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Capabilities and Equality of Health I

Hans Keiding

University of Copenhagen

November 2005

Abstract

The concept of capabilities, introduced originally by Sen with the aim to provide a better
basis for the theory of inequality, has inspired many researchers but has not found any simple formal
representation which might be instrumental in the construction of a comprehensive theory of equality.

In the present paper, we present a formalization of the concept of capabilities based on
Lancasterian characteristics, whereby a functioning of an individual is a method for transforming
an initial position to a final outcome. In this context, we investigate whether preferences over
capabilities as sets of functionings can be rationalized by maximization of a suitable utility function
over the set of functionings. Such a rationalization turns out to be possible only in cases which
must be considered exceptional and which do not allow for interesting applications of the capability
approach to questions of health or equality.

The conclusion which can be obtained from the predominantly negative results is that a formal
description of capabilities much involve ideas which go beyond the simple representation as a family
of choice sets.

Keywords: Capabilities, characteristics, equality of health.

JEL classification: D63, I10

1. Introduction

In recent years, the capability approach suggested by Sen (1980, 1985) has been

applied in several different fields of economics, including research in poverty and

inequality, but also individual health related quality of life. The capability of an individual

is given as a set of functionings, each of which describes a way of transforming an intial

given situation to a final outcome. A recent approach to the measurement of standard of

living using functionings as a basic concept is Gaertner and Xu (2005).

Several recent studies (Herrero (1996), Herrero (1997), Herrero, Iturbe-Ormaetxe

and Nieto (1998)) have applied the capability approach to problems of equality, whereby
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capabilities are taken as depending on the initial state, formalized as an allocation of

goods. We shall expand slightly on this formulation, using the concept of characteristics

introduced by Lancaster (see, e.g. Lancaster (1971)). We assume that individuals have

access to a technology for transforming initial bundles of goods into characteristics. Each

such transformation would then correspond to a functioning, but the set of functionings

now depend in a rather simple way on the initial bundle, since they will be all the

processes which are feasible and use the available endowment as inputs. This approach to

capabilities is admittedly simplistic, in particular if we add standard assumptions on the

overall technology, but this very simplicity has the advantage that it allows for a closer

scrutiny of the nature of capabilities, and in particular, preferences over sets of capabilities,

and their possible explanation.

In the present study, we shall be interested in situations where the individual or

societal preferences over characteristics or characteristics profiles can be derived from

utility maximization, so that one capability is better than another if the best possible

outcome in the first is better than the best possible outcome in the second. If this is the

case, we say that the preference relation over capability sets is rationalizable. It turns out

that this will happen only in rather exceptional cases, at least when we consider setups

which are realistic from the point of view of applications (in the first case, applications

to health status measurement, and in the second case, to optimal choice of allocation in a

socety). These results can be seen as a formal argument for the need of a more elaborate

theory of capabilities, elaborating on the reason why one capability set is better than

another and how much better it will be, since such questions cannot – as the present paper

indicates – be answered based on the standard approach of economic theory, maximization

of individual or societal welfare.

The paper is structured as follows. In the section 2, we consider individual preferences

over capabilities, with a special view to application to health related quality of life, and in

section 3, we discuss problems of allocation in society. Section 4 contains a short summary

and discussion of the results obtained.

2. Rationalizing individual capability indices

As is well-known, measuring individual health is both conceptually and technically

complicated; indeed the very nature of health is open to some debate, and in the by now very

rich literature on this subject it has been suggested, that the capability approach outlined

above and the measurement of health as QALYs are indeed closely related (Cookson,

2005).

In the following we consider a given family C of compact, convex, and comprehensive
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(meaning that if x ∈ C and y ∈ R
L
+ satisfies yh ≤ xh for h = 1, . . . , L, then y ∈ C)

subsets of characteristics (interpreted as sets of functionings open to an individual in

different health states). For our subsequent reasoning, it is convenient to assume that C is

rich enough to contain some distinguished sets, in particular C contains {0} and permits

the operation of (Minkowski) weighted averages, i.e. if C, C ′ ∈ C and λ ∈ [0, 1], then the

set

λC + (1 − λ)C ′ = {y ∈ R
L
+ | y = λx + (1 − λ)x′, x ∈ C, x′ ∈ C ′}

belongs to C as well. We shall say that a family C with these properties is regular.

In our present setup, the capabilities approach to QALY measurement would imply

that there is complete preorder �∼ on the sets C ∈ C; we let � and ∼ denote the associated

strict order and indifference, respectively. For completeness of exposition, we state this

as a first axiom.

Axiom 1. The preference relation �∼ on the family C is a complete preorder, and it is

continuous in the sense that {C ′ | C �∼C ′} and {C ′ | C ′ �∼C} are closed (in the topology

on C induced by the Hausdorff distance) for all C ∈ C.

We shall consider in some more details the properties of this preorder which seem

reasonable if it is to be represented by an index with QALY-like properties. First of all,

we assume that averages make sense and that the indifference relation is stable under such

averages:

Axiom 2. Let (C1, C2) and (C ′
1, C

′
2) be pairs of elements of C with C1 ∼ C2, C ′

1 ∼ C ′
2,

and let λ ∈ [0, 1]. Then

λC1 + (1 − λ)C ′
1 ∼ λC2 + (1 − λ)C ′

2.

The property stated as Axiom 2 is a strong one, inducing some linearity into the pref-

erences (which indeed is what comes out of the present characterization). On the other

hand it seems no more restrictive than what is usually assumed when considering prefer-

ences over health states, where indifference between suitable lotteries are instrumental for

assessing the values of the utility indices.

For the intuitive interpretation of QALY score as size of the set of available

functionings, we would like to have the following monotonicity axiom:

Axiom 3. If C1 ⊂ int C2, then C2 � C1.

In its present form, this axiom can hardly be controversial, stating that if there are

strictly less functionings available, then the resulting smaller capability set is less desired

than the large one. We shall later have to consider modifications of this axiom which are

perhaps less immediately acceptable.
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Axiom 4. For each C ∈ C, there exists x ∈ C such that {x} − R
L
+ ∈ C and

{x} − R
L
+ ∼ C.

This axiom can be recognized as a version of the celebrated IIA principle (Indepen-

dence of Irrelevant Alternatives). If preferences over capabilities can be rationalized by

a utility function, then the utility-maximizing element of the availability set (extended by

free disposal to satisfy comprehensiveness) should be exactly as good as the larger choice

set containing options that will not be chosen anyway. Thus, an IIA axiom of some type

(and we shall consider another type of IIA axiom later) seems to be a necessary ingredient

in any system of axioms for preferences on availability sets which can be rationalized by

utility maximization.

For ease of notation in the sequel, we introduce the notation x< for {x} − R
L
+. We

note that if Axiom 3 holds, then the vector x of Axiom 4 must belong to the boundary of

C.

Theorem 1. Let C be a regular family of subsets of R
L
+, and let �∼ be relation on C.

Then the following are equivalent:

(i) (C, �∼ ) satisfies Axioms 1 – 4,

(ii) there is an linear map u : R+ → R such that

C �∼C ′ ⇔ maxx∈Cu(x) ≥ maxx∈C′u(x).

Proof: The proof of the implication (ii)⇒(i) is straightforward and left to the reader.

Define the set L1 = {x ∈ R
L
+ | x< ∈ C, x< �∼C ′, all C ′ ∈ C}. By Axiom 1 there are

maximal elements for �∼ on C, and by Axiom 4, we get that L1 is nonempty.

Next, choose any x∗ ∈ L1 and define for each λ ∈ [0, 1] the set Lλ = {x ∈ R
L
+ |

x< ∼ (λx∗)<. By axiom 2, each set Lλ is convex, and we have that λ′λ−1Lλ ⊆ Lλ′

whenever λ′ ≤ λ. Letting L̂1 = {x | λx ∈ Lλ for some λ ∈ [0, 1]} we get that L̂1 is

convex and that for each x ∈ L̂1, the sets {x′ | x′ < x} and L̂1 are disjoint. Consequently,

by separation of convex sets there is c ∈ RL
+, c �= 0, such that L1 ⊂ {x′ | c · x′ = 1}. It

follows that Lλ ⊂ {x′ | c · x′ = λ} for each λ ∈ [0, 1].
Define the map u : R

L
+ → R by u(x) = c · x for each x. We show that u satisfies the

conditions in (ii). Let C be arbitrary, and assume that C ∼ x< for some x ∈ Lλ. Then

there is y ∈ C with y< ∼ x<, and since u(y) = u(x) = λ, we have that maxz∈Cu(z) ≥ λ.

Suppose that maxz∈Cu(z) = λ′ > λ; then C contains some vector z ∈ Lλ′
, meaning that

z′ = λ(λ′)−1z must belong to Lλ. But since (z′)< is contained in the interior of C by

Axiom 3, we have a contradiction.

It is easily seen from the proof of the theorem that the linear function u is uniquely

determined (up to a positive multiple) in the case where dim Lλ = L−1 for some λ ∈ [0, 1].
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Also, if we do not insist on u being linear, we still need that u(x) = λ for all x ∈ Lλ, each

λ, meaning that the level sets of u will have large flat segments, possibly of dimension

L − 1.

Since the assumption that C contains a sufficient large supply of sets of the form x≤

may be difficult to justify in the applications at hand, we consider below another axiom

system which is tailored for our purpose. As before, we assume C to be compact (in

topology induced by the Hausdorff metric), convex and to contain {0}. In our present

setup we assume moreover that C is closed under the operation of taking (arbitrary) unions

followed by convexification. Thus, if D ⊂ C, then the set

conv∗(∪D) = cl

{
x

∣∣∣ x =
r∑

i=1

µixi, µi ∈ [0, 1],
r∑

i=1

µi = 1, xi ∈ Ci ∈ D, i = 1, . . . , r

}

belongs to C. For ease of reference, a family satisfying all these conditions shall be called

rich.

For the following result, we need to modify some of the axioms stated above; clearly

Axiom 4 must be replaced by another one, but also Axiom 3 must me sharpened slightly.

Axiom 3’. Let C, C ′ ∈ C. If C ⊆ C ′ then C ′ �∼C; if C ∼ C ′, then the set bd C ′ ∩C is

convex.

In the context of regular families of convex sets, we replace Axiom 4 above by the

following axiom which exploits the new structure.

Axiom 4’. Let C′ be a family of sets from C such that C ∼ C ′ for all C, C ′ ∈ C′. Then

conv (∪C′) ∼ C for each C ∈ C′.

It is easily seen that Axiom 4’ captures the independence of irrelevant alternatives

which we aspect to be satisfied by an ordering of sets which can be rationalized as utility

maximization, but in another direction; instead of finding equivalent smaller sets we are

now provided with a method for constructing equivalent supersets.

Theorem 2. Let C be a rich family of closed, convex, and comprehensive subsets of

R
L
+, and let �∼ be a complete and continuous preorder on C. Then the following are

equivalent:

(i) (C, �∼ ) satisfies Axioms 1,2,3’, 4’ and 5,

(ii) there is an affine function u : R
L
+ → R such that

C �∼C ′ ⇔ maxx∈Cu(x) ≥ maxx∈C′u(x).

Proof. As before we leave the implication (i)⇒(ii) to the reader. For the converse

implication, we follow the steps in the proof of Theorem 1. Let D1 be the set of elements
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of C which are maximal for �∼ , and let C1 = conv∗(∪L1). Then C1 belongs to D1 by

Axiom 4’. For each λ ∈ [0, 1], we define Lλ as the set of all C such that C ∼ λC1, and

let Cλ = conv∗(∪Dλ); again Cλ ∈ Dλ by Axiom 4’. If for all λ, the set Dλ consists of

the single element Cλ, then Cλ = λC1 for each λ. Choosing any x ∈ bd C1 and any p

which supports C1 at x (i.e. p · c ≤ p ·x for all c ∈ C1, we have that the function u defined

by u(x) = p · x satisfies the conditions stated in (ii).

If there is some λ such that Dλ contains more than one element, then we define the

set

E = {x ∈ R
L
+ | ∃λ ∈ [0, 1], C ∈ Dλ, C �= Cλ : λx ∈ bd Cλ ∩ C}.

We claim that E is convex. Indeed, let x1, x2 ∈ E and let µ ∈ [0, 1] be arbitrary. Then

there is some λ (chosen small enough), together with sets C1, C2 ∈ Dλ, C1, C2 �= Cλ,

such that λxi ∈ bd Cλ ∩Ci, i = 1, 2. It follows that λx1, λx2 ∈ bd Cλ ∩ conv (C1 ∪C2),
and by Axiom 3’, we have that

µλx1 + (1 − µ)λx2 ∈ bd Cλ ∩ conv (C1 ∪ C2)

for any µ ∈ [0, 1]. If conv (C1 ∪C2) �= Cλ, then µx1 + (1− µ)x2 ∈ E; if not, we repeat

the argument above with C1 replaced by νC1 + (1 − ν)C2 for ν small enough so that

µx1 + (1 − µ)x2 can be written as a convex combination of νx1 + (1 − ν)x2 and x2.

Next, consider the family of closed convex sets (λ−1Cλ)0<λ≤1. We have that

λ−1Cλ ⊆ λ̂−1C λ̂ for λ̂ ≤ λ, so the set F = ∪0<λ≤1λ
−1Cλ is convex. Moreover,

E does not intersect the interior of E, since in that case E would intersect the interior of

Cλ for some λ > 0, a contradiction. It follows that E can be separated from the set int F ,

so that there is a linear form p such that p · x = 1 for x ∈ E and p · x ≤ 1 for x ∈ F .

Define u by u(x) = p · x; we check that u has the desired properties by showing

that maxx∈C = λ for C ∈ Dλ, λ ∈ [0, 1]. Thus, let C ∈ Dλ. Then bd Cλ ∩ C �= ∅,

since otherwise C ≺ Cλ by Axiom 3. Since u(x̂) = λ for x̂ ∈ bdCλ ∩ C, we have that

maxx∈Cu(x) ≥ λ. The fact that maxx∈Cu(x) ≥ λ follows from the separation property,

since u(x) ≤ 1 on F implies u(x) ≤ λ for x ∈ Cλ.

We conclude this section with some considerations of the conditions for a family

C to be rich. In the application that we have had in mind, sets C ∈ C arise as sets

of feasible (characteristics) outputs in a technology with commodity bundles as inputs.

Let T ⊂ R
l
+ × R

L
+ be a convex set, interpreted as a production set for the household

transforming commodity bundles x ∈ R
l
+ to characteristics bundles ξ ∈ R

L
+. Then any

set of the form

T (x) = {ξ | (x, ξ) ∈ T}
would be a feasible availability set. The set {0} will appear as T (0) provided that T

satisfies the standard assumption that no output is obtainable without input. The remaining
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properties of regular or rich families do not however follow if we restrict ourselves to sets

of the type T (x) or even sets∪x∈AT (x) for suitable subsets A of R
l
+, the standard example

of A being bundles obtainable in a market from a given bundle of ressources. Thus, for

our results above to make sense in this context we might have to assume that individuals

can order also availability sets that do not arise in any natural way.

Needless to say, any rich family C may arise from some technology T , at least if we

allow for infinite-dimensional commodity spaces; as the input bundle giving rise to C, we

may then choose the support function of C, giving us a suitable subspace of C0 as the

commodity space; the operatios of averaging and of convex combinations carry over to

support functions. Since this construction has only limited interest unless combined with

some method of reduction to finite dimensions, we shall not pursue this matter any further.

3. Nonrationalizable capability indices and choices of allocation

In the previous section, we considered the case where the individual ordering of

availability sets could be rationalized as utility maximization. The results showed that

when this did happen, the utility function involved would typically be uniquely determined

(up to an ordinal transformation).

In the following, we shall develop this line of thought further, with a special view to

policies striving at equality in health. For this, we need a model with several individuals,

and we need that they are exposed to different health conditions, which here are specified

using the concepts of capabilities in the form introduced above. We assume in the sequel

that the household technologies differ only according to health state, so we have a given

family of technologies T s ⊂ R
l
+ × R

L
+, describing all the ways of transforming goods to

characteristics which are open to persons in health condition s, for each s ∈ S.

We consider in the present section a simple model where agents receive commodity

bundles to be transformed according to a known and common technology. If agent i

inserts the bundle xi into the common technology T , she obtains the option of choosing

a characteristics bundle from T (xi). As in the previous section, we may consider

orderings of the availability sets which either can or cannot be rationalized by utility

maximization. In the following, we assume that agents may have different utility functions

ui on characteristics bundles ξi ∈ R
L
+.

A policy in this model is a redistribution of initial commodity bundles, i.e. an array

(z1, . . . , zn) ∈ (Rl)n with
∑

i∈N zi = 0. The policy is feasible if ωi +zi ∈ R
l
+ for each i.

Alternatively, we may consider a policy as given by the array of final commodity bundles

x = (x1, . . . , xn) ∈ (Rl
+)n; we shall use this way of describing policies in the present

section.
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We shall need some properties of the techonology T for the following result. We say

that T satisfies monotonicity if xh > x′
h for h = 1, . . . , l implies that T (x′) ⊂ int T (x).

This proporty seems reasonable enough and will be fulfilled in standard situations. The

next property is somewhat more restrictive and deals with situations where the input

combinations are in some sense on the effective boundary – meaning that certain changes

of input will give no improvement of capabilities. A vector z ∈ R
l is said to be a feasible

input change at x ∈ R
l
+ if x + z ∈ R

l
+ and T (x + z) is not contained in T (x). The

technology is said to be strictly convex if the set HT (x) of feasible input changes at x is

convex, each x ∈ R
l
+.

We shall be interested in allocations x giving rise to capabilities (T (x1), . . . , T (xn))
which are maximal for some preference relation R over capability profiles, considered to

be an expression of the values that society assigns to equality (in health). We assume that

society’s preferences R over profiles of capabilities is derived from individual preference

relations Ri over capabilities; let Pi be the associated strict preference. The individual

preference relations Ri are assumed to be monotonic in the sense that if C ⊆ C ′ for two

capability sets, then C ′ Ri C.

Theorem 3. Assume that the technology T satisfies monotonicity and strict convexity.

Let x∗ = (x∗
1, . . . , x

∗
n) be a commodity allocation with associated capability profile

(T (x∗
1), . . . , T (x∗

n)). Then one of the following holds:

(i) there is a utility profile u = (u1, . . . , un) and a commodity allocation x̂ =
(x̂1, . . . , x̂) such that if

ξ̂ = (ξ̂1, . . . , ξ̂n), ξ̂i ∈ Argmaxξ∈T (x̂i)
ui(ξ), i ∈ N,

ξ∗ = (ξ∗1 , . . . , ξ∗n), ξ∗i ∈ Argmaxξ∈T (x∗
i
)ui(ξ), i ∈ N.

then ui(ξ̂i) > ui(ξ∗i ) for each i,

(ii) there is a price vector p ∈ Rl
+ such that (x∗

1, . . . , x
∗
n, p) is an equilibrium in the

sense that if for each i ∈ N , if x′
i is such that T (x′

i) Pi T (x∗
i ), then p · x′

i > p · x∗
i .

Proof: For each i ∈ N , let δ : R
L
+ × R

l
+ → R be the be defined by

δi(π, x) = maxξ∈T (x)π · ξ;

thus, δ(·, x) is the support function of T (x). For each array z = (z1, . . . , zn) ∈ (Rl
+)n)

with
∑

i∈N zi = 0 (that is, each redistribution of commodities) and for each i ∈ N ,

εi(zi) = maxπ∈�L
[δ(π, x∗

i + zi) − δ(π, x∗
i )].

Suppose that there is a redistribution z̄ such that εi(z̄i) ≥ 0 for all i and εi0(z̄i0) > 0
for some i0 ∈ N . For each i, let πi be such that

δi(πi, x
∗
i ) = maxπ∈�L

δ(π, x∗
i + z̄i)
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and define utility functions ui by ui(ξi) = πi · ξi. Then we have for the utility profile

(u1, . . . , un) that the characteristics allocation (ξ̄1, . . . , ξ̄n), where

ξ̄ ∈ Argmaxξ∈T (x∗
i
+z̄i)

ui(ξ), all i ∈ N,

Pareto dominates the characteristics allocation ξ∗. Using monotonicity of T we then

have that by transferring a slight amount of commodities from i0 to the other individuals

we may obtain that every individual becomes better off, giving an allocation ξ such that

ui(ξi) > ui(xi∗) for all i.

Assume now that for each z = (z1, . . . , zn) with
∑n

i=1 zi = 0, there is i ∈ N such

that εi(x∗
i + zi) ≤ 0 for all i ∈ N . Then we must have that if y =

∑
i∈N hi with

hi ∈ H(x∗
i ), each i, then y /∈ R

l
−, or[ ∑

i∈N

H(x∗
i )

]
∩ R

l
−.

By separation of convex sets, there is a positive linear form p on R
l
+ such that p · h > 0

for h ∈
∑

i∈N H(x∗
i ); by convexity of T , each H(x∗

i ) contains elements arbitrarily close

to 0, so we conclude that p · hi > 0 for all hi ∈ H(x∗
i ), i ∈ N .

We check that (x∗
1, . . . , x

∗
n, p) is an equilibrium; indeed, if i ∈ N and x′

i is such that

T (x′
i) Ri T (x∗

i ), then x′
i − x∗

i must belong to H(x∗
i ) (since otherwise T (x′

i) ⊂ T (x∗
i )

contradicting monotonicity of Ri); consequently p · (x′
i −x∗

i ) > 0 or p ·x′
i > p ·x∗

i which

shows that the equilibrium condition is satisfied.

In the formulation of Theorem 3, the allocation (x∗
1, . . . , x

∗
n) was chosen arbitrarily.

In particular, it may be such that the associated capability profile is maximal for society’s

preference relation R over all profiles of the type (T (x1), . . . , T (xn)). For this particular

choice of commodity allocation, the theorem tells us that either the resulting characteristics

allocation is potentially inefficient, in the sense that there are utility assignments such

that every individual could obtain something better after redistribution of the commodity

endowment, or the R-maximal capability profile is sustained by a price equilibrium in the

commodity market, so that no individual can obtain an Ri-better capability set by trading

commodities at the market price.

As the reader will have by now realized, Theorem 3 is actually a somewhat unusual

version of the second fundamental theorem of welfare economics; we actually need

stronger assumptions (in particular, our assumption of strict convexity) than what is usual,

since we let the utility functions of the individuals be part of the problem rather than

being given at the start. The situation described in part (ii) is so special that it can hardly

be expected to obtain unless the technology has a very special form (for example if all

capability sets are blown-up versions of the same set), meaning that case (i) would be the
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rule and (ii) the exception. In our interpretation, this enforces our results from the previous

section about rationalizing preorders on families of capability sets by utility maximization.

In most cases, such a rationalization is beyond reach.

Since our strict convexity assumption is somewhat dubious, we present as a conclusion

of this section a version of Theorem 3 which can be proved without this assumption. For

this, need to consider economies with so may agents that a set of l agents (where l is the

number of commodities) may be considered as a small or exceptional set.

Corollary. Assume that the technology T satisfies monotonicity and strict convexity.

Let x∗ = (x∗
1, . . . , x

∗
n) be a commodity allocation with associated capability profile

(T (x∗
1), . . . , T (x∗

n)). Then one of the following holds:

(i) there is a utility profile u = (u1, . . . , un) and a commodity allocation x̂ =
(x̂1, . . . , x̂) such that if

ξ̂ = (ξ̂1, . . . , ξ̂n), ξ̂i ∈ Argmaxξ∈T (x̂i)
ui(ξ), i ∈ N,

ξ∗ = (ξ∗1 , . . . , ξ∗n), ξ∗i ∈ Argmaxξ∈T (x∗
i
)ui(ξ), i ∈ N.

then ui(ξ̂i) > ui(ξ∗i ) for each i,

(ii) there is a price vector p ∈ Rl
+ and for each δ > 0 an exceptional subset Nδ of

N (depending only on δ) such that (x∗
1, . . . , x

∗
n, p) is an δ-approximate equilibrium in the

sense that if for each i ∈ N\N0, ifx′
i is such thatT (x′

i)Pi T (x∗
i ), and maxh|x′

ih−x∗
ih| ≤ 1,

then p · x′
i > p · x∗

i − δ.

Proof: In the proof of Theorem 3, replace for each i ∈ N H(x∗
i ) by

Ĥ(x∗
i ) = conv(H(x∗

i )) ∩ {z ∈ R
l | |zh| ≤ 1, h = 1, . . . , l}.

If alternative (i) does not hold, then[ ∑
i∈N

Ĥ(x∗
i )

]
∩ {−le} − R

l
+ = ∅,

where e = (1, . . . , 1) is the unit diagonal vector in R
l. Indeed, if u ∈ {−lKe} − R

l
+

belongs to
∑

i∈N Ĥ(x∗
i ), then by the Shapley-Folkman theorem (see e.g. Hildenbrand

(1974)), u has a representation u =
∑

i∈N ui, where ui ∈ Ĥ(x∗
i ) for all i and

ui ∈ H(x∗
i ) ∩ {z | |zh| ≤ 1, all h} for all i ∈ N\N0 where N0 is a set of cardinality at

most l. It follows that
∑

i∈N\N0
ui ∈ R

l
−, a contradiction.

By separation of convex sets, there is p ∈ R
l
+,

∑l
h=1 ph = 1, such that

p · z ≥ p · le = l, z ∈
∑
i∈N

Ĥ(x∗
i ).
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It follows that for given δ > 0, the cardinality of the set Nδ such that minz∈H(x∗
i
)p · z ≤ δ

cannot exceed �δ−1�+ 1 (where �r� is the integer part of the real number r). This proves

the statement in (ii).

4. Concluding remarks

In this work, we have been concerned with the foundations of the capability approach

and its application to problems of equality, with special regard to equality in health. The

basic question posed was whether the capability approach is compatible with the traditional

view of the individual as utility maximizer, and we have found that the such a compatibility

of approaches, at least in its simplest possible form, is not to be expected.

Looking at the single individual and considering the capability, considered as a set

of functioning, as an expression of the individual to cope with her situation and thus

as a formalization of the health-related quality of life, we found that an assignment of

indiced so capabilities would be compatible with utility maximization only for a small

family of utility functions – in the generic case a uniquely determined utility function.

Classical economics would typically reject a theory which holds only for one particular

utility function, meaning that preferences over capabilities must be founded on something

which is different from preferences over final outcomes; even if it is assumed, as in the

widely accepted QALY approach, that all individuals have identical orderings of health

states, we still need to explain why these preferences should be connected intimately with

the technological conditions for attaining these states.

In the context of preferences over capability profiles in a society, we saw that these

preferences can be explained by utility maximization only in very special cases, namely

such cases where the socially optimal allocation could be achieved as an equilibrium in

the market, that is by assigning suitable incomes to individuals and allowing them to buy

commodities at given prices. Thus, we have that either the social ordering of capability

profiles cannot be explained by utility maximization, or the social optima considered are

of a very simple type.

It should be stressed that the results obtained are not to be considered as in any

way reducing the potential usefulness of the capability approach. Rather, they should be

seen as an additional argument for intensifying research in the nature of capabilities; since

preferences on capabilities cannot be trivially deduced from standard utility maximization,

we need an explanation of how preferences on sets of functionings are formed and whether

they can at all be reduced to simpler structures.

Thus, the main insights to be gained from the present analysis is that a satisfactory

theory of capabilities must go beyond the traditional approaches; capabilities must involve

11



something not captured by the idea of choosing from a given family of objects according

to a known method of evaluation. In particular, time and uncertainty both of which were

spectacularly absent in this study, should enter in a meaningful way. This is a matter of

future research.
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