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Selecting a Regression Saturated by Indicators

David F. Hendry, Economics Department, Oxford University
Søren Johansen, Economics Department, University of Copenhagen

and CREATES University of Aarhus
and Carlos Santos, Department of Economics and Management,

Portuguese Catholic University, Porto∗

November 7, 2007

Abstract

We consider selecting a regression model, using a variant of Gets, when there are more variables
than observations, in the special case that the variables are impulse dummies (indicators) for every
observation. We show that the setting is unproblematic if tackled appropriately, and obtain the
finite-sample distribution of estimators of the mean and variance in a simple location-scale model
under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution,
and shows power against an alternative of interest.

JEL classifications: C51, C22.
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1 Introduction
We consider the application of automatic general-to-specific (Gets) model selection procedures when there
are more variables m than observations N in the special case that a model is saturated with a complete
set of N impulse indicators, one for every observation. In this setting, the initial general unrestricted
model (GUM) cannot be estimated at the outset. Instead, Hendry and Krolzig (2004) propose ‘subset
selection’ by PcGets across combinations of candidate variables, each search path leading to a terminal
model, followed by searches across the union of these.1 We show that their approach can be applied
successfully to the selection of indicators. For general analyses of Gets, see inter alia Hoover and Perez
(1999, 2004), Krolzig and Hendry (2001), Hendry and Krolzig (2003, 2005), Campos, Hendry and Krolzig
(2003), Granger and Hendry (2005), and Campos, Ericsson and Hendry (2004); details of the standard
algorithm in PcGets are presented in the appendix to Hendry and Krolzig (2001).
When m > N , all regressors cannot be entered simultaneously. Consequently, models based on

combinations of subsets of m1 ≤ N/2 variables are explored seriatim, and a new joint model is formulated
from all the terminal models thereby selected. If this union model is sufficiently small, PcGets can be
applied as usual; otherwise repeated serial searches are required. Variants of this algorithm are discussed
by Hendry and Krolzig (2004). Under the null that none of the N indicator variables (impulses) matters,
we derive the distributions of post-selection estimators of the mean and variance in a simple location-scale
data generation process (DGP). A Monte Carlo simulation confirms the null distributions obtained, and
shows power against a range of alternatives of practical interest in econometrics. We also show that

∗Financial support from the UK Economic and Social Research Council under a professorial Research Fellowship, RES 051
270035 and grant RES 000 230539; support from Center for Research in Econometric Analysis of Time Series, CREATES,
funded by the Danish National Research Foundation; and funding from the Fundação para Ciência e a Tecnologia (Lisboa)
are gratefully acknowledged by the first, second and the third author respectively.

1PcGets is an Ox Package (see Doornok 1999) implementing automatic general-to-specific (Gets) modelling for linear
regression models based on the theory of reduction (see Hendry 1995, Ch.9).
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exploring many combinations of subsets of indicators does not affect the null rejection frequency of the
procedure, but could be advantageous under the alternativethat breaks have occurred. Finally, noting
that any regressor can be expressed as an exact function ofN impulse indicators, we explore the more
general case ofK > N candidate regressor variables when in factk << N are relevant.

As an analogy, thePcGetssearch procedure attempts to sieve valuable information (regressors that
genuinely matter) from ‘garbage’ (regressors that are in fact irrelevant, but this is not known to the
investigator). Its properties when doing so form << N are described in Hendry and Krolzig (2005).
The sieving can be achieved in one step in that case, namely all candidate regressors are addedab
initio, and checked for relevance by multi-path searches, using critical values that depend onm, N ,
and the investigator’s perceived costs of over, versus under, selection. If the total set of candidates
exceeds the sieve’s capacity, the search is conducted in stages, designed to ensure that almost all low-
order interactions between regressors are examined. Here we establish the sampling properties under the
null whenm = N + 1 candidate variables are postulated, and interpret the outcomes. Other approaches
to m > N include e.g., Foster and Stine (2004).

The paper is organized as follows. Section 2 considers modelselection when there are too many
indicators for the available sample. Section 3 derives the mean and variance of the sampling distribution
of the mean, and section 4 presents simulation evidence on its finite-sample accuracy and the power of
the procedure to detect some forms of location shift. Section 6 concludes.

2 Model selection with N indicator variables

We consider the behaviour for regressions which are ‘saturated’ by indicator variables. Let an observed
random variableyi be independently normally distributed asyi ∼ IN

[
µ, σ2

ε

]
for i = 1, . . . ,N , where

µ ∈ R, σ2
ε ∈ R+ are the parameters of interest. However, an investigator isuncertain where outliers (if

any) may lurk. She therefore defines a saturating set ofN indicatorsdj,i = 1{j=i}, one for everyj, and
wishes to estimateµ andσ2

ε from a regression ofyi on {µ, dj,i, j = 1, . . . ,N − 1}. Since a perfect fit
will always result from such a regression, nothing is learned.

As a first step, consider instead adding half of the indicators (e.g.,dj,i for j = 1, . . . ,N/2, assuming
for simplicity thatN is even) together with the intercept. Thus we consider the general unrestricted
(GUM) of the first step:

yi = µ +

N/2∑

j=1

δjdj,i + εi. (1)

Hence, (1) containsN/2 parameters forN/2 impulse indicators for the firstN/2 observations, as well
as the mean and variance. Below, we consider alternative divisions of the indicators across the sample.

We find:

µ̂1 =
1

N/2

N∑

i=N/2+1

yi, (2)

s2
1 =

1

N/2 − 1

N∑

i=N/2+1

(yi − µ̂1)
2 (3)

δ̂i = yi − µ̂1, i = 1, . . . ,N/2 (4)

so that:

ε̂i = 0, i = 1, . . . ,N/2

ε̂i = yi − µ̂1, i = N/2 + 1, . . . ,N
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Because the estimates ofµ andσ2 are the usual ones for the remaining sample, we find that:

E [µ̂1] = µ and Var[µ̂1] = (N/2)−1σ2
ε ,

and:
E

[
s2
1

]
= σ2

ε .

Consequently, both GUM estimators are unbiased at this stage.
Next, adopting the usualPcGetsapproach, a parsimonious model is selected from (1) such that all

mis-specification tests remain insignificant and all retained variables are significant at the desired level.
That terminal model is stored, ensuring the intercept is oneof the ‘variables’ retained by assigning it
a fixed status. This selection simply involves eliminating any indicator where|t

1,bδi
| < cα, when the

significance levelcα is used (such as that corresponding toα = 0.025 or α = 0.01 or more generally, a
function ofN to control the false retention rate under the null).

Now re-commence from the equivalent of (1), but entering only the other half of the impulses namely
(1, di,j , j = N/2 + 1, . . . , N ), repeat the process to estimateµ andσ2 by µ̂2 ands2

2, then again ap-
ply PcGets, eliminating indicators where|t

2,bδi
| < cα and storing the resulting parsimonious selection.

Lastly, formulate a model where all significant selected indicators from the two terminal models are com-
bined, and re-select from that for the final model. This demonstrates that despite saturating by indicators,
a feasible algorithm exists for checking every observation.

The final estimates are:

µ̃ =

∑N1

i=1 yi1{|t
1,bδi

|<cα} +
∑N

i=N1+1 yi1{|t
2,bδi

|<cα}

∑N1

i=1 1{|t
1,bδi

|<cα} +
∑N

i=N1+1 1{|t
2,bδi

|<cα}

(5)

and

σ̃2
ε =

∑N1

i=1(yi − µ̂1)
21{|t

1,bδi
|<cα} +

∑N
i=N1+1(yi − µ̂2)

21{|t
2,bδi

|<cα}

∑N1

i=1 1{|t
1,bδi

|<cα} +
∑N

i=N1+1 1{|t
2,bδi

|<cα} − 1
. (6)

The next section presents a formal analysis and derives the asymptotic properties of the estimators (5)
and (6).

Although the ‘perfect fit’ problem no longer arises, it may bethought that the huge number ofN/2
indicators entered in each stage might induce spurious significance. However, the corresponding group
of observations is simply ‘dummied out’ for estimatingµ, which is then just the mean of the remaining
sample. For an approximately normal distribution,αN outliers will occur on average under the null for
a significance levelα, soαN/2 indicators will be selected on average at each stage, andαN overall:
an indicator will be significant at levelα if and only if there is anα-level outlier at that observation.
Under the null, therefore, the proposed procedure is close to finding outliers relative to the whole sample
meanµ̂ and variancêσ2: nevertheless, under some alternatives, the procedure canyield very different
outcomes from (say) direct comparison with a criterion, such as being greater than2σ̂ in absolute value,
as figure 3 below illustrates.

Additional regressors will entail an inability to add half the indicators at each stage, and may neces-
sitate exploring many combinations, but do not otherwise affect the analysis. More generally, to ensure
adequate power against reasonable alternatives, many-waydivisions could be used to check that breaks
do not occur at any precise division point (such asN/2), as discussed in sub-section 5, and checked by
simulation in section 4.

Conversely, testing many different forms of hypothesis could alter the null rejection frequency. For
example, checking the joint significance of all possible pairs, triplets, etc. will not deliver a null rejection
frequency ofα. This is not a serious issue under the null hypothesis that only δi = 0 for all i; but
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researchers may have a temptation to consider (e.g.) step shifts where blocks ofδi take the same values.
To control the null rejection frequency, the number of classes of hypotheses has to be controlled, and one
way of achieving that goal is to restrict such hypothesis searches to situations where the null has been
rejected. Conditional on that occurrence, then many alternatives of how to form an index of the retained
indicators can be entertained, which will not affect the null rejection frequency: Hendry and Santos
(2005) show that after selecting indicators, indexes thereof can be formed without distorting inference.

There is a selection effect on the mean and variance estimates in the final model, similar to ‘trim-
ming’, and the approximate distributions are derived in section 3. The 3-stagePcGetsprocedure is
difficult to analyze directly, so the approach therein is to eliminate half of the sample by adding half
the indicators (see Salkever (1976)), then select outliersin the remainding half. Next, the converse half-
sample is removed and the other group of outliers detected. This procedure entails that on both steps,
all outliers in the saturated half are also removed, so is close to the third stage ofPcGets. The analysis
then derives the distribution of the mean based on the two subsample means, as well as the mean of the
error variance. In fact, since an exact sample split is not needed, and may sometimes be undesirable, the
analysis allows for a general split, and in section 3.3 considers the possibility that many splits are used.

The role of the Monte Carlo experiments in section 4 is, therefore, to check that the theory is indeed
closely relevant to thePcGetsprocedure in small samples when the null distribution is a standard normal,
as well as being relevant for other distributions.

3 Sampling distributions

We first derive the sampling distribution of̃µ under the null after dummy saturation, then consider the
impact of saturation oñσ2

ε.

3.1 Asymptotic distributions of µ̃

We derive the asymptotic distribution of̃µ calculated under the assumptions that the first analysis has
N1 dummies and the second hasN2 = N − N1 dummies, whereas the data generating process hasIID
variables.

Theorem 1 Let y1, . . . , yN be IID with a symmetric continuous densityf (·) with meanµ andE(y8
i ) <

∞. Let N = N1 + N2, and assume thatN1/N → λ1 andN2/N → λ2 where0 < λ1, λ2 < 1, with
λ1 + λ2 = 1, then the limit distribution of the estimator̃µ, see (5), is given by:

N1/2 (µ̃ − µ) → N
[
0, σ2

εσ2
µ

]
(7)

where

σ2
µ =

(∫ cα

−cα

f(ε)dε

)−2 [∫ cα

−cα

ε2f(ε)dε(1 + 4cαf(cα)) +

(
λ2

1

λ2
+

λ2
2

λ1

)
(2cαf(cα))2

]
.

Note that
∫ cα

−cα
f(ε)dε = 1 − α, and for the normal distribution,f(ε) = 1

σε
φ( ε

σε
), we find the

expression: ∫ cα

−cα

ε2φ(ε)dε =

∫ cα

−cα

φ(ε)dε − 2cαφ(cα),

so that under normality for an equal split (λ1 = λ2:

σ2
µ =

1

(1 − α)

(
1 + 4cαφ(cα) − 2cαφ(cα)

(1 − α)
[1 + 2cαφ(cα)]

)
. (8)
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Proof. The is no loss of generality in settingσ2
ε = 1, and we letc = cα. The estimator satisfies:

N1/2(µ̃− µ) =
N−1/2

(∑N1

i=1 εi1{|εi−ε̄1|≤cs1

√
1+N−1

2
}
+

∑N
i=N1+1 εi1{|εi−ε̄2|≤cs2

√
1+N−1

1
}

)

N−1
(∑N1

i=1 1
{|εi−ε̄1|≤cs1

√
1+N−1

2
}
+

∑N
i=N1+1 1

{|εi−ε̄2|≤cs2

√
1+N−1

1
}

) =
BN

MN
.

We show thatBN converges in distribution to a normal distribution, andMN converges in probability to
a constant. The problem is the dependence structure due to the appearance of(ε̄1, s

2
1) and(ε̄2, s

2
2) in the

selection variables. We therefore define the simpler variables which are sums ofIID variables:

KN = N−1




N1∑

i=1

1{|εi|≤c} +
N∑

i=N1+1

1{|εi|≤c}




CN = N−1/2




N1∑

i=1

(εi1{|εi|≤c} + 2cf(c)ε̄1) +

N∑

i=N1+1

(εi1{|εi|≤c} + 2cf(c)ε̄2)


 .

We want to approximateBN/MN by CN/KN and so write:

N1/2(µ̃ − µ) =
BN

MN
=

(BN − CN ) + CN

(MN − KN ) + KN
.

From the law of large numbers:

KN
P→

∫ c

−c
f(ε)dε. (9)

By symmetry of the distribution,E[CN ] = 0, and from:

CN = N−1/2




N1∑

i=1

(εi1{|εi|≤c} +
λ2

λ1
2cf(c)εi) +

N∑

i=N1+1

(εi1{|εi|≤c} +
λ1

λ2
2cf(c)εi)


 ,

so from the central limit theorem,CN is asymptotically normal with mean zero and variance:

λ1

[
E

[
ε21{|ε|≤c}

]
+

(
λ2

λ1

)2

(2cf(c))2 + 4cf(c)
λ2

λ1
E

[
ε21{|ε|≤c}

]
]

+λ2

[
E

[
ε21{|ε|≤c}

]
+

(
λ1

λ2

)2

(2cf(c))2 + 4cf(c)
λ1

λ2
E

[
ε21{|ε|≤c}

]
]

= E
[
ε21{|ε|≤c}

]
(1 + 4cf(c)) +

(
λ2

2

λ1
+

λ2
1

λ2

)
(2cf(c))2,

which together with (9) gives is the expression forσ2
µ. We therefore only have to prove that:

MN − KN
P→ 0, (10)

BN − CN
P→ 0. (11)

To prove (10) we note that it is enough to show that:

DN = N−1
1

N1∑

i=1

(
1
{|εi−ε̄1|≤cs1

√
1+N−1

2
}
− 1{|εi|≤c}

)
P→ 0, (12)
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since the other one follows by replacing subscript 1 by 2. Letu = ε̄1 andv = c(s1

√
1 + N−1

2 − 1) and
apply the inequality:

|1
{|εi−ε̄1|≤cs1

√
1+N−1

2
}
− 1{|εi≤c}| = |1{|εi−u|≤c+v} − 1{|εi|≤c}| ≤ 1{|εi−c|≤|u|+|v|} + 1{|εi+c|≤|u|+|v|}

(13)
to find:

N−1
1 Euv |DN | ≤

∫ c+|u|+|v|

c−|u|−|v|
εf(ε)dε +

∫ −c+|u|+|v|

−c−|u|−|v|
εf(ε)dε = h(|u| + |v|),

which is bounded and continuous in|u| + |v| by the assumptions. Because|u| + |v| P→ 0, we then get,
by taking expectations, that:

N−1
1 E|DN | ≤ E [h (|u| + |v|)] → h(0) = 0.

This shows thatDN
P→ 0 and hence (10).

We next prove (11). It is enough to show that:

RN = N
−1/2
1

N1∑

i=1

(εi1{|εi−ε̄1|≤cs1

√
1+N−1

2
}
− εi1{|εi|≤c} − 2cf(c)ε̄1)

P→ 0.

By symmetry, we have thatE[RN ] = 0, and we want to show that Var[RN ] → 0.

To find the variance, we again condition onε̄1 = u and c(s1

√
1 + N−1

2 − 1) = v, which are
independent of the variablesε1, . . . , εN1

, which remainIID, and find:

Euv[RN ] = N
1/2
1 E

[
εi1{|εi−u|≤c+v} − εi1{|εi|≤c} − 2cf(c)u

]

= N
1/2
1

(∫ c+v+u

−c−v+u
εf(ε)dε −

∫ c

−c
εf(ε)dε − 2cf(c)u

)
.

From Taylor’s formula with remainder term, we find for a differentiable function:

g(c + h) = g(c) + hg(c∗) = g(c) + hg(c) + h(g(c∗) − g(c)), |c − c∗| ≤ |h|.

This implies that, usingf(c) = f(−c):

∫ c+v+u

−∞
εf(ε)dε =

∫ c

−∞
εf(ε)dε + (u + v)cf(c) + (u + v) (c∗f(c∗) − cf(c)) ,

∫ −c−v+u

−∞
εf(ε)dε =

∫ −c

−∞
εf(ε)dε − (u − v)cf(c) + (u − v)(−c∗∗f(c∗∗) + cf(c)).

Subtracting these expressions, we find that:

|Euv [RN ]| ≤ N
1/2
1 (|u| + |v|)(|c∗f(c∗) − cf(c)| + |c∗∗f(c∗∗) − cf(c)|).

Hence:

Var(Euv [RN ]) ≤ E(EuvRN ])2

≤ N1E(|u| + |v|)2(|c∗f(c∗) − cf(c)| + |c∗∗f(c∗∗) − cf(c)|)2

≤ 2N1E(u2 + v2)(|c∗f(c∗) − cf(c)| + |c∗∗f(c∗∗) − cf(c)|)2

≤ 23/2N1

(
E(u4 + v4)

)1/2
E

(
(|c∗f(c∗) − cf(c)| + |c∗∗f(c∗∗) − cf(c)|)4

)1/2

6



where we used the inequality(a+b)2 ≤ 2(a2+b2) twice and the Cauchy–Schwartz inequality to separate
the expectations.

Note that because|εi| has a finite mean, we have|c|f(c) → 0, |c| → ∞, so that the continuity of
f (·) implies |c|f(c) is a bounded continuous function. Because

max(|c − c∗∗|, |c − c∗|) ≤ |u| + |v| = |ε̄1| + c|s1

√
1 + N−1

2 − 1| P→ 0,

it follows thatc∗
P→ c andc∗∗

P→ c, so that:

E
(
(|c∗f(c∗) − cf(c)| + |c∗∗f(c∗∗) − cf(c)|)4

)
c∗ → 0.

We then have to prove thatN2
1 E(u4 + v4) is bounded. The first term is

N2
1 E(ε̄4

1) = N−1
1 E(ε4

1) + 3(1 − N−1
1 ),

using thatE(ε1) = E(ε3
1) = 0 andE(ε2

1) = 1. This is bounded when we assume finite fourth moment.
Next:

N2
1 E(s1

√
1 + N−1

2 − 1)4 ≤ 8

[
N2

1 E(s1 − 1)4(1 + N−1
2 )2 + N2

1 (1 −
√

1 + N−1
2 )4

]

The factor(1 + N−1
2 )2 and the termN2

1 (1 −
√

1 + N−1
2 )4 are bounded, and we evaluate:

N2
1 E(s1 − 1)4 ≤ N2

1 E(s2
1 − 1)4

= N−1
1 E(ε2

t − 1)4 + 3(1 − N−1
1 )

(
E(ε2

t − 1)2
)2

,

which is bounded whenεt has moments of order eight. Thus the first factorN2
1 E(u4 + v4) is bounded

and therefore:
V ar (Euv [RN ]) → 0. (14)

Next we considerE[Varuv (RN )] and find using the inequality (13) that:

Varuv (RN ) = E
[
ε11{|ε1−u|≤c+v} − ε11{|ε1|≤c}

]2
(15)

≤
∫ −c+|u|+|v|

−c−|u|−|v|
ε2f(ε)dε +

∫ c+|u|+|v|

c−|u|−|v|
ε2f(ε)dε,

which is a bounded continuous function of|u| + |v|, so that:

E [Varuv(RN )] → 0. (16)

Combining (14) and (16) we see that Var(RN ) → 0, which completes the proof of (11).

3.2 The probability limit of σ̃
2
ε

Theorem 2 Under the assumptions of Theorem 1 it holds that the estimator σ̃2
ε, see (6), has the limit:

σ̃2
ε

P→
∫ cα

−cα
ε2f(ε)dε

∫ cα

−cα
f(ε)dε

= Var(ε||ε| < cα).
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For the normal distribution,f(ε) = 1
σε

φ( ε
σε

), we find the expression:
∫ cα

−cα
ε2φ(ε)dε

∫ cα

−cα
φ(ε)dε

= σ2
ε

(
1 − 2cαφ(cα)

1 − α

)
.

Proof. The technique is the same as in the proof of Theorem 1. We letσ2
ε = 1, and letc = cα. We first

note that, see (6),̃σ2
ε = DN

KN
+ HN , where:

DN

KN
=

N−1
∑N1

i=1 ε2
i 1{|εi−bε1|≤cs1

√
1+N−1

2
}
+

∑N
i=N1+1 ε2

i 1{|εi−bε2|≤cs2

√
1+N−1

1
}

N−1
∑N1

i=1 1
{|εi−bε1|≤cs1

√
1+N−1

2
}
+

∑N
i=N1+1 1

{|εi−bε2|≤cs2

√
1+N−1

1
}

,

HN =
(µ − µ̂1)

2
∑N1

i=1 1
{|εi−bε1|≤cs1

√
1+N−1

2
}
+ (µ − µ̂2)

2
∑N

i=N1+1 1
{|εi−bε2|≤cs2

√
1+N−1

1
}

∑N1

i=1 1
{|εi−bε1|≤cs1

√
1+N−1

2
}
+

∑N
i=N1+1 1

{|εi−bε2|≤cs2

√
1+N−1

1
}

.

The last term,HN , tends to zero in probability becauseµ̂1
P→ µ andµ̂2

P→ µ.

From (9), we know thatKN
P→

∫ c
−c f(ε)dε. We define the sum of independent variables and apply

the law of large numbers to find::

EN = N−1




N1∑

i=1

ε2
i 1{|εi|≤c} +

N∑

i=N1+1

ε2
i 1{|εi|≤c}


 P→

∫ c

−c
ε2f(ε)dε.

We next have to show thatEN − DN
P→ 0. It is clearly enough to prove that:

N−1
1

N1∑

i=1

ε2
i (1{|εi−bε1|≤cs1

√
1+N−1

2
}
− 1{|εi≤c})

P→ 0.

Conditioning onu andv we find using (13) that:

Euv|N−1
1

N1∑

i=1

ε2
i (1{|εi−bε1|≤cs1

√
1+N−1

2
}
− 1{|εi≤c})|

≤ E[ε2
1(1{|ε1−c|≤|u|+|v|} + 1{|ε1+c|≤|u|+|v|}]

≤
∫ c+|u|+|v|

c−|u|−|v|
ε2f(ε)dε +

∫ −c+|u|+|v|

−c−|u|−|v|
ε2f(ε)dε,

see (15). This is a bounded and continuous function of|u|+ |v| and hence the expectation tends to zero.

3.3 Many splits

We split the data intoIj , j = 1, . . . ,m with Nj = λjN elements and estimators̄yj, s
2
j and define

N−j =
∑

k 6=j

Nk = N − Nj, λ−j = 1 − λj

ȳ−j =

∑
i6∈Ij

yi∑
i6∈Ij

1
=

∑
k 6=j Nkȳk∑
k 6=j Nk

s2
−j =

∑
k 6=j(Nk − 1)s2

k∑
k 6=j(Nk − 1)
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µ̃ =

∑m
j=1

∑
i∈Ij

yi1
{|yi−ȳ−j |<cαs−j

q
1+N−1

−j }∑m
j=1

∑
i∈Ij

1
{|yi−ȳ−j |<cαs−j

q
1+N−1

−j }

(17)

and

σ̃2
ε =

∑m
j=1

∑
i∈Ij

(yi − ȳ−j)
21

{|yi−ȳ−j |<cαs−j

q
1+N−1

−j }∑m
j=1

∑
i∈Ij

1
{|yi−ȳ−j |<cαs−j

q
1+N−1

−j }

. (18)

3.4 Asymptotic distributions of µ̃ and limit of σ̃
2
ε.

Theorem 3 Let y1, . . . , yN be IID with a symmetric continuous densityf (·) with meanµ andE(y8
i ) <

∞. LetN =
∑m

j=1 Nj , and assume thatNj/N → λj, where0 < λj < 1, with
∑m

j=1 λj = 1, then the
limit distribution of the estimator̃µ, see (17), is given by:

N1/2 (µ̃ − µ) → N
[
0, σ2

εσ2
µ

]
(19)

where

σ2
µ =

(∫ cα

−cα

f(ε)dε

)−2 ∫ cα

−cα

ε2f(ε)dε(1 + 4cαf(cα)) +

m∑

j=1

λj




∑

k 6=j

λk

1 − λk




2

(2cαf(cα))2

If in particular N1 = . . . = Nm, then
∑m

j=1 λj

[∑
k 6=j

λk

λ
−k

]2
= 1.

Proof. There is no loss of generality in settingσ2
ε = 1, and we letc = cα. The estimator satisfies:

N1/2(µ̃ − µ) =

N−1/2
∑m

j=1

∑
i∈Ij

εi1
{|εi−ε̄−j |<cαs−j

q
1+N−1

−j }

N−1
∑m

j=1

∑
i∈Ij

1
{|εi−ε̄−j |<cαs−j

q
1+N−1

−j }

=
BN

MN

We show thatBN converges in distribution to a normal distribution, andMN converges in proba-
bility to a constant. The problem is the dependence structure due to the appearance of(ε̄−j , s

2
−j) in the

selection variables. We therefore define the simpler variables which are sums ofIID variables:

KN = N−1
m∑

j=1

∑

i∈Ij

1{|εi|<cα}

CN = N−1/2
m∑

j=1

∑

i∈Ij

(εi1{|εi|≤c} + 2cf(c)ε̄−j).

We want to approximateBN/MN by CN/KN and so write:

N1/2(µ̃ − µ) =
BN

MN
=

(BN − CN ) + CN

(MN − KN ) + KN
.

From the law of large numbers:

KN
P→

∫ c

−c
f(ε)dε. (20)
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By symmetry of the distribution,E [CN ] = 0, and from:

CN = N−1/2
m∑

j=1

∑

i∈Ij

(εi1{|εi|≤c} + 2cf(c)ε̄−j)

= N−1/2
m∑

j=1

∑

i∈Ij

(εi1{|εi|≤c} + 2cf(c)εi




∑

k 6=j

Nk

N−k


)

so from the central limit theorem,CN is asymptotically normal with mean zero and variance:

N−1
m∑

j=1

NjE
[
ε21{|ε|≤c}

]
+




∑

k 6=j

Nk

N−k




2

(2cf(c))2 + 4cf(c)




∑

k 6=j

Nk

N−k


 E

[
ε21{|ε|≤c}

]

= E
[
ε21{|ε|≤c}

]
(1 + 4cf(c)N−1

m∑

j=1

Nj

∑

k 6=j

Nk

N−k
) + N−1

m∑

j=1

Nj




∑

k 6=j

Nk

N−k




2

(2cf(c))2

= E
[
ε21{|ε|≤c}

]
(1 + 4cf(c)

m∑

j=1

λj

∑

k 6=j

λk

λ−k
) +

m∑

j=1

λj




∑

k 6=j

λk

λ−k




2

(2cf(c))2.

next we show that

m∑

j=1

λj

∑

k 6=j

λk

λ−k
=

∑

k 6=j

λjλk

1 − λk
=

m∑

k=1

∑

j 6=k

λjλk

1 − λk
=

m∑

k=1

(1 − λk)λk

1 − λk
= 1 (21)

which together with (9) gives is the expression forσ2
µ.

If in particularλi = m−1, then

m∑

j=1

λj



∑

k 6=j

λk

λ−k




2

=
m∑

j=1

1

m



∑

k 6=j

1
m

1 − 1
m




2

=
m∑

j=1

1

m

[
(m − 1)

1

m − 1

]2

= 1.

4 Monte Carlo experiments

We first examine the properties of the retained impulses under normality, checking that thePcGetspro-
cedure delivers retention rates which closely match the binomial expansion of(α + [1 − α])N despite
the sequential selection. Next, we check that using three equal-sizedN/3 sample splits does not affect
the null outcome. Then we investigate the empirical distribution of σ̃2

ε under the null, before turning to
that ofµ̃ to check the small-sample accuracy of the derivations in section 3. We also briefly consider the
impact of saturation in the highly non-normal case of at(4)-distributed error. Finally, we consider some
empirical rejection frequencies of the saturation procedure under two simple alternatives.

We consider a simple location-scale DGP:

yi = µ + εi (22)

with:
εi ∼ IN [0, σε] . (23)
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In the simulations, we will setµ = 0 andσε = 1. The aim is to investigate the impact on estimatingµ
andσ2

ε when saturating the model with impulse dummies.
We consider two econometric models. The first is given by:

yi = µ +

N−N/2∑

j=1

δjdi,j + εi (24)

whilst the second is:

yi = µ +

N∑

i=N/2+1

δjdi,j + εi (25)

N is the sample size anddi,j is a single impulse indicator. Hence, (24) containsN/2 parameters forN/2
impulse indicators for the firstN/2 observations; and (25) containsN/2 impulse indicators for the last
set of observations. Below, we consider alternative divisions of the indicators across the sample.

4.1 Empirical rejection frequencies of impulse indicators under the normal null

Given the DGP, the composite null hypothesis:

H0 : δi = 0 ∀i (26)

is true,∀i, for both models. We first estimate model (24) and then model (25) in that order, under these
assumptions, store the significant indicators, and combinethese to obtain the final selected model, and
hence estimators akin to (5) and (6).M = 10, 000 replications were conducted for this experiment.
From Hendry and Santos (2005), the OLS estimators ofδi are unbiased and tests of (26) have Student
t(N−N/2) distributions under the null. Table 1 reports the mean rejection frequency (RF) of the null for a
sample of 50 observations at nominal rejection frequenciesper test of 5%, 2.5% and 1%. The empirical
rejection frequencies are close to the nominals.

Mean RF5% Mean RF2.5% Mean RF1%
0.0499 0.0250 0.0101

Table 1: Rejection frequencies of impulse indicators in (22)

This outcome is not affected by randomly, rather than consecutively, addingN/2 dummies in each
regression, unsurprisingly since the data have no time ordering. Under an alternative where the break is
a location shift, such shuffling could be useful, as we show below.

4.1.1 Empirical distributions of retained impulses

Under the null hypothesis, the distributions of the numbersof empirically retained impulses are of in-
terest: retention is decided on the basis of a two-sided individual significance test. We report these for
N = 50 andN = 100 using the above settings, but including additional significance levels.

The first plot refers toN = 50 and uses a two-sidedt-test with a 1% significance level. Thex-
axis measures the number of impulses retained, and they-axis the actual number of regressions (out of
10,000) that retained the given number of ‘spurious’ impulses.

The mode occurs at zero with probability(1 − α)N ' 0.6, with the probability of retaining one
impulse by chance beingNα × (1 − α)N−1 ' 0.3. As figure 1a also shows, a three-way equal split
of N/3 does not change the outcomes substantively: neither the mode nor the decay pattern alters.
Corresponding outcomes held at nominal sizes of 2.5% and 5%.
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Figure 1: Distributions of impulses, means and equation standard errors forα = 1%

Figure 1b records the impact on the mean null rejection frequency of using finer equal sub-divisions
of added impulses atN = 50 for α = 0.01, soαN = 0.5. There is little change in rejection frequency
as the number of equal splits increases, especially given that the uncertainty bars are±2 × 0.005 (one
standard error bars are shown for the first two splits). The overall range of the mean estimate is 0.490 to
0.496, so there is in fact slight under selection.

4.2 Empirical distribution of µ̃ under the null

Figure 1c shows the empirical distributions ofµ̃ andµ̂ under the null forN = 100. Throughout, we use
µ̂ andσ̂2

ε as the full-sample OLS estimators of the mean and variance.µ̃ andσ̃2
ε are the estimators for

the impulse saturated model. The distribution ofµ̂ is correctly centered, and more concentrated near the
center, but as shown above, more dispersed in the tails, leading to a larger standard deviation.

4.3 Empirical distribution of σ̃
2
ε under the normal null

Figure 1d records the estimates of the residual variances for a sample size ofN = 100, with (σ̃2
ε) and

without (̂σ2
ε) dummies at 5%: the sampling distributions forN = 50 at the same settings were similar.

As expected̃σ2
ε is downwards biased when impulses are introduced. Table 2 reports the average Monte

Carlo estimates ofσ2
ε at α = 0.01. Sinceσ2

ε = 1, the expected downward biases inσ̃2
ε are close to the

values of(−2cαφ (cα))σ2
ε obtained in section 3.2 of−0.066 for N = 50 and−0.079 for N = 100.

Hence, as the sample size increases,σ̃2
ε is closer to the relevant limiting value.
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N σ̂2 σ̃2

50 0.977 0.901
100 0.989 0.910

Table 2: Average across MC replications forN = 50 andN = 100

4.4 Response surface for σ2eµ for normal errors

The distributional result in section 3 was that:

N1/2 (µ̃ − µ)
D→ N

[
0, σ2

ε σ2
µ

]
, (27)

so for normal errors whenλ1 = λ2 from (8):

σ2
µ =

1

(1 − α)

(
1 + 4cαφ(cα) − 2cαφ(cα)

(1 − α)
[1 + 2cαφ(cα)]

)

and: (
NVar [µ̃]

σ2
ε

)
= σ2

µ. (28)

Thus, the simulations generated the values of the left-handside of (28) which were then regressed on the
numerical values ofσ2

µ computed using (8).
The Monte Carlo simulation first confirmed the invariance of the outcomes fromPcGetsto the value

of σ2
ε and to the form of ‘split’ into equal blocks ofm = 2 andm = 3. There were 78 experiments

spanningcα = 5 to cα = 1 (Φ (cα) ' 1 to Φ (cα) = 0.68) andN = 20 to N = 300. The response
surface for Var[µ̃] yielded (HCSE in parentheses: see White, 1980):

V̂ar [µ̃] = 1.002
(0.0021)

N−1σ2
ε σ

2
µ (29)

R
2 = 0.9997 σ̂ = 1.4% χ2

nd(2) = 16.4∗∗ Fhet(2, 75) = 21.7∗∗ (30)

Some outliers were detected and slightly alter the outcome,but as figure 2a shows, the fitted and actual
values are extremely close across the 78 experiments. We also tested for whether the outcome depended
on the split being in halves or in thirds and found the corresponding dummy was insignificant.

The outcome using a scaled log form was similar, reported here including the outlier correction for
experiments 71-73:

log
̂

(
NVar [µ̃]

σ2
ε

)
= 0.0135

(0.002)

+ 0.936
(0.011)

log
(
σ2

µ

)
+ 0.04

(0.006)

I71−73 (31)

R
2 = 0.9899 σ̂ = 1.04%

although all the mis-specification tests were again highly significant.
Figure 2b shows the fitted and actual values of (31) across the78 experiments, and the residuals with

their density (c and d respectively). The fit is extremely close.

4.5 Non-normality

We briefly consider the impact of saturation in a highly non-normal case, namely at(4)-distributed error.
Although this distribution does not satisfy the assumptions of the main theorem, it was of interest to see
if ‘fat-tails’ led to an excess of retained impulses.
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Figure 2: Fitted and actual values from the simulation

A sample size ofN = 300 was considered, for a sample split ofN/2. At each replication, the
N draws are from at(4) distribution. From Johnson, Kotz and Balakrishnan (1995),the moments of
X ∼ t(4) are such thatE(X) = 0 and Var(X) = v/(v − 2) = 2 wherev denotes the degrees of
freedom. Hence, when no impulses are added, Var

(
X̄

)
= 2/300 = 0.0067 and

√
Var

(
X̄

)
= 0.082.

We use the location-scale DGP in (22) with at(4) error, but consider two criteria for retention of any
single impulse indicator, namely either|tδi

| > 2 or 2.5.
Table 3 reports summary statistics from the Monte Carlo experiments, where ARNI stands for the

average number of retained impulses in each replication. There is little evidence of an excess retention
of impulses. The intuitive explanation is that the fat tailsgenerate a much larger residual error variance,
so only draws far into the tails are significant even though a nominal critical value relevant to the normal
is used.

N = 300 |tδi
| > 2 |tδi

| > 2.5

E[µ̃] -0.002 -0.008
Var(µ̃) 0.00544 0.00535
ARNI 15.64 8.08
RF 5.2% 2.7%

Table 3: Results for an N/2 split drawing the errors from at(4)

5 Power

Naturally, the power of the procedure to detect any form of break depends on the nature and magnitude
of the departure from the null. Two cases of interest are a mixture of distributions with considerably
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different variances, where the indicators will ‘select’ mainly observations drawn from the high variance
distribution; and location shifts, where a subset of the sample is drawn with a different mean.

As a specific example, consider whenµ takes two valuesµ andµ∗, pre and post an observationN∗

say. Providing the selected sub-samples include indicators covering all of the break and ‘outside break’
observations, then blocks ofdi,j will be significant with an average value equal to(µ− µ∗), and thereby
reveal a step shift. As noted above, conditional on the retained δi, tests for combinations do not alter
the null rejection frequency. However, outlier detection algorithms can fail to detect any problem in that
setting, since the overall sample mean is the value that balances mean deviations, and if both groups, pre
and post break, are a substantial proportion ofN , then the large induced value of the estimated residual
standard deviation will include almost every outcome as figure 3 illustrates.

0 10 20 30 40 50 60 70 80 90 100

0

5

10

Yb fit 

0 10 20 30 40 50 60 70 80 90 100

−1

0

1

r:Yb (normalized) 

Figure 3: Absence of outliers despite a break

The procedure we propose could also reveal model mis-specification. For example, in a time-series
context, consider a model whereyt−1 has been included as a regressor, despite being irrelevant,when
there were no indicators but a mean shift occurred as in figure3. Then its coefficient would reflect the
step shift and would be close to unity, thereby removing the mean shift except at its end points where
impulses of roughly equal magnitude, opposite sign would becreated: see e.g., Perron (1989), and
Hendry and Neale (1991). A conventional ‘outlier removal’ approach would again conclude with the
incorrect model, albeit one which may be viable for forecasting. Adding the blocks of indicators, in this
simple case, would clarify that there is a step shift, but no dynamics. Thus, there are clear uses for such
a ‘saturation’ approach.

6 Conclusion

We have considered a problem that previously seemed intractable: selecting a regression when there
are more regressors than observations. The special case we examined was for saturating the model
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with individual impulse indicators, one for each observation. A variant of the general-to-simple (Gets)
approach nevertheless suggested a feasible solution. Aspects of the distributions of the mean, its standard
error, and the residual standard deviation, after retaining only significant impulses from the saturating
set, were derived, together with an approximate operational bias correction for the last of these.

To select a regression when there are more regressors than observations requires both a block imple-
mentation of multi-path searches, as well as such procedures within tentative models as inPcGets. The
Monte Carlo simulations based on doing so match the theoretical analysis, confirming that the approach
is viable, with the null rejection frequencies as established above.

Moreover, many new problems become amenable to solution, including general regression sub-set
selection, non-linear model selection, and new automatically computable tests of economic interest (see
Hendry and Santos, 2006).
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