as in (2). This di¤erence is

however not substantial, and results since bt depends on the lagged marriage rate, mt�1. In

fact, with "long periods" (s = 1) we should really include mt in (14), but we ignore this here.

The appearance of dt�1 in the birth relation should not be confused with a direct structural

e¤ect from deaths to births, such as that modelled elsewhere in the literature (e.g. Lee 1985b

or Bailey and Chambers 1993). It follows purely from our derivations above. The coe¢ cient,

�a1; clearly illustrates that the preventive check is the product of the two e¤ects: higher income

means more marriages, a5 > 0; and more marriages mean more births, f1 > 0: For s > 1 �a0

and �a1 are denoted a�0 and a
�
1; respectively (section 2.2 and Appendix A.1).

As (21) replaces (2) in M1; the next step is to solve the resulting model for (lnNt; lnAt)0;

� lnNt = ��0 + ��1(lnNt�1 � �1 lnAt�1) + �1� lnNt�1 + �2� lnAt�1 + �"Nt; (22)

� lnAt = "At;

where ��0 � (�a0 � a2) + c0(�a1 + a3); ��1 � �c1(�a1 + a3); �1 � (e1 + �a1c1); �2 � ��a1 and �"Nt �
�"bt�1 � "dt�1. Compared to (18), the only di¤erence in the model form is the additional lagged

di¤erences in the population equation. The long-run dynamics are unaltered, and labor demand

still drives population. The adjustment of population has just become more complicated. As

in M1 there is a root at 1, and if the corresponding deterministic steady state is stable, the

rest of the roots will have moduli greater than 1. Since det(�0?��?) 6= 0, this implies that

(lnNt; lnAt)0 is I(1).

This section should thus be clarifying relative to previous (verbal) discussions of cointegra-

tion between population and labor demand (Lee and Anderson (2002), p. 201).

Since lnAt is unobserved, MS
1 and M

S
2 only serve analytical purposes. For empirical purposes

we need models for the observables.

2.3.2 The stationary VARs of the real wage and vital rates, MR
1 and M

R
2

Consider �rst MR
1 ; which is formulated in (wt; bt; dt): By inserting (5) and (4) in (1), and using

that wt�1 = c0�c1 lnNt�1+lnAt�1; we eliminate the state variables, lnNt and lnAt: Rewriting
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(2) and (3), and solving M1 with respect to (�wt;�bt;�dt)0 we obtain,

MR
1 : � =

0B@ 0 �c1 c1

a1 �(1 + a1c1) a1c1

�a3 a3c1 �(1 + a3c1)

1CA ; det(�) = �c1 (a1 + a3) � �1 < 0: (23)

As z = 1
1+�1

, the (wt; bt; dt)-process is thus stationary given stability of the steady state.

Turn to MR
2 : With s = 1 we obtain,

MR
2 : � =

0BBBB@
0 �c1 c1 0

0 �(1� e1) �e1 f1

�a3 a3c1 �(1 + a3c1) 0

a5 �a5c1 a5c1 �1

1CCCCA ; det(�) = c1(�a1 + a3) � ���1 > 0: (24)

Again, this implies that the (wt; bt; dt;mt)-process is stationary.

Completely analogously, when s > 1 we get a � matrix as in (24) where e1 is replaced

by e1 �
Ps

i=1 ei; and f1 replaced by f =
Ps

j=1 fj. The determinant is then ���1 > 0; with

��1 � �c1(a�1 + a3) and a�1 = a5f (Appendix A.1).

To sum up, the Malthusian model with a stable deterministic steady state and labor demand

evolving persistently, implies 1) that labor demand cointegrates with population - the former

driving the latter, and 2) that real wages and vital rates interact in a stationary VAR. It is the

three Malthusian core assumptions alone that imply this.

Stationarity of the VAR in the rates is thus a necessary and testable condition of the

Malthusian model, and thus, it seems sensible to test this before elaborating the analysis.

3 Testing the Malthusian theory

3.1 Empirical implementation

In order to illustrate the central points as clearly as possible, the Malthusian models so far

have been highly simpli�ed. As a result they are too abstract to take to the data directly. A

more general Malthusian model which allows for more �exible dynamics of adjustment but has

the same long-run properties is presented in Appendix A.2. This model is a generalization of

MR
2 ; and is denoted eMR

2 : Compared to M
R
2 it allows the current marriage rate (in addition to

the lagged rates) to enter the birth rate equation, as well as other e¤ects from the lagged b

and d (in addition to the ei coe¢ cients in (14)). The death - and marriage rate equations now

allow for more gradual adjustment in response to changes in w. The real wage equation is not

generalized, but rather the empirical consequences of such generalizations are discussed in light

of the evidence (section 6).

The �rst point to note here is that the previous results generalize: In particular, stationarity

is still the result of the core assumptions. To see this we simply compute the determinant of
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the respective � matrix. This is done in (52) in Appendix A.2, restated here:

det(�) = c1 (ea1 + ea3) (1� �)(1� �)(1�  � �); (25)

provided that (1� �) 6= 0; (1� �) 6= 0; (1�  � �) 6= 0; and where,

ea1 � ea5 ef; ef � Pk
i=0 fi

(1�  � �)
;ea3 � � 

1� �
;ea5 � �

(1� �)
: (26)

The de�nitions of the remaining parameters are found in Appendix A.2. The special case MR
2

is obtained by setting: i = ei, �i = �i, f0 = 0 and k = s in (57),  0 = �a3;  i = 0 and

�i = 0; for i = 1; 2::k; in (58), and �0 = a5; �i = 0 and �i = 0 for i = 1; 2::k; in (59).

The main point to note is that the " e� "- parameters, i.e. the long-run parameters, are the
general Malthusian parameters. Thus, in this more general model, stationarity, i.e. det(�) 6= 0,
is still the result of the core assumptions implying that c1(ea1 + ea3) > 0:
Given this more general model, eMR

2 ; and that potentially, many other short-run interactions

may take place without a¤ecting the long-run structure (see e.g. Lee 1977), the initial statistical

model should allow for an unrestricted lag length - and structure. Our statistical model is thus

the unrestricted VAR,

�xt = �xt�1 + �1�xt�1 + :::+ �k�1�xt�(k�1) + �Dt + et; (27)

with et � Niid(0;
); �Dt being drift terms included to allow for deterministic growth in capital
and technology, and/or dummy terms to condition on warfare and plague etc.

Provided that (27) is statistically adequate we can infer on eMR

2 as this is nested. More

importantly, in case the theory model rejects, the estimate of (27) o¤ers clues as to how to

modify and improve the theory.

3.2 On the data

To test the Malthusian model we use the well-known yearly data on the birth rate, the marriage

rate and the death rate fromWrigley and Scho�eld (1989). These are all crude rates and de�ned

as the number of births, marriages and deaths per one thousand head of population. These

series are constructed using the so-called back projection method. Although this method is

subject to certain criticisms (Lee 1985a, Lee 1993b), these are the only data available.

As the real income series, we use the real wage series for building laborers in London from

Allen (2001). Although Clark (2005) presents a new national series, we use Allen�s series

to facilitate comparison to the results in Nicolini (2007). However, as long as the long-run

�uctuations are roughly the same the choice of real wage series is of little signi�cance. The

data series are plotted in Figure 2. The graphs seem to suggest that the levels can be described

with I(1) stochastic trends, since their �rst di¤erences (growth rates) seem stationary, while

linear deterministic trends seem absent. Both suggestions are supported by the tests below.
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Figure 2: The graphs of the time series: Levels in the left panel, growth rates in the right panel.

We restrict our sample to the pre-industrial period, 1560-1760, which is usually regarded

as safely within the period associated with the Malthusian regime. In section 7 we extend the

sample to 1850 to get some idea of the impact of the Industrial Revolution on our estimates.

Although data are available from 1541, we start in 1560, as the period 1541-1559 was too

unstable to model satisfactory, probably due to warfare and religious con�ict.

3.3 Testing stationarity

All estimation is calculated with CATS in RATS (Dennis, Hansen, and Juselius 2006). The

initial statistical models have the form as in (27), with �Dt including a constant and a trend
(CIDRIFT in CATS). To take account of extraordinary exogenous events (warfare and plague),

we start with a fairly general formulation. In particular, CATS estimates the model,

�xt = �xt�1 + �Dt�1 +
Pk�1

i=1 �i�xt�i + ��Dt + �1�Dt�1 + ::+ �k�1�Dt�(k�1) + et; (28)

(ignoring the constant and trend) where x0t = (wt; bt; dt;mt) andDt is a vector of shift-dummies.

This model allows for both transitory and permanent e¤ects from extraordinary events.

Under the non-linear restrictions � = ��� and �i = ��i�; i = 1; ::; k; this is the so-

called additive -, or "level shift" model. In such a case the observed series, xt; results from

superimposing (or adding) �Dt on to an underlying VAR. Essentially, the latter is simply

shifted by � from some date and onwards. These non-linear restrictions are ignored in CATS.
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In the unit root case when � = ��0, the non-linear restriction which is ignored is now �0�

in � = ���0�; and hence the parameterization � = ��0� is used, so that � = ��; which �ts

directly into the usual reduced rank algorithm (Johansen 1996, Chapter 6): That is, � = ��0;

and so �xt�1 + �Dt�1 = ��0xt�1 + ��Dt�1 = �(�0; �)(xt�1; Dt�1)
0 = ���0x�t�1. By treating the

level of Dt like this, similarity in the unit root - or rank test is obtained, as the e¤ect on xt from

the deterministic term is the same under the null and the alternative. This results from the

"additive type" of nature. Likewise the "CIDRIFT" speci�cation of the trend yields similarity.

To begin with, we estimated a model with no dummies, and k = 27. As expected, both from

analyzing demographic data in general, and the discussion in section 2.2, lag tests suggested

more lags. So henceforth, all speci�cations have k = 3 or 4.

A model with no dummies and 4 lags seemed statistically adequate. We removed �wt�3 and

�mt�3 as they were insigni�cant. This speci�cation is denoted S1: The misspeci�cation tests

are given in Appendix B.1: The assumption of no autocorrelation is clearly the most important

one, since inconsistency of the estimators result otherwise. Fortunately, in all speci�cations

autocorrelated errors were convincingly rejected. Joint normality was however rejected, pri-

marily due to the death rate residuals, particularly in the years 1625 and 1665 (respectively 4.5

and 5.39). These were obviously due to outbreaks of the plague. For the same reasons there

was a moderate residual (2.9) in 1603. LM tests for multivariate ARCH were not accepted - a

conclusion for all speci�cations. However, cointegrating inference is relatively robust towards

ARCH, in contrast to autocorrelation (Rahbek, Hansen, and Dennis 2002).

A speci�cation with one "impulse type" dummy denoted DP
t ; which is 1 in the three years

1603, 1625 and 1665 and zero otherwise, and enters as in (28), seemed to capture the impact of

the plague. We call this S2: The estimates of �1; �2 and �3 were insigni�cant and thus restricted

to zero. From Appendix B.2 we see that, compared to S1, joint normality, though still rejected,

now improved considerably (the test statistic dropped from 81.91 to 36.22). Constancy of

parameters is analyzed in Section 7, when the rank has been determined.

S2 thus seemed reasonable to continue with, and there were no notable outliers left. However,

as is well known residuals from OLS (by which the unrestricted VAR is estimated) may hide

large underlying errors due to the minimization of squared residuals. Thus, there may be

exogenous events with enormous in�uence on the estimation, which are di¢ cult to identify from

the residuals. Therefore, with permission from the author, we used the in�uence diagnostics

based on the displacements of the likelihood and the eigenvalues (Nielsen 2008). Though

tentative, some results were quite clear: First of all, the three years of plague, 1603, 1625

and 1665 stuck out, as single in�uential observations. The year 1659 seemed to in�uence the

estimated eigenvalues and hence, potentially unit root inference. The same was true for the

period 1643-44, which is likely to be the result of the First English Civil War (1642-46). In

general, the mid seventeenth century was a turbulent period, with three civil wars during 1642-

1651, succeeded by The First Anglo-Dutch war (1652-54) and the Anglo-SpanishWar (1654-60).

It is notable that the residuals for the years 1603, 1643 and 1659 were all only moderately large

7The computer - output and code from CATS in addition to that given here can be obtained from the
authors.
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(2.9 for 1603 and below 3.2 for 1643 and 1659), and hence, would probably not have been

detected from the residuals.

This led to our preferred speci�cation S3; which is S2 augmented with the shift-dummies,

Ds1643t and Ds1659t entering as in (28).

In S3 we tested stationarity, i.e. the rank of �, as there were no indications of roots inside

the unit disc - a result in all speci�cations. As the results from the unit root test (trace test)

were not su¢ ciently clear-cut, we considered the estimated characteristic roots, the graphs of

the recursively calculated trace test, the signi�cance of adjustment coe¢ cients �ij; and the

graphs of the cointegrating relations, �0xt (see Juselius 2006, Chapter 8). To assess robustness

of the choice of rank r; we considered all these pieces of information, for S1 and S2 with four

lags, and S3 with three and four lags. In S1 and S2; k = 3 was rejected. The results are

summarized in Table 1. The graphs of the recursive trace test, and the characteristic roots

suggested the same for all speci�cation, r = 3 or 4; and are therefore not included in the table.

Table 1: Inference on the Cointegration Rank

Model speci�cation

S1 S2 S3

k = 4 k = 4 k = 3 k = 4

Trace test r = 3 r = 4 (3�) r = 4 (3��) r = 4 (3�)

Graph of �0xt r = 2 or 3 r = 3 r = 3 r = 2 or 3

Signi�cance of � r = 3 r = 3 or 4 r = 4 r = 4

Notes: CIDRIFT was used. S1 and S2 exclude �wt�3 and �mt�3: S3 excludes �wt�3.

3� (3��) means that r = 3 is accepted at 97.5% (99%) level of signi�cance.

In case of dummy variables, critical values for the trace test are simulated in CATS

When valid, the Bartlett corrected trace test is used instead.

The results are roughly invariant with respect to the speci�cation. At �rst sight, it seems

that doubt is centered on whether r = 3 or r = 4: However, given this inconclusive evidence,

there are several reasons why we choose r = 3: First of all, the borderline case for r = 4

of the trace test (basically all speci�cations would have picked r = 3 on the 97.5% level), in

conjunction with the graphs of �0xt suggest r = 3: Secondly, the data are inevitably subject to

measurement errors which via their "additive outlier" nature may bias the trace test in favour of

r = 4; i.e. stationarity (Franses and Haldrup 1994). Thirdly, at the stationary/non-stationary

border it may be more appropriate to impose exact unit roots and use the asymptotics for unit

root processes rather than for stationary processes (see e.g. Johansen 2006).

Altogether, it seems reasonable to conclude that � has reduced rank, r = 3; or at least that

imposing r = 3 is a good statistical approximation. Hence, in contrast to Nicolini (2007) we

reject the stationarity (r = 4) implied by the Malthusian model. Note that we test stationarity

as a system property, in contrast to Nicolini (2007) and more recently Crafts and Mills (2007)

who adopt a univariate ADF-approach.
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So, what explains this outcome? There are two possibilities; The Malthusian interactions

are too sluggish for stationarity to be accepted. Alternatively, there is some other reason for

persistence. As there may be many potential alternatives, it seems sensible �rst to investigate

how the Malthusian model in the observable x0t = (wt; bt; dt;mt) can generate persistence.

4 Persistence in the Malthusian model

4.1 Understanding persistence in a Malthusian framework

As we have seen stationarity of x0t = (wt; bt; dt;mt) is equivalent to det(�) 6= 0:When det(�)!
0 persistence emerges consistent with the evidence in section 3.3. We analyze this limit case

by imposing det(�) = 0; equivalently the unit root restriction. This gives a statistical model

that delivers useful inference (see also section 6). Again we �rst analyze MR
1 as this captures

the essentials and then brie�y a generalized version of MR
2 :

From (23) and the corresponding root, it is clear that a unit root occurs when a1 + a3 = 0

and/or c1 = 0: Equivalently, existence of the steady state in (6) is lost. In terms of Figure 1,

a1 + a3 = 0 means that the curves in the left panel are parallel and hence (generically) there is

no equilibrium real wage where b = d. Population becomes independent of income as the e¤ect

on b is the same as on d: We �nd that,

� = ��0; � =

0B@ �c1 0

a3c1 �1
1 + a3c1 �1

1CA ; � =

0B@ 0 a3

1 1

�1 0

1CA ; (29)

i.e. there are two identi�ed cointegrating vectors. The �rst implies a stationary growth rate of

population, and the second is a "check" relation.

In terms of MS
1 , lnNt becomes a random walk with a drift �0 = a0 � a2; while lnAt is still

the same random walk (see 18). Thus, the processes are independent I(1) processes, and not

cointegrating anymore as � = 0 in (19).

If c1 = 0 the labor demand schedule is horizontal and income becomes independent of

population. In such a case no equilibrium for w, and therefore for b and d, exists since shocks

w are not "corrected" as the growing population has no e¤ect on wages. We �nd that,

� = ��0; � =

0B@ 0 0

�1 0

0 �1

1CA ; � =

0B@ �a1 a3

1 0

0 1

1CA : (30)

In this case the two Malthusian check relations become identi�ed cointegrating vectors. The �

matrix in (30) implies that the real wage becomes weakly exogenous, which in this case can be

interpreted as exogenous in the usual economic sense (See e.g. Møller 2008). It implies that

the real wage is the common stochastic trend, pushing the long-run paths of the rates bt and

dt: These adjust passively, and in turn, have no e¤ect on the real wage - since the marginal
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productivity e¤ect (c1) of population on income is zero.

Now, MS
1 changes radically. First the normalization in (18),

1
c1
is invalid. Instead, we �nd

that wt = c0+ lnAt; i.e. a constant plus a random walk and hence a random walk. This means

that the rates bt and dt also become random walks, that do not cointegrate 1:1 (homogeneously),

hence the population growth rate bt� dt is I(1), so that by de�nition population becomes I(2).
This is seen explicitly from the MA-representation,

lnNt = lnN0 + b0t+ (a1 + a3)
Pt

i=1

Pi�1
j=1 "At +

Pt
i=1 "Ni; (31)

where b0 � (a0�a2)+(a1+a3)(c0+lnA0): Hence the shocks "bt�"dt generate an I(1) stochastic
trend, while the labor demand shocks generate a second order or I(2) trend. In addition to these

linear stochastic trends there will also be a linear deterministic trend, which will be present

even if a0 = a2 simply due to the initial value lnA0: Note that population is I(2) but labor

demand is still only I(1).

The general model, eMR

2 ; in Appendix A.2 which is relevant for the estimation, has,

� =

0BBBB@
0 0 �c1

�f0 (1� �) �(1�  � �) ��� �0c1f0

� ef (1� �) � (1� �) 1� ��  0c1

�(1� �) 0 ��0c1

1CCCCA ; �0 =

0B@ �ea5 0 0 1

0 1 0 � ef
0 1 �1 0

1CA ; (32)

in the case when ea1 + ea3 = 0, and when c1 = 0 we get,

� =

0BBBB@
0 0 0

(�ea3��f0)ea5 �(1� ) �

0 0 �(1� �)

�(1� �) 0 0

1CCCCA ; �0 =

0B@ �ea5 0 0 1

0 1 0 �ea3
(1�)ea5 � (1���)

(1�)
efea3 0 1 0

1CA : (33)

In both (32) and (33), the reduced rank, r; is exactly three as suggested by the data, and �

is identi�ed.

4.2 Imposing the persistence restrictions

Under the restriction ea1+ea3 = 0 we leave � unrestricted, and hence only impose the restrictions
on �. Under c1 = 0 we also impose the zero row in � in addition to the � restrictions.

Conditional on the estimated �, one can then impose the additional restrictions on � (and

�i;�) and conduct Gaussian based inference. We do not pursue this here.

Our preferred speci�cation is S3 with k = 3. Data suggested that the constant is restricted

to the span of �; implying insigni�cant deterministic trends as expected from Figure 2.
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Table 2: Testing the �rst assumption of Malthusian persistence

� �0

�wt 0:03
[3:77]

0:01
[1:31]

�0:00
[�1:79]

wt bt dt mt DP
t Ds1643t Ds1659t Const:

�bt �0:20
[�1:88]

�0:37
[�5:25]

�0:02
[�0:77]

�01 �9:16
[�9:11]

0:00 0:00 1:00 6:15
[3:96]

0:92
[1:95]

2:26
[4:56]

7:14
[3:96]

�dt 0:37
[1:51]

�0:28
[�1:69]

0:34
[5:30]

�02 0:00 1:00 0:00 �1:74
[�9:12]

�8:86
[�3:27]

2:87
[3:58]

�3:96
[�5:49]

�16:86
[�9:50]

�mt �0:27
[�4:65]

�0:04
[�0:93]

�0:05
[�3:41]

�03 0:00 1:00 �1:00 0:00 6:26
[0:89]

5:06
[4:62]

0:00 �7:96
[�9:36]

The estimates under the restriction ea1 + ea3 = 0 are given in Table 2 (t-values in brackets).
The restriction was accepted with a p-value of 65%. The estimates of ea5 and ef are respectively,
9.16 and 1.74 (see 32), and both strongly signi�cant, completely in line with theory. The �

matrix shows the desired signi�cant error-correction in m to the �rst relation (�0:27); and in b
to the second relation (�0:37); while adjustment in b to the third relation is insigni�cant and
happens through d instead (0:34). The estimates �12 and �42 are insigni�cant as expected8.

The estimate of �32 suggests error correction but it is borderline insigni�cant (t-value = �1:69).
The estimate of �43 (�0:05) is also consistent with � in (32).
There are however, some surprises. First, the estimate of �13; i.e. of c1; is (borderline)

insigni�cant. It is possible that it may become signi�cant when the model is cleaned from

super�uous regressors. However, what is interesting is that the estimate is rather small, 0.004

("0.00" in output). This suggests that c1 � 0; i.e. that the other reason for persistence could
also be relevant. Second, the estimate of �11 suggests signi�cant error correction of real wages

to the �rst relation which is not predicted from theory, and does not seem readily interpretable.

In spite of these "surprises" the estimated � and � seem rather clear-cut when compared

to the matrices in (32). However, the restriction ea1 + ea3 = ea5 ef + ea3 = 0, may seem hard to

accept, since it implies that the long-run e¤ect from income on the death rate,�ea3; is positive,
when ea5 ef > 0; which seems plausible and indeed empirically supported. So, unless we have

convincing theories that suggest just the opposite of positive checks, it is not clear that we

should accept these results at face value. It should be intuitively clear that even if the positive

check coe¢ cient has the right sign but is very small, then unless the preventive check mechanism

is su¢ ciently strong, we are likely to get away with forcing this restriction upon the model.

Finally, the results in Table 2 as well as an individual test for stationarity of the population

growth rate, bt � dt (corrected for shift) with a p�value of 63%, support the use of the linear
approximation cf. the discussion in section 2.2.

Imposing the restriction that c1 = 0; we get the estimates in Table 3. This restriction was

also accepted with a p�value at 10%. Recalling (33) we see that the �rst relation (preventive
check relation) has the right sign on ea5 and it is signi�cant, and m is error-correcting with high

signi�cance (t�value is �6:89).
8�ij in i�th row, j�th column of �:
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Table 3: Testing the second assumption of Malthusian persistence

� �0

�wt 0:00 0:00 0:00 wt bt dt mt DP
t Ds1643t Ds1659t Const:

�bt �0:28
[�2:15]

�0:37
[�5:92]

0:03
[1:22]

�01 �5:41
[�5:92]

0:00 0:00 1:00 5:30
[3:58]

0:00 2:20
[7:71]

0:53
[0:32]

�dt 0:56
[1:87]

�0:04
[�0:26]

�0:42
[�6:35]

�02 0:00 1:00 0:00 �2:05
[�9:21]

�10:29
[�3:45]

3:68
[4:27]

�5:04
[�6:10]

�14:05
[�6:78]

�mt �0:49
[�6:89]

�0:11
[�3:05]

0:04
[2:25]

�03 0:90
[0:23]

0:00 1:00 0:00 �7:85
[�1:20]

�4:75
[�3:93]

0:00 �26:23
[�3:68]

The estimate of � (�23) is insigni�cant, and hence � = 0 cannot be rejected. From � in (33)

we see that this restriction identi�es the last element of the second cointegrating vector as ef:
The estimate is �2:05 and signi�cant, and hence, very much in line with the -1.74 in Table 2.
Here, the error-correction to this relation is in b as it should and also very signi�cant. The third

relation - the positive check relation - now shows us that the positive check may have occurred,

but it was too weak to be signi�cant (t�value is 0:23). Finally, as expected, the death rate is
indeed error-correcting to this relation. When restricting ea3 to zero the p�value rose to 17%,
while the estimates and t�values were basically unaltered.
Both estimated matrices � and � are again very clear-cut. The bulk of signi�cance of the

adjustment coe¢ cients takes place in the variables on which we have normalized (the most

signi�cant coe¢ cients are �41; �22 and �33). In addition the rest of the � coe¢ cients are in fact

interpretable: First, the estimate of �42 is signi�cantly negative which is probably capturing

the purely demographic e¤ect, that when bt�1 rises, Nt goes up, which given Mt; means that

mt =
Mt

Nt
will fall. Likewise, the positive estimate of �43 is also the automatic e¤ect, that when

dt�1 rises then mt =
Mt

Nt
rises simply because Nt always falls more than Mt.

To sum up, the results are remarkably clear-cut, and under both restrictions data suggest

that the positive check, ea3; is insigni�cant, that ef , the long-run e¤ect from marriages on births,
is around 2 and highly signi�cant, and that ea5 is probably around 5-9 and also highly signi�cant.
Error-correction is also as expected and very signi�cant. The estimate in Table 2, bc1 = 0:004;
and the strikingly clear picture in Table 3 suggest that c1 is negligible. In terms of Figure

1, the data thus support a horizontal death rate schedule which �uctuates in a stationary

manner around a level that shifts under extraordinary circumstances. The birth rate relation

is upward sloping, while the labor demand schedule is horizontal and shifts like a random walk,

determining the position on the birth rate schedule. Finally, c1 � 0 means that population,

and hence the labor supply schedule changes even more persistently, i.e. like I(2).

It is interesting to note that in the analysis of Lee and Anderson (2002), the error term in

the intercepts for the preventive and positive check schedules is assumed to be I(1). It can be

seen clearly from our equation 2 that if "bt were an I(1)-process, then it would be impossible

for the I(1) processes bt and wt to cointegrate. This is however what our results convincingly

support, as the mt cointegrates with wt and bt cointegrates with mt.

Even though both restrictions of Malthusian persistence are accepted we choose to focus on

the latter (c1 = 0). First of all, as argued above, the restriction ea1 + ea3 = 0 may seem hard to
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accept per se. Secondly, under this restriction we saw that the results pointed towards c1 = 0

with the almost signi�cant estimate bc1 = 0:004: Thirdly, the strongly signi�cant preventive

checks working through marriages combined with insigni�cant positive checks have been found

previously in Lin Lee and Loschky (1987). Finally, the estimate of � in Table 3 was the most

interpretable. However, as lack of diminishing marginal returns, c1 � 0; may also seem di¢ cult
to accept, we now consider a broader interpretation of this parameter.

5 A tentative interpretation of the empirical results

The previous analysis clearly suggests that the marginal productivity e¤ect, c1; is very small.

Under the Cobb-Douglas technology, c1 is the sum of the income shares to capital and land,

so unless we are willing to accept an estimate of this at 0.004, from Table 2, we must adopt a

broader interpretation of c1: By introducing only one more parameter we show how lnA; can

be endogenized to produce a positive e¤ect from population on real wages via "increased tech-

nology". This counteracts the negative marginal productivity e¤ect, and results in a "modi�ed

c1" - broadly interpreted as the net e¤ect of the two forces.

5.1 A Malthusian model with endogenous technological progress

That larger populations might give rise to more technological progress was suggested long ago by

Adam Smith. He suggested that larger populations �in his words a greater �extent of the mar-

ket�- allow for greater division of labor and thus increased opportunities for learning-by-doing

(see the discussion in Persson 1988). More recently, Boserup (1965) suggested the possibility

that larger population density might put such a strain on resources that new technologies are

brought into use in order to maintain a su¢ cient food supply.

There are many ways to model feed-back e¤ects from population on technology, and possibly

many ways to interpret Smith and/or Boserup. Here, we suggest a simple and tentative way to

incorporate such mechanisms into the framework above, while we leave the economic interpre-

tation relatively open. We suggest a slight generalization to allow for "Boserupian/Smithian"

e¤ects, implying that the pure Malthusian model becomes a special case of this model. We

refer to our model as the Synthetic model, and use the understood notation,M1;MR
1 andMS

1 .

It su¢ ces to consider the extension of M1: The Synthetic model,M1; is simply M1 with (4)

substituted by the two equations,

lnAt = c3 lnNt + lnXt; (34)

lnXt = lnXt�1 + "Xt; (35)

where c3 � 0; Xt could be general or basic knowledge and At is knowledge that matters directly

for production: We note thatM1 collapses to M1 when c3 = 0: In this case there is no distinc-

tion between At and Xt; and we are back in the Malthusian case. The Boserupian/Smithian
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mechanism arises when c3 > 0; in which case there will be a positive e¤ect from the level of

population on the level of applied technology.

As previously, to learn about dynamics we deriveMR
1 andMS

1 : First we get forMR
1 ,

MR
1 : � =

0B@ 0 �c1 c1

a1 �(1 + a1c1) a1c1

�a3 a3c1 �(1 + a3c1)

1CA ; det(�) = �1; (36)

where �1 = �c1(a1 + a3), and the "broadly interpreted" c1 is,

c1 � c1 � c3; (37)

resembling MR
1 completely. Hence, we can retain the core classical assumption of diminishing

marginal returns to labor, c1 > 0; and still have a small, and hence insigni�cant c1 consistent

with the evidence. This approach is further discussed in section 6.

ConcerningMS
1 we get the generalized counterpart to (18),

� lnNt = �0 + �1(lnNt�1 � �1 lnAt�1) + "Nt; (38)

� lnAt = �0 + �2(lnNt�1 � �1 lnAt�1) + "At;

where �1 = �c1(a1 + a3); �2 � c3�1; �0 � c3�0 and "At � c3"Nt + "Xt:

The crucial di¤erence between (38) and (18) is that technology is no longer weakly exogenous

but is indeed adjusting to population in the long run, with the coe¢ cient �2. So, there is

still the same long run equilibrium relationship between technology and population, �0xt �
lnNt � �1 lnAt: However, the random walk path that both variables follow (so that their

"di¤erence", �0xt; becomes stationary) is no longer determined solely by the cumulation of lnA

shocks. The common trend is now �0?
Pt

i=1 "i =
Pt

i=1 "Ni � 1
c3

Pt
i=1 "Ai; i.e. it includes both

technology shocks, "A and population shocks, "N , as is intuitively clear since both variables

have a long-run in�uence on each other.

Given the Malthusian core assumptions and that c3 > 0, the condition that the rates are

jointly stationary, and the stock variables I(1) and cointegrating with �0 = (1;��1); is naturally
that c3 < c1: That is, the Boserupian/Smithian e¤ect must not dominate the Malthusian.

There is an important di¤erence to note between our Synthetic model and consensus litera-

ture. For example, within the interpretations of Boserup and the literature of (uni�ed) growth

theory there has been an emphasis on explaining the growth of technology with the level of the

population (See Galor 2005). This is not what our Synthetic model says. Here, the dependence

is between the levels (lnNt and lnAt). But admittedly, more analysis is needed, which com-

bines the �exible cointegrated VAR with advanced growth theory, for instance along the lines

of Aiyar, Dalgaard, and Moav (2008).

Given this interpretation, our empirical results can be viewed as the limit case of the Syn-

thetic model when c1 = 0 (or small). The evidence is thus consistent with a Malthusian

process (with preventive checks but no positive checks), which is counteracted by Boserupian
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- and/or Smithian e¤ects from population size on technology, to the extent that the net-e¤ect

of population on income becomes statistically insigni�cant.

6 Discussion

The result that c1; or rather c1; is zero implies that bt � dt and mt are I(1), and hence non-

stationary, which makes the linearization in (14) problematic. However, c1 = 0 should probably

be interpreted as an approximation of c1 close to zero. For a persistent process, such an

approximation may deliver a statistical model which facilitates inference (see section 2.3.1

and Johansen 2006). In this sense, the unit root - (cointegration) analysis in section 4.1-5 is

consistent with an underlying stationary but very persistent process, and hence the linearization

can be justi�ed.

As mentioned, our interpretation in section 5 should be regarded as tentative. In particular,

the problem with the Synthetic model is that it does not identify c1 and c3 only their di¤erence

c1. This implies that based on the data, we cannot conclude whether both e¤ects, c1 and c3,

do in fact operate but simply o¤set each other - as we assume above, or whether they are

both negligible. In spite of this and its ad hoc nature, we believe that our synthetic model

remains interesting, as it shows how to incorporate mechanisms advocated by the traditional

adversaries of the Malthusian ideas. It is done in a simple fashion and retains the core economic

assumption of diminishing returns to labor. Moreover, it may serve as a point of departure for

developing models that do identify c1 and c3:

There are a number of additional interesting implications from our empirical results. First,

the acceptance of w being weakly exogenous together with the �rst rows of the unrestricted

estimates of b�1 and b�2 (Appendix C), suggests that w can be approximated empirically as a

random walk. Hence, it can be regarded as exogenous in the usual economic sense (See e.g.

Møller 2008).

We also note that if the unobserved lnAt were better described by a more general I(1)

process, i.e. an AR(�) process with z = 1, this would imply MA-errors in the real wage equation

and hence, autocorrelated residuals. As we have seen, this is however rejected convincingly.

Such AR(�) unit root processes could for example capture overshooting or gradual increase in

lnA, both potentially relevant descriptions of technical knowledge.

The rejection of autocorrelation also implies that changes in lnA impact rather rapidly on

labor demand and real wages. This is so since, if lnA had a more gradual impact, say due to

gradual di¤usion of knowledge, this would entail distributed lags of the unobserved lnA in the

real wage equation, that is, MA-errors, and thus autorcorrelated residuals.

As is natural to expect, births may a¤ect labor supply, and hence wages, with a rather long

lag, say, 15-25 years, as there must be a lower limit for the age at labor force entrance and

employment. For example, Nicolini sought to handle this problem by the inclusion of population

lagged 25 years (Nicolini 2007). What is interesting is that our results do not suggest this, since

if such long lags were operating, the unrestricted estimates of the real wage equation would
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probably suggest this: The included �rst lags of b; and the lagged di¤erences, �bt�i; would

be signi�cant. In addition, autocorrelated real wage residuals would occur if we have �tted

too few lags. From the estimate of �, the insigni�cant �rst rows of b�i in Appendix C, and
the autocorrelation tests in Appendix B, it is clear that none of this is found in our empirical

results. A possible, and to our minds overlooked explanation, is that births may in fact impact

immediately on labor supply (and hence real wages), since having a child implies yet another

mouth to feed, which may induce the breadwinner to work more. When the child eventually

becomes old enough, it enters employment and so to speak, takes over the e¤ect on aggregate

labor supply (measured in hours). Regardless of what happens under transition the long-run

e¤ect, which is our concern, is the same - labor supply will increase, and real wages fall, given

the initial rise in population.

The estimated real wage equation has further interesting implications: First, the previous

analysis ignores the role of net-migration. One way to include this could be to generalize the

population equation, (5), to,

lnNt = lnNt�1 + bt�1 � dt�1 + �NDNt + eNt; (39)

where �NDNt + eNt describes net-migration. The term, DNt; is an impulse dummy, capturing

large changes in net-migration, whereas eNt is a residual term. Hence, compared to Lee and

Anderson (2002) we have added DNt: Furthermore, the equation for labor demand, (4), could

be generalized to,

lnAt = cA + lnAt�1 + �ADAt + "At; (40)

where cA captures regular growth of technology and/or capital per worker, for example. The

term, �ADAt, again with DAt being an impulse dummy, is supposed to capture the e¤ect from

major technological improvements if such were to occur.

Now, these equations imply the real wage equation,

�wt = cA � c1(bt�1 � dt�1)� c1�NDNt + �ADAt + "wt ; (41)

where "wt � "At � c1eNt: From (41), we see that the empirical results (that wt can be approxi-

mated with a random walk) suggest: 1) No technological smooth/deterministic growth. 2) No

major technological improvements took place during the period, since no dummies were needed

in the �w equation. Furthermore, since c1 (or c1) is zero this implies the identi�cation of the

"At from the wage shock, "wt ; and that net-migration does not matter for the analysis. The

latter is quite fortunate since reliable data on net-migration do not exist (see the discussion in

Bailey and Chambers 1993).

7 Constancy of the parameters and the �Malthusian era�

Our analysis cuts the sample o¤ at 1760, and thus excludes the period often associated with the

Industrial Revolution, at which point it might be expected that the Malthusian mechanisms
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break down. We now want to assess the assumption of constant parameters within the period

1560-1760. If this seems reasonable, we may furthermore estimate the model recursively for

the samples, 1560-T; T = 1761; 1762; ::, to determine the period in which our results in Table

3 hold.

To assess the assumption of constant parameters within our sample, a baseline sample is

chosen, 1560-TB: The model is then recursively estimated for the samples, 1560-TB + 1; 1560-

TB + 2; :::1560-1760, and the evolution of the estimates is mapped out (Dennis, Hansen, and

Juselius 2006).

First, � and � are recursively estimated. The relevant � coe¢ cients are signi�cantly error

correcting and of a similar level for all sample lengths. The � coe¢ cients are likewise remarkably

constant. Hence, the mechanisms we have identi�ed are stable and operating at least until the

industrial revolution.

Extending the sample beyond 1760, the recursively estimated � and � coe¢ cients seem

stable until about 1785. At this point, dt ceases to error-correct to the third relation. The

marriage rate in the �rst relation and the birth rate in the second relation, on the other hand,

continue to error-correct for almost all sample lengths, although the coe¢ cients associated with

both fall. The � coe¢ cient on wt in the �rst relation also remains very constant as does that

on the death rate in the second relation. However, the coe¢ cient on mt becomes insigni�cant

from around about 1800.

These results imply that industrialization does impact on the Malthusian relationships, as

expected. The weak (insigni�cant) positive check disappears soon after the onset of industri-

alization. However, the preventive check seems to persist longer. Indeed, the estimate of ea5
appears remarkably robust and signi�cant throughout the industrialization period (as hypoth-

esized by Sharp and Weisdorf 2008). The automatic e¤ect of the death rate on the birth rate

is also very robust, as might be expected, but m ceases to have an impact on b after 1800, thus

destroying the preventive check mechanism. The positive check �if ever present �disappeared

much earlier.

Our results di¤erentiate themselves in several important respects from those found in pre-

vious studies. As we do not attempt to estimate a model for the period both before and after

industrialization, we obtain a statistically well-de�ned - and remarkably stable model. By in-

cluding m, we are able to demonstrate that the dependence of the marriages on real wages

continues beyond industrialization. In contract to Nicolini (2007), we �nd evidence that the

workings of the preventive check remained remarkably constant until about 1800. Our results

con�rm the �ndings of Bailey and Chambers (1993), who also �nd a positive e¤ect of the real

wage on fertility and nuptiality, and a negative impact of fertility from the death rate for the

years until 1800.
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8 Conclusions

Our empirical results are consistent with a Malthusian process - with preventive checks working

through marriages but negligible positive checks - which is counteracted by Boserupian and/or

Smithian e¤ects from population size on technology, to an extent that the net-e¤ect of popu-

lation on income becomes statistically insigni�cant. This supports Malthus�modi�ed views in

the second edition of his Essay from 1803. He named a number of factors which would o¤set

diminishing returns to labor, including increased investment and improvements in agriculture

(see e.g. Collard 2001).

As a by-product of our analysis we do not �nd any support for Malthusian Oscillations, as

opposed to Lin Lee and Loschky (1987). Furthermore, the evidence is consistent with no linear

deterministic trend in technology, and allows technological regress (see e.g. Aiyar, Dalgaard,

and Moav 2008). Finally, recursive estimation suggests that the identi�ed model operates until

1785, and that the preventive check mechanism (via marriages) persists until about 1800.

A number of promising avenues for future research open up in the wake of this paper. First,

as discussed in section 6 it should be both possible and useful to develop the Synthetic model,

or similar models, in order to identify both the Malthusian e¤ect, c1, and the counteracting

Boserupian e¤ect, c3; and not just their di¤erence, c1. Second, due to our professional back-

ground, it is probably possible to improve the demographic foundation of our model. Third,

there is scope for economic theories explaining why the real wage is almost completely exoge-

nous. Fourth, given data availability, it should be possible to apply our approach to other

pre-industrial economies, and/or potentially current developing countries.

Appendix

8.1 Appendix A

8.1.1 A.1. Analysis of M2

MS
2 with s > 1:

The model, M2; is,

wt = c0 � c1 lnNt + lnAt; (42)

bt ' e0 + e1bt�1 � e1dt�1 + f1mt�1 + e2bt�2 � e2dt�2 + f2mt�2 + :: (43)

:::::+ esbt�s � esdt�s + fsmt�s + "bt;

dt = a2 � a3wt + "dt; (44)

mt = a4 + a5wt + "mt; (45)
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lnAt = lnAt�1 + "At; (46)

lnNt = lnNt�1 + bt�1 � dt�1: (47)

As when deriving (21) we �rst derive the generalized birth relation by inserting (45) in (43)

to get,

bt = a�0 + e1� lnNt + ::+ es� lnNt�(s�1) + a�11wt�1 + a�12wt�2 + :::+ a�1swt�s + "�bt; (48)

where a�0 � e0 + a4f; f � f1 + f2 + :: + fs; a
�
1j � fja5 > 0; j = 1; :::; s and "�t � f1"mt�1 +

::+ fs"mt�s+ "bt: Hence, we see that MA-errors occur. This of course does not occur in models

where m is included, in particular MR
2 and the full system. Proceeding as in the case s = 1; we

arrive at the following CVAR,

� lnNt = ��0 + ��1(lnNt�1 � �1 lnAt�1) + ��11� lnNt�1 + ::+ ��1s� lnNt�s; (49)

+��21� lnAt�1 + :::+ ��2s� lnAt�s + "�Nt; (50)

� lnAt = "At;

where,

��0 � (a�0 � a2) + (a
�
1 + a3)c0; �

�
1 � �c1(a�1 + a3); a

�
1 � a�11 + ::+ a�1s > 0; (51)

��1j � ej + c1
Ps

l=j a
�
1l; �

�
2j � �

Ps
l=j a

�
1l; j = 1; :::; s and "

�
Nt � "�t�1 � "dt�1;

As we can see the long-run dynamics has exactly the same structure as in the simple models

MS
1 : The cointegrating vector is identical, the adjustment coe¢ cient, �

�
1; is negative because

c1 > 0; a5 > 0; a3 > 0 and all fj > 0; i.e. due to the three crucial Malthusian assumptions. As

with MS
2 ; the transitory or adjustment dynamics have just become more complicated, otherwise

the model is basically the same. Note that det(�0?��?) 6= 0 always.

MR
2 with s > 1:

In the usual ECM form we get,

� =

0BBBB@
0 �c1 c1 0

0 �(1� e1) �e1 f

�a3 a3c1 �a3c1 � 1 0

a5 �a5c1 a5c1 �1

1CCCCA ; det(�) = ���1; (52)

where e1 �
Ps

i=1 ei and f =
Ps

j=1 fj (de�ned above).

The model can be written as,

�xt = �xt�1 +D1�xt�1 +D2�xt�2:::+Ds�1�xt�(s�1) + �+ vt; (53)

26



with � de�ned in (52), and Di;

Di �

0BBBB@
0 0 0 0

0 �ei+1 ei+1
ei+1
m�

0 0 0 0

0 0 0 0

1CCCCA ; i = 1; ::; (s� 1); (54)

with ej �
Ps

l=j el; j = 2; :::s: For later we note that,

� �

0BBBB@
1 0 0 0

0 1 +
Ps

j=2 ej �
Ps

j=2 ej � 1
m� e2

0 0 1 0

0 0 0 1

1CCCCA ; (55)

where we use the matrix notation from Johansen (1996).

8.1.2 A.2. The generalized version of MR
2 ;
fMR

2

Generalizations relative to MR
2 : The wage equation: none. The birth rate equation: a current

e¤ect from mt (f0) and other e¤ects from lagged b and d, i and �i; in addition to the ei
coe¢ cients in (14). The death rate equation: More gradual adjustment by the  i - and

�i coe¢ cients. The marriage rate equation: More gradual adjustment by the �i - and �i

coe¢ cients.

The equations are,

wt = wt�1 � c1(bt�1 � dt�1) + "At; (56)

bt = e0 + f0mt + 1bt�1 + �1dt�1 + f1mt�1 + :::+ kbt�k + �kdt�k + fkmt�k + "bt; (57)

dt = a2 +  0wt + �1dt�1 + :::+  kwt�k + �kdt�k + "dt; (58)

mt = a4 + �0wt + �1mt�1 + :::+ �kwt�k + �kmt�k + "mt: (59)

This implies the � matrix (see 27),

� =

0BBBB@
0 �c1 c1 0

f0� �(1� )� �0c1f0 �+ �0c1f0 f0� + f

 � 0c1 �(1� �) +  0c1 0

� ��0c1 �0c1 �(1� �)

1CCCCA ; (60)

where f =
Pk

i=1 fi; � �
Pk

i=0 �i;  �
Pk

i=1 i; � �
Pk

i=1 �i; � �
Pk

i=1 �i; � �
Pk

i=1 �i;

 �
Pk

i=0  i: The determinant of this can be written as,

det(�) = c1

�ea3 + ea5 ef� (1� �)(1� �)(1�  � �); (61)
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provided that (1� �) 6= 0; (1� �) 6= 0; (1�  � �) 6= 0; and where,

ef � Pk
i=0 fi

(1�  � �)
;ea3 � � 

1� �
;ea5 � �

(1� �)
: (62)

The special case MR
2 is obtained by setting i = ei, �i = �i, f0 = 0 and k = s in (57). In (58)

we set  0 = �a3;  i = 0 and �i = 0 for i = 1; 2::k: In (59) we set �0 = a5; �i = 0 and �i = 0

for i = 1; 2::k:

Appendix B

B.1. Misspeci�cation tests. Model: S1

Tests for Autocorrelation

LM(1): ChiSqr(16) = 16.74 [0.40]

LM(2): ChiSqr(16) = 12.17 [0.73]

LM(3): ChiSqr(16) = 16.97 [0.39]

LM(4): ChiSqr(16) = 11.33 [0.79]

Test for Normality: ChiSqr(8) = 81.91 [0.00]

Test for ARCH:

LM(1): ChiSqr(100) = 230.86 [0.00]

LM(2): ChiSqr(200) = 337.67 [0.00]

LM(3): ChiSqr(300) = 447.58 [0.00]

LM(4): ChiSqr(400) = 569.63 [0.00]

Univariate Statistics

Mean Std.Dev Skewness Kurtosis Maximum Minimum

DLYBL 0.00 0.09 -0.06 3.72 0.31 -0.28

DCBR 0.00 1.16 -0.24 3.53 2.99 -3.70

DCDR 0.00 3.23 1.68 8.76 17.49 -6.93

DCMR -0.00 0.68 0.39 4.18 2.33 -2.03

ARCH(4) Normality R-Squared

DLYBL 6.79 [0.15] 5.71 [0.06] 0.22

DCBR 4.12 [0.39] 4.08 [0.13] 0.67

DCDR 2.97 [0.56] 60.92 [0.00] 0.37

DCMR 13.20 [0.01] 10.86 [0.00] 0.34
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B.2. Misspeci�cation tests. Model: S2

RESIDUAL ANALYSIS

Tests for Autocorrelation

LM(1): ChiSqr(16) = 15.40 [0.50]

LM(2): ChiSqr(16) = 7.54 [0.96]

LM(3): ChiSqr(16) = 11.86 [0.75]

LM(4): ChiSqr(16) = 14.92 [0.53]

Test for Normality: ChiSqr(8) = 36.22 [0.00]

Test for ARCH:

LM(1): ChiSqr(100) = 202.89 [0.00]

LM(2): ChiSqr(200) = 341.02 [0.00]

LM(3): ChiSqr(300) = 458.50 [0.00]

LM(4): ChiSqr(400) = 582.85 [0.00]

Univariate Statistics

Mean Std.Dev Skewness Kurtosis Maximum Minimum

DLYBL 0.00 0.09 -0.04 3.71 0.31 -0.27

DCBR 0.00 1.14 -0.16 3.54 3.25 -3.55

DCDR 0.00 2.59 0.71 4.10 8.30 -6.71

DCMR -0.00 0.68 0.37 3.98 2.22 -2.01

ARCH(4) Normality R-Squared

DLYBL 7.19 [0.13] 5.61 [0.06] 0.23

DCBR 2.24 [0.69] 3.90 [0.14] 0.68

DCDR 19.04 [0.00] 14.66 [0.00] 0.59

DCMR 15.71 [0.00] 8.70 [0.01] 0.36

B.2. Misspeci�cation tests. Model: S3

RESIDUAL ANALYSIS

Tests for Autocorrelation

LM(1): ChiSqr(16) = 21.79 [0.15]

LM(2): ChiSqr(16) = 8.82 [0.92]
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LM(3): ChiSqr(16) = 14.99 [0.53]

LM(4): ChiSqr(16) = 10.30 [0.85]

Test for Normality: ChiSqr(8) = 34.01 [0.00]

Test for ARCH:

LM(1): ChiSqr(100) = 190.19 [0.00]

LM(2): ChiSqr(200) = 335.20 [0.00]

LM(3): ChiSqr(300) = 458.14 [0.00]

LM(4): ChiSqr(400) = 570.58 [0.00]

Univariate Statistics

Mean Std.Dev Skewness Kurtosis Maximum Minimum

DLYBL 0.00 0.08 -0.15 3.86 0.29 -0.26

DCBR 0.00 1.04 -0.02 3.16 2.86 -3.07

DCDR 0.00 2.45 0.65 4.01 7.79 -6.15

DCMR 0.00 0.59 0.65 3.88 2.15 -1.38

ARCH(4) Normality R-Squared

DLYBL 8.98 [0.06] 7.45 [0.02] 0.29

DCBR 4.76 [0.31] 0.79 [0.67] 0.74

DCDR 13.19 [0.01] 12.72 [0.00] 0.64

DCMR 12.13 [0.02] 12.95 [0.00] 0.51

Appendix C: The short run matrices for the structure with c1 = 0

The coe¢ cient, ea3 was set to zero as it was insigni�cant (see 4.2). The "Gamma (i)" corresponds
to �i in the usual ECM form (equation 28), and t-values are in the brackets. DD16 is the

di¤erence of DP
t ; the DD16XXS_{i} denotes the i

0th di¤erence of the shift dummy, Ds16XXt .

In each line DLYBL is the �rst di¤erence of wt; CBR, CDR and CMR denote the crude - birth,

death and marriage rate respectively (= bt � 1000; etc.).

LAGGED DIFFERENCES:

GAMMA(1)

DLYBL{1} DCBR{1} DCDR{1} DCMR{1}

DLYBL -0.13 -0.00 -0.00 -0.02

(-1.41) (-0.01) (-0.08) (-2.21)

DCBR 6.37 -0.21 -0.09 0.45
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(6.21) (-2.96) (-3.20) (3.49)

DCDR -3.48 -0.32 0.03 -1.05

(-1.44) (-1.94) (0.43) (-3.44)

DCMR 0.41 0.11 0.02 -0.11

(0.72) (2.88) (1.53) (-1.48)

GAMMA(2)

DLYBL{2} DCBR{2} DCDR{2} DCMR{2}

DLYBL -0.14 0.00 0.00 -0.02

(-1.57) (0.03) (1.80) (-1.45)

DCBR 5.17 -0.08 -0.04 -0.45

(5.02) (-1.64) (-1.64) (-3.64)

DCDR -0.62 -0.28 0.05 0.27

(-0.26) (-2.42) (0.86) (0.93)

DCMR -1.20 0.02 0.04 -0.10

(-2.10) (0.64) (2.65) (-1.53)

DUMMIES:

DD16 DD1643S_{0} DD1659s_{0}

DLYBL -0.01 0.02 -0.07

(-0.26) (0.20) (-0.74)

DCBR 1.47 0.88 -3.08

(2.82) (0.79) (-2.69)

DCDR 13.35 5.19 -8.94

(10.89) (1.98) (-3.31)

DCMR -0.68 -2.89 -0.76

(-2.34) (-4.68) (-1.19)

DD1643S_{1} DD1643S_{2} DD1659S_{1} DD1659S_{2}

DLYBL -0.07 -0.14 -0.01 -0.15

(-0.64) (-1.39) (-0.11) (-1.42)

DCBR 1.14 2.27 0.03 1.17

(0.95) (1.93) (0.02) (0.94)

DCDR 0.34 -3.29 -6.45 0.62

(0.12) (-1.19) (-2.22) (0.21)

DCMR -1.53 1.03 -1.79 -1.16

(-2.31) (1.59) (-2.62) (-1.68)
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