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Merging and splitting in cooperative games:

some (im-)possibility results

Peter Holch Knudsen and Lars Peter Østerdal�

Department of Economics

University of Copenhagen

October 2005

Abstract

Solutions for cooperative games with side-payments can be ma-

nipulated by merging a coalition of players into a single player, or,

conversely, splitting a player into a number of smaller players. This

paper establishes some (im-)possibility results concerning merging- or

splitting-proofness of core solutions of balanced and convex games.

JEL classi�cation: C71, D23, D71.

Keywords: Cooperative games, Manipulation, Dutta-Ray solution.

1 Introduction

A cooperative game with side-payments speci�es a set of players and a worth,

in monetary units, for each coalition. This worth can be interpreted as
�Corresponding author: Lars Peter Østerdal, Department of Economics, Univer-

sity of Copenhagen, Studiestraede 6, DK-1455 Copenhagen K, Denmark. E-mail:
lars.p.osterdal@econ.ku.dk
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the income, or surplus, that a coalition can obtain if it stands alone, i.e.

if it chooses not to cooperate with the other players. An allocation is a

distribution of the worth of the grand coalition, and a core allocation is an

allocation for which the worth of each coalition does not exceed its aggregate

income. A solution is a rule that, for each game, speci�es an allocation.

A cooperative game with side-payments is a very summary representation

of an underlying game of con�ict. It is therefore essential for an analyst to

understand to what extend it matters how the player set itself is speci�ed

from the data of the situation. In many applications of cooperative game

theory, players may represent groups of persons, for example labor unions

or nations, or they may be other economic variables of the situation, for

example factors of production or objectives of an economic project (Peleg

and Sudhölter, 2003), and there may be more than one way of �xing the

variables of the game.

In other applications, players are persons who can exit (entry) the game

by handing over (receiving) their assets to (from) other players, or groups

of persons can merge and then jointly act as one decision unit, e.g. as a

household or a �rm. Depending on the speci�cs of the game and solution,

players may have incentives to merge, or to split themselves into smaller

units, i.e. the game itself may be subject to strategic manipulation.

Manipulation of solutions for cooperative game situations has been a

recurrent theme in the literature. In the context of bargaining problems,

Harsanyi (1977) discusses the joint-bargaining paradox of the Nash bargain-

ing solution. Harsanyi points out that if two players merge into a single

bargaining unit, they tend to weaken their bargaining position. In rationing

problems, interpreted for example as bankruptcy- or simple cost-sharing sit-

uations, conditions similar to the joint properties of merging- and splitting-

proofness have been used to characterize proportional allocation, see, e.g.,

Moulin (2002, Section 1.2) for a survey.

In the context of cooperative games with side-payments, Lehrer (1988) in-
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vestigates bilateral mergers, called amalgamations, where two players merge

into one player. Lehrer shows that for the Banzhaf value it is always prof-

itable to merge and he uses this condition for an axiomatic characterization.

Haviv (1995) uses some consistency with respect to consecutive mergers for

a characterization of the Shapley value. Derks and Tijs (2000) consider a

partition of the player set and study the game that evolves when the players

in each compartment of the partition merge into one player, and formulate a

set of conditions implying that a merger in a given compartment is pro�table.

Derks and Tijs assume that players are rewarded according to the Shapley

value.

Haller (1994) investigates collusion properties of the Shapley value, the

Banzhaf value and other probabilistic values for bilateral proxy- and associ-

ation agreements. Proxy agreements are similar to mergers (if disregarding

dummy players). An association agreement modi�es the games such that

if just one of the players in the association enters some coalition, then the

player�s contribution to its worth is as if all the players in the association were

entering. Segal (2003) also considers probabilistic values and gives conditions

for pro�table agreements under di¤erent types of integration.

The present paper examines whether (core) solutions can bemerging-proof

or, conversely, splitting-proof, and provides some impossibility and possibility

results in this direction. Section 2.1 considers balanced games, i.e. games

with a non-empty set of core allocations. An anonymous solution cannot

simultaneously be merging- and splitting-proof. Anonymous solutions can be

merging-proof or splitting-proof, but we show that then they cannot be core

solutions. Section 2.2 considers convex games, i.e. games where the incentives

for joining a coalition increase as the coalition grows (Shapley, 1971). We

show that the Dutta-Ray solution is, in fact, merging-proof, and we �nd a

core solution which is splitting-proof on the class of strictly monotonic convex

games.
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1.1 De�nitions

A cooperative game with side-payments is a pair (N; v); where N is a �nite

set and v is a real-valued function de�ned on the subsets of N and v(;) = 0:
The elements of N are called players. To save on notation, we write v(i)

instead of v(fig); v(i; j) instead of v(fi; jg); and so on.
An element x of RN is called a payo¤ vector. For x 2 RN and S � N

we de�ne x(S) =
P

i2S xi and x(;) = 0: If x(N) = v(N) then x is called an
allocation. The core of a game (N; v) is the set C(N; v) = fx 2 RN jx(S) �
v(S) for all S � N and x(N) = v(N)g:
A game (N; v) is convex if v(S [ fig) � v(S) � v(T [ fig) � v(T ) for

all T � S � N; i =2 S, it is superadditive if v(S [ T ) � v(T ) + v(S) for all
S; T � N; S \ T = ;, and (strictly) monotonic if v(S [ fig) � (>)v(S) for
all i and S � N; i =2 S (see, e.g., Peleg and Sudhölter, 2003).
A solution is a function � that for each game (N; v) assigns an allocation

in RN : We restrict attention to anonymous solutions. To be precise, let

(N; v) be a game with jN j = n, let � be a bijective correspondence from N

to f1; :::; ng, and de�ne a game v0 by v0(�(S)) = v(S) for all S � N . Then
we have �i(N; v) = ��(i)(f1; :::; ng; v0) for all i 2 N .
For a game (N; v) and T � N we de�ne the T -merger game (NT ; vT )

as follows: NT =
�
T; figi2NnT

	
and vT (S) = v(S) for all S � NT , where

S =
�
figi2T ; figi2SnT

	
if T 2 S and S = S otherwise. Note that T is a

coalition in (N; v) and a player in the T -merger game.

A solution � is merging-proof (splitting-proof) if for any game (N; v) and

any T -merger game (NT ; vT ); T � N; that �T (NT ; vT ) � (�)
P

i2T �i(N; v).

In words, a solution is merging-proof if the players in a coalition never have

incentives to merge and act as one player. Splitting-proofness says that

regardless of how a player can be split up into smaller units, the player will

never have an incentive to do that.1

1Put di¤erently, a solution is merging-proof if regardless of how a player is able to
divide herself into a group of smaller players, it is always pro�table. And a solution is
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2 Results

2.1 Balanced games

It is easily veri�ed that if (N; v) is a balanced game and T � N , then (NT ; vT )

is balanced. Even if restricting attention to balanced games, the combination

of merging- and splitting-proofness is inconsistent with anonymity.

Proposition 1 On the class of balanced games, there exists no anonymous
merging- and splitting-proof solution.

Proof: By contradiction. Assume that � is an anonymous, merging- and split-

ting proof solution. Let (N; v) be a game withN = f1; 2; 3g, v(1) = v(2) = 1;
v(3) = 2; v(2; 3) = v(1; 3) = 3; v(1; 2) = 4; v(1; 2; 3) = 6. We claim that

�1(N; v) = �2(N; v) = �3(N; v) = 2. For this, notice that by anonymity

�1(N; v) = �2(N; v). Furthermore, consider a merger S = f1; 2g. The result-
ing game (fS; 3g; vS) is then de�ned by vS(S) = 4; vS(3) = 2; vS(S; 3) = 6:
By merging- and splitting-proofness �S(fS; 3g; vS) = �1(N; v)+�2(N; v): By
merging- and splitting-proofness and anonymity, for the game (f1; 2; 3g; w)
with w(1) = w(2) = w(3) = 2; w(i; j) = 4; w(1; 2; 3) = 6 we must have

�1(f1; 2; 3g; w) + �2(f1; 2; 3g; w) = �S(fS; 3g; vS) = 4 proving the claim.
Now, consider a merger T = f2; 3g. The resulting game (f1; Tg; vT ) is

then de�ned by vT (T ) = 3; vT (1) = 1; and vT (1; T ) = 6. We claim that

�T (f1; Tg; vT ) = 18
4
and �1(f1; Tg; vT ) = 6

4
: For this, consider the game

(f1; 2; 3; 4g; q) with q(i) = 1, q(i; j) = 2; q(i; j; k) = 3 and q(f1; 2; 3; 4g) = 6.
By anonymity we have �i(f1; 2; 3; 4g; q) = 6

4
for all i, and from merging- and

splitting-proofness our claim follows.

We have now obtained a contradiction, since for the game (N; v) the

merger T = f2; 3g strictly increases aggregate payo¤ for coalition members.
�
splitting-proof if it is always pro�table for any given coalition to merge.
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It it noteworthy that the proof of Proposition 1 involves only monotonic

convex games (and the impossibility applies therefore to this subfamily of

games).

There exist anonymous and merging-proof solutions (for example, the

equal split solution that divides v(N) equally among the players), and on the

class of superadditive balanced games we can �nd anonymous and splitting-

proof solutions (for example, the solution that for a game (N; v) divides v(N)

between the players who have the highest single-player worth v(i)). However

such merging-proof or splitting-proof solutions cannot be core solutions.

Proposition 2 On the class of balanced games, an anonymous core solution
can neither be merging-proof nor splitting-proof.

Suppose that � is an anonymous merging-proof core solution. For N =

f1; 2; 3g de�ne v as follows. v(i) = 0 for all i, v(2; 3) = 0, v(1; 2) = v(1; 3) = 1
and v(1; 2; 3) = 1. Then C(N; v) = (1; 0; 0) and since � is a core solution we

accordingly have �1(N; v) = 1 and �2(N; v) = �3(N; v) = 0.

Now, for T = f2; 3g consider the T -merger game which is de�ned as
follows: NT = f1; Tg, vT (1) = vT (T ) = 0, and v(1; T ) = 1. By anonymity
we have �1(N

T ; vT ) = �T (N
T ; vT ) = 1

2
; contradicting that � is merging-proof.

Next, suppose that � is an anonymous splitting-proof core solution. Let

NS = fS; 4g and de�ne the game vS as follows. vS(S) = vS(4) = 2 and

vS(N) = 5: By anonymity �S(v
S; NS) = �4(v

S; NS) = 5
2
.

Suppose that by splitting the coalition S into three individual players

f1; 2; 3g, the game (N; v) is obtained with N = f1; 2; 3; 4g; v(1) = v(2) =

v(3) = 0, v(4) = 2 = v(1; 2) = v(2; 3) = v(1; 3) = 2; v(1; 4) = v(2; 4) =

v(3; 4) = 3; v(1; 2; 3) = 2, v (i; j; k) = 3 for any other three-player coalition,

and v(N) = 5. Since � is a core solution we must have �i(N; v) = 1 for

i = 1; 2; 3, and �4(N; v) = 2 contradicting that the solution is splitting-proof.

�
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We notice that the proof of Propositions 2 only involves monotonic su-

peradditive games.

2.2 Convex games

For the family of probabilistic values, Haller (1994, Corollary 3.3) gives su¢ -

cient conditions for which bilateral proxy agreements are always (un)pro�table.

The Shapley value does not satisfy these conditions, and core compatibility

was not addressed. Indeed, the Shapley value is neither merging-proof, nor

splitting-proof, not even on the class of on convex games, as showed in Ex-

ample 1 below. Note that bilateral merging-proofness (splitting-proofness)

does not necessarily imply merging-proofness (splitting-proofness).

Example 1 Let (N; v) be a convex game, where N = f1; 2; 3; 4g and v is
given by v (S) = 1 if jSj = 1, v (S) = 3 if jSj = 2, v (S) = 6 if jSj = 3 and
v (N) = 9. The Shapley value is �Sh (N; v) = 1

4
(9; 9; 9; 9).2 Now for T =

f3; 4g consider the T -merger game where NT = f1; 2; Tg and vT takes the
following values: vT (1) = vT (2) = 1, vT (T ) = 3, vT (1; 2) = 3, vT (1; T ) =

vT (2; T ) = 6 and vT
�
NT
�
= 9. Then �ShT

�
NT ; vT

�
= 14

3
> 9

2
: Thus the

merger of players 3 and 4 is pro�table.

Next, consider the game (N;w) whereN = f1; 2; 3g; w(S) = jSj if jSj < 3,
w(N) = a where a > 3. Then �Shi (N;w) = a

3
for all i. For T = f1; 2g; the

T -merger game wT is de�ned by NT = fT; 3g, wT (T ) = 2; wT (3) = 1 and

wT (NT ) = a. Then �ShT
�
NT ; wT

�
= a+1

2
< 2a

3
; i.e. splitting T is pro�table.

�

Proposition 3 Let (N; v) be a convex game and T � N . Then the T-merger
game

�
NT ; vT

�
is convex.

2The Shapley value can be de�ned as

�Shi (N; v) =
X

S�N;S3i

(jSj � 1)!(jN j � jSj)!
jN j! (v(S)� v(Snfig)):
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Proof: Let S; S1 � NT =
�
T; figi2NnT

	
. First, we claim that S \ S1 =

S \ S1: For this, consider a player i 2 NnT . Then i 2 S \ S1 if and only if
i 2 S and i 2 S1 if and only if i 2 S and i 2 S1. Further, consider the player
T in NT . Then figi2T 2 S \ S1 if and only if T 2 S and T 2 S1 if and only
if figi2T 2 S and figi2T 2 S1, which proves the claim.
Second, we claim that S [ S1 = S [S1; which is proved in a similar way:

Consider a player i 2 NnT . Then i 2 S [ S1 if and only if i 2 S or i 2 S1

if and only if i 2 S or i 2 S1. Further consider the player T in NT . Then

figi2T 2 S \ S1 if and only if T 2 S or T 2 S1 if and only if figi2T 2 S or
figi2T 2 S1, which proves the claim.
The game (NT ; vT ) is convex if

vT (S \ S1) + vT (S [ S1) � vT (S) + vT (S1) for all S; S1 � NT ;

i.e. if

v(S \ S1) + v(S [ S1) � v(S) + v(S1) for all S; S1 � NT : (1)

But since v(S \ S1) = v(S \S1) and v(S [ S1) = v(S [S1); (1) is equivalent
to

v(S \ S1) + v(S [ S1) � v(S) + v(S1) for all S; S1 � NT ;

which is satis�ed since (N; v) is convex and S; S1 � N: �

For the core C(N; v) of a convex game (N; v), the set of Lorenz-maximal

elements L(N; v) � C(N; v) is, in fact, a singleton (Dutta and Ray, 1989).

Let �DR(N; v) = L(N; v) denote the Dutta-Ray solution, which we de�ne on

the class of convex games. By Hardy et al. (1934, Theorem 108) if f : R! R
is strictly concave, then �DR(N; v) is the maximizer of the additive symmetric

social welfare function
P

i2N f(xi) subject to the constraint x 2 C(N; v).
We shall prove that the Dutta-Ray solution is merging-proof. We make

use of a lemma which says that we can always go from one core allocation to
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another by a sequence of bilateral transfers for which the allocation following

each step is also in the core.3

Lemma 1 Let (N; v) be a convex game and x; y 2 C(N; v): Then there is
a transfer matrix � = f
ijgi;j2N of bilateral transfers leading from x to y;

and an ordering k(ij) of bilateral transfers in � such that after each bilateral

transfer the resulting allocation is in C(N; v). In fact, for any ordering r(i)

of receivers (payers) i, there is a transfer matrix � and a sequence of core

compatible bilateral transfers such that all payments to (from) the receivers

follow the sequence r(i), i.e. if r(i) < r(j) then all transfers to (from) player

i will be carried out before there are any payments to (from) player j.

Proof: Let x0; y0 2 C(N; v). Let P = fijx0i > y0ig; R = fijx0i < y0ig and
U = fijx0i = y0ig:
First, we claim that for an arbitrary player i in P , we can always �nd

some player j in R such that the transfer of some amount 0 < " � minfx0i �
y0i; y

0
j � x0jg leads to a new allocation which is also in C(N ,v).
For this, consider a player i 2 P; and suppose to the contrary that there

is no player j in R for which there can be transferred some amount 0 <

"ij � minfx0i � y0i; y0j � x0jg from i to j (upholding the core constraints).

This means that for any j 2 R, there must be a zero-excess coalition Sj

at x0 (i.e. x0(Sj) = v(Sj)) for which i 2 Sj and j =2 Sj. By Shapley

(1971), the set of zero-excess coalitions is a ring (i.e. closed under union

and intersection). In particular, \j2RSj is a zero�excess coalition. Since
i 2 \j2RSj and since \j2RSj has empty intersection with R; it contradicts
that y0 is a core allocation.

3Suppose that x; y 2 RN , and for some 
 � 0 and some i; j 2 N we have yi � 
 = xi ,
yj +
 = xj and xk = yk for k 6= i; j:We then say that y is reached from x after a bilateral
transfer 
 from player i to j. A transfer matrix is a matrix � =

�

ij
�
i;j2N , where is 
ij a

bilateral transfer from i to j, satisfying the following conditions: if 
ij > 0 then 
ji = 0,
if there exists j such that 
ij > 0 then there exist no j

0 such that 
j0i > 0; and 
ii = 0
for all i. A player that is neither a payer nor a receiver is called una¤ected, so a transfer
matrix induces a tri-partition of N in payers, receivers, and una¤ected players. See also
Hougaard and Østerdal (2005).
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Second, we claim that for an arbitrary player j in R, we can always

�nd some player i in P such that the transfer of some amount 0 < "ij �
minfx0i � y0i; y0j � x0jg is possible (upholding the core constraints).
For this, consider a player j 2 R, and suppose to the contrary that

there is no player i in P for which there can be transferred some amount

0 < "ij � minfxi � yi; yj � xjg from i to j. This means that for any i 2 P ,
there must be a zero-excess coalition Si at x0 for which i 2 Si and j =2 Si.
Since [i2PSi is then also a zero-excess coalition, P � [i2PSi and j =2 [i2PSi

it contradicts that y is a core allocation.

To complete the proof, we must show we can actually obtain y0 from x0

by a �nite number of any such bilateral transfers. For this, we show that for

any x0; y0 2 C(N; v) and sets P and R as described, any player i 2 P can

transfer a total amount x0i�y0i to players in R in at most jRj steps (upholding
the core constraint in each step). The argument for that any player j 2 R
can obtain a total amount of y0i � x0i from players in P in at most jP j steps
(upholding the core constraint in each step) is similar and omitted.

Consider therefore an arbitrary player i 2 P; and let 0 < mi � x0i � y0i
denote the supremum of the total amounts of payo¤ that can be transferred

from player i to (a subset of) players in R by an ordered (�nite or countable

in�nite) sequence of core compatible bilateral transfers. Denote the �nal

allocation obtained in the limit of such a sequence of bilateral transfers with

y00. First, we notice that the same �nal allocation y00 can be obtained by

an ordered sequence of at most jRj transfers: Let 0 � mij � mi denote

the supremum of the total amount transferred from i to j. Since C(N; v) is

a closed set, the allocation y00 is in the core. Further, we can transfer the

entire amounts mij from i to j in a arbitrary sequence of bilateral transfers

involving at most jRj step. Indeed, if the core constraint for a coalition S;
i 2 S; is violated after some step, then the �nal allocation would also violate
this constraint for coalition S - a contradiction. Second, we notice that we

cannot have mi < x0i � y0i since y00 is in C(N; v), hence there must be an
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additional core-compatible bilateral transfer from i to some j player in R for

which y00j < y
0
j - a contradiction. �

Proposition 4 On the class of convex games, there exists a merging-proof
core solution: The Dutta-Ray solution is merging-proof.

Proof: Let (N; v) be a convex game and x = �DR(N; v): Let T � N and

consider the T -merger game (NT ; vT ); and y = �DR(NT ; vT ). We want to

show that x(T ) � yT . For this shall argue that if x(T ) < yT , then x cannot
be the Dutta-Ray solution for the game (N; v) - a contradiction.

From x de�ne the following allocation ex in RNT
: exT = x(T ) and exi = xi

for i 2 NTnT . Then ex 2 C(NT ; vT ): Indeed, for any coalition S � NT we

have ex(S) = x(S) � v(S) = vT (S).
We de�ne the following two sets of players in NT : P = fi 2 NTnT jyi <

xig and R = T [ fi 2 NTnT jyi > xig. Hence in C(NT ; vT ) we can obtain y

from ex by bilateral transfers from players in P to players in R. By Lemma

1, there exists a sequence of these bilateral transfers, such that after each

step in this sequence, the allocation obtained is in C(NT ; vT ) and the player

T �rst begins to receive payo¤ from a subset P 0 of the players P when all

other players in R have obtained all their payo¤ (i.e. each player i 2 RnT
has received yi�xi). Further, by Lemma 1, these bilateral transfers to T can
be made in an arbitrary sequence (upholding the core constraints). Hence

each of these transfer from players in P to T must increase social welfare

measured by
P

i2NT f .

Consider now the game (N; v) and C(N; v). Since exT � xi for all i 2 T;
for any player i in P 0 it follows that there is a (su¢ ciently small) amount

of payo¤ pi such that a bilateral transfer of pi from i to any player in T

increases social welfare measured by
P

i2N f . Since x = �DR(N; v) any

such transfer must violate a core constraint. In particular, for an arbitrary

player i 2 P 0 and any player j in T there must be a zero-excess coalition
Sj at x such that i 2 Sj and j =2 Sj: Hence i 2 \j2TSj � NnT and
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\j2TSj is a zero-excess coalition, contradicting that y is in C(NT ; vT ) since

vT (\j2TSj) = v(\j2TSj) = x(\j2TSj) > y(\j2TSj): �

For the family of strictly monotonic convex games, splitting-proof core

solutions exist. Note that a convex game (N; v) is strictly monotonic if and

only if v(i) > 0 for all i 2 N .

Proposition 5 On the class of strictly monotonic convex games, there exists
an anonymous splitting-proof core solution.

Proof: We de�ne a core solution, called ��, and show that a merger is al-

ways pro�table; that is, for any (N; v) and any T � N then ��T (N
T ; vT ) �P

i2T �
�
i (N; v).

For any game (N; v), there is 1 � k � jN j and a partition P1; :::; Pk of N ,
classifying players according to increasing contribution to the grand coalition,

i.e. for any 1 � m � n � k, if i 2 Pm and j 2 Pn then v(N) � v(Nnfig) �
v(N)� v(Nnfjg).
Let � = (i; j; k; :::) be an ordering of the players such that i0 is listed

before j0 if there is m < n such that i0 2 Pm and j0 2 Pn: Let

p(�) = (v(i); v(ij)� v(i); v(ijk)� v(ij); :::)

be the partial marginal associated with �. We then de�ne �� to be the center

of gravity of the jP1j!jP2j! � � � jPkj! partial marginals that can be generated
by all such orderings �, i.e.

��(N; v) =
p(�1) + p(�2) + :::

jP1j!jP2j! � � � jPkj!
;

where �1; �2; :: are all possible orderings satisfying the condition described

above.

We claim that for any T � N , a T -merger is always pro�table for the

players in T . For this, note that by convexity and strict monotonicity, v(S)�
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v(Snfig) � v(i) > 0 for all S 3 i. Now consider a coalition T � N , and let
�i be the highest possible partial marginal in (N; v) to player i taken over

all orderings � (i.e. the partial marginal when player i has the last possible

position in �). We then haveX
i2T

��i (N; v) �
X
i2T

�i:

However, for the T -merger game (NT ; vT ) we have

��T (N
T ; vT ) �

X
i2T

�i;

because every partial marginal for player T in (NT ; vT ); for which the players

are ordered according to increasing contributions to the grand coalition, is

greater than or equal to
P

i2T �i, since v
T (NT )�v(NTnT ) > v(N)�v(Nnfig)

for all i 2 T . �

3 Concluding remarks

It remains an open question whether there exists a splitting-proof core solu-

tion on the class of (not necessarily monotonic) convex games.

Merging-proofness of the Dutta-Ray solution appeared to be closely con-

nected to the de�ning property of this solution of selecting the most equal

allocation in the core. We conjecture that the Dutta-Ray solution is the only

merging-proof core solution on the class of convex games.
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