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Abstract
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health as measured by a scale that is ordinal or that depends on risk attitudes. We

develop a method using a different type of preferences, called preference intensity

or cardinal preferences, to construct scales that measure changes in health. The

method is based on a social welfare model that relates preferences between changes

in an individual’s health to preferences between changes in health for a population.
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1.  Introduction

Public health studies use a variety of scales and supporting procedures to measure health

outcomes for an individual and to measure the effects of a public health policy for a population

of individuals. In order to compare policy options, an analyst must decide how to aggregate the

scale amounts for the individuals into a scale amount for the population. For example, should she

use the sum or should she use a weighted sum, and should she use the scale amounts themselves

or should she first transform the scale amounts to a different scale?

Moreover, the analyst may need to use the individual and population health scales to measure

changes in health for an individual or for a population. For example, what procedures can she use

to report a predicted improvement in the distribution of health over a population as an equivalent

improvement that is hypothetical but easier to grasp?

This paper presents models and procedures that address these questions. The models involve

a type of preferences usually referred to as preference intensity, cardinal preference, preference

difference, or strength-of-preference. We will call such preferences an intensity relation. Unlike

a preference relation that compares probability distributions of outcomes or that compares

multiattribute outcomes, an intensity relation compares changes in outcomes. The next section

argues that changes in outcomes can be compared in a public policy context and thus intensity

relations have an operational meaning in such a context.

If an intensity relation satisfies certain conditions, it is represented by a function such that

one change is preferred to another when the difference in function values for the first change is

greater. Like an intensity relation, such a function has various names, e.g., a difference function,

a measurable value function, and a cardinal utility function. We will call such a function either a

difference function to emphasize that it has the above property or a cardinal scale to emphasize

that (at least under certain conditions) it is unique up to a positive linear transformation.

Here, the outcomes are health outcomes. The general model contains: (i) for each member of

a population, an intensity relation that compares changes in the person’s health outcomes, and

(ii) for the population, an intensity relation that compares changes in the health outcomes over

the population. Each individual and population intensity relation is represented by a difference

function. The model defines a Pareto condition that connects the individual and population
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intensity relations, and it establishes that the intensity relations satisfy the condition if and only if

a difference function for health over the population is a weighted sum of difference functions for

the health outcomes of the population members. Thus, cardinal scale amounts for the individuals

are aggregated by means of interpersonal weights into a cardinal scale amount for the population.

This model is an adaptation to the context of public health of social welfare models in Dyer

and Sarin (1979) and Harvey (1999) that discuss preferences between changes in outcomes.

These social welfare models are parallel to the well-known model due to Harsanyi (1955) that

discusses preferences between probability distributions of outcomes.

The first part of this paper presents the health aggregation model outlined above. It also

discusses when the interpersonal weights can or cannot be chosen as equal.

The second part presents cardinal models concerning health outcomes for an individual. The

health outcomes are of two types: health states, and health-duration pairs. By a health state, we

mean the health of a person, measured along one or more dimensions. Public health studies can

make different assumptions as to the state’s duration and what health states occur afterward. And

by a health-duration pair, we mean a health state and as additional information the duration of

the health state. Again, public health studies can make different assumptions as to what occurs

afterward. Several options are death, optimal health, or a return to normal health.

This paper does not discuss models in which a health outcome contains more than one health

state: e.g., a health outcome is a sequence of annual health states, a sequence of health-duration

pairs, or a continuous stream of health states. For such health outcomes, Harvey and Østerdal

(2006) present ordinal models that can serve as a basis for a cardinal health aggregation model.

In the third part of the paper, we assume that an analyst has used the models and procedures

in the first two parts to obtain a difference function that compares changes in the distribution of

health over a population. We discuss procedures by which the analyst can use such a function to

evaluate a specified change in population health by calculating an indifferent change that can be

simply stated. Hence, the models provide a basis and a method for evaluating changes in public

health. For this reason, we will refer to the general model as a public health evaluation model.

Most of the results in this paper, as well as in Harvey (1999), are based on work by the

Danish mathematician, J.L.W.V. Jensen (1905, 1906). Proofs of results are in the Appendix.



3

2.  Is an Intensity Relation Meaningful?

Pareto (1896) and Fisher (1918) pointed out long ago that the term ‘utility’ had two different

meanings: (i) an older, hedonic meaning in utilitarianism and material welfare theory as the

degree of pleasure and pain (or welfare, wellbeing, etc.) that a person experiences as part of a

specified consequence, and (ii) a newer, choice-oriented meaning in consumer theory as the

degree to which a consequence satisfies a person’s preferences. Pareto gave an illustration in

which the two meanings differ: a child may experience better health by taking medicine even

though the child much prefers not to take the medicine.

An insufficient recognition of the distinction made by Pareto and Fisher led to a schism

between welfare economists (using hedonic utility) and ordinalist economists (using choice-

oriented utility); see, e.g., Cooter and Rappoport (1984). Later, a similar misunderstanding was

caused by an insufficient recognition that while utility had a hedonic meaning in the expected-

utility theory of Bernoulli (1738) it had a choice-oriented meaning in the expected-utility theory

of von Neumann and Morgenstern (1944). In recent years, there has been a renewed interest in

the hedonic meaning of utility; see, e.g., Broome (1991ab, 2004), Kahneman et al. (1997), and

Kahneman (2000).

In this paper, we take the position that in a public health study one can assign either a

hedonic meaning or a choice-oriented meaning to comparisons of changes in health.

Explicitly or implicitly, a public health study includes value judgments concerning individual

and population health. Following what may be an abuse of language, we will refer to any such

judgments as social values. Judgments that compare changes in a person’s health can be made by

the person himself, or they can be made by someone else (an expert, an agency, or an idealized

person). Usually, the social values will agree with the preferences of the affected individuals.

If an intensity relation defined on changes in an individual’s health is regarded as comparing

differences in a hedonic scale of individual wellbeing, then the comparisons are possible in

principle, no matter how difficult it may be to construct the scale. And if an intensity relation

defined on changes in health over a population is regarded as comparing differences in a hedonic

scale of population wellbeing, then comparisons are also possible.
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But if an intensity relation defined on changes in the health of an individual or a population is

regarded as the preferences of some entity, then an important question is whether the intensity

relation is meaningful. Before presenting models that contain intensity relations, we need to

address this question.

A classic technique of economic analysis is to specify a set of alternatives to be compared so

that it includes not only possible alternatives but also alternatives that are similar but not possible.

Here, we argue that in the context of public health, if this economic technique is reasonable, then

comparisons of changes in a person’s health and comparisons of changes in health distributions

are meaningful—even though health changes have a different structure than health outcomes.

First, consider changes in health for an individual. When he faces a decision that affects only

himself, his initial position is the same for any alternative, and thus his comparisons of options

are comparisons of final outcomes, what are known as ordinal preferences. Comparisons of

changes having different initial positions are not needed and in this sense are not meaningful.

But when a society faces a decision that affects many individuals, the initial positions of the

individuals will most likely be different; e.g., the initial positions may be the different health

outcomes of the individuals for a policy of non-intervention. The preferences of the society will

include comparisons of changes in health from these different initial positions. Thus, preferences

between changes in an individual’s health have the same operational meaning for a society that

preferences between final outcomes have for an individual decision maker.

Second, consider changes in health over a population. Since the policy options for the society

have the same initial distribution of health, they can be described by their final distributions of

health. In this situation, do preferences between changes in health have an operational meaning?

We think so, for the following reason. The population can be divided into subpopulations, e.g.,

age groups, some of which have better distributions of health than others, and thus the society

must compare changes for groups whose initial distributions of health are different. By the above

argument, comparisons of changes for such a group are meaningful. If changes in distributions of

health over the entire population are regarded as similar to changes in distributions of health over

a subpopulation, then it follows that comparisons of changes in health for the entire population

also are meaningful.
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3.  A Public Health Evaluation Model

In this section, we construct a public health evaluation model that is based on the social

welfare model in Harvey (1999). Suppose that as part of a public health study one has specified a

population of potentially affected individuals and a type of health outcomes for the individuals.

The individuals will be indexed by i N= …1, , ; a health outcome for an i-th individual will be

denoted by hi ; and the set of health outcomes will be denoted by H i . The health outcomes can

be of any type: e.g., health states, health-duration pairs, or a type not discussed in this paper.

A distribution of health outcomes over the population will be called a health distribution and

will be denoted by h = …( , , )h hN1 . Thus, we distinguish between a health outcome for an

individual and a health distribution for a population. We assume that the set of health distribu-

tions is the product set H HN1 ×…× .

A change from a health outcome hi  to a health outcome ′hi  for an i-th individual will be

denoted by hi hi→ ′ , and a change from a health distribution h  to a health distribution h′  for the

population will be denoted by h h→ ′ . An intensity relation will compare changes in health

outcomes, or it will compare changes in health distributions. We will refer to the comparisons as

preferences even though they may equally well have a hedonic meaning.

As common notation for the individual and population cases, suppose that �  denotes an

intensity relation for changes h h→ ′  in a set H  and that w h( )  denotes a difference function for

� , that is: h h h h→ ′ → ′� ˆ ˆ  if and only if w h w h w h w h( ) ( ) ( ˆ ) ( ˆ)′ − ≥ ′ − . Here, h h h h→ ′ → ′� ˆ ˆ

means that the change h h→ ′  is preferred to or indifferent to the change ˆ ˆh h→ ′ .

The social welfare model assumes (as stated for a health context) that for each i-th individual

there is an intensity relation that compares changes in health distributions over the population.

The intensity relation may reflect social values that focus on the i-th individual or it may reflect

the preferences or the hedonic experiences of the i-th individual.

Here, we assume that the intensity relation for an i-th individual depends only on the i-th

components hi  in the health distributions. Thus, the intensity relation corresponds to another

intensity relation, to be denoted by � i , that is defined on the set H i  and that compares changes

in health outcomes for the i-th individual. We will call  an individual intensity relation.

We expect that in most applications, the sets H i  of health outcomes will be chosen as a

common set and the intensity relations � i  will be chosen as a common intensity relation. These
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assumptions permit the set of possible outcomes be a subset, even a small subset, of the common

set and to differ from person to person; for example, younger people and older people may have

different sets of possible outcomes.

The social welfare model also assumes that there is an intensity relation that compares

changes in health distributions and that reflects social values regarding public health. We will

denote such a relation by �P  and call it a population intensity relation.

A difference function for an individual intensity relation � i  will be called an individual

difference function and will be denoted by w hi i( ) . And a difference function for a population

i ntensi ty relat i on �P  wil l  be cal led a popul at ion di ff er ence f unct i on and wi ll  be denot ed by W ( )h . 

Various models have been constructed in which conditions on an intensity relation �  imply

the existence of a difference function, but except for the model of Scott (1964) in which H  is a

finite set there is no model in which the conditions are equivalent to the existence of a difference

function. The approach in the other models has been to add a non-necessary condition in order to

obtain existence. And except for the model of Scott, the conditions that imply the existence of a

difference function also imply that it is cardinally unique, that is:  If w h( )  and ˆ ( )w h  are two

difference functions, then there exist constants   a > 0  and b  such that ˆ ( ) ( )w h a w h b= +  for h  in

H . Here, we will use the following non-necessary condition.

Properness condition.  The intensity relation �  defined on a set H  is proper in the sense that it

has a difference function w h( )  such that the range of w h( )  is a non-point interval.

As shown in the Appendix, the properness condition implies that w h( )  is cardinally unique.

The reason for requiring a non-point range is to exclude the uninteresting case in which any

changes h h→ ′  in H  are indifferent.

There are models in which conditions on a pair ( , )H �  imply that �  is proper; see, e.g., Alt

(1936), Debreu (1960), and Pfanzagl (1968). The social welfare model in Harvey (1999) assumes

that each relation � i  and �P  satisfies one of these sets of conditions. The model in this section

weakens this requirement by assuming that each relation and �P  is proper. This change allows

the use of any future conditions that imply that � i  and �P  are proper. In particular, we expect

to present in later research a set of conditions that permit certain health scales in the description
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of a health state to be categorical variables rather than continuous variables and that permit types

of health outcomes other than health states and health-duration pairs.

Next, we consider how a population intensity relation �P  might be connected to individual

intensity relations � i . The condition below provides what seems a natural connection. We will

call it a Pareto condition because of its similarity to Pareto conditions on preferences between

probability distributions and on preferences between multivariable outcomes.

Pareto condition.  For any changes h h→ ′  and ˆ ˆh h→ ′  in health distributions, if there is an i-th

individual such that h hj j→ ′  is indifferent to ˆ ˆh hj j→ ′  for each j i≠ , then preferences between

hi hi→ ′  and ˆ ˆhi hi→ ′  according to the individual intensity relation � i  imply preferences

between h h→ ′  and  according to the population intensity relation �P .

In other words, when society does not need to make tradeoffs between changes in the health

of different persons, then preferences between changes in public health agree with preferences

between changes in health for the one person who matters. In this sense, the Pareto condition is a

requirement of consumer sovereignty.

The result below is based on a result in Harvey (1999). Both results show that if individual

and population intensity relations are connected in a simple fashion, then individual and popula-

tion difference functions are connected in a simple fashion. Because of evaluation procedures

discussed in the final section, we will refer to the result as a public health evaluation model.

Theorem 1.  A set of proper intensity relations � i , i N= …1, , , and �P  satisfy the Pareto

condition if and only if for any individual difference functions w hi i( )  there exist weights ai > 0

such that the function:

W a w h a w hN N N( ) ( ) ( )h = +…+1 1 1 (1)

is a population difference function. The weights ai  in (1) are unique up to a positive multiple.

This model provides a foundation for evaluating changes in public health by a scale that is

the sum or a weighted sum of scales that measure preferences regarding changes in health for

individuals. Hence, it provides a foundation for the utilitarian principle that cardinal utility for a

society is the sum (or a weighted sum) of cardinal utilities for the members of the society.
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4.  Interpersonal Weights

This section discusses two simplifications/restrictions in the public health evaluation model.

The first is that the individual intensity relations � i  are equal (and thus the sets Hi  are equal).

As remarked above, we think this simplification will be made in most applications of the model.

It does not imply that the individuals have equal sets of possible health outcomes.

With this simplification, it is natural to choose individual difference functions w hi i( )  that

are equal. Such a model will be called an equal preferences model. As notation that is concise

(but that does overlap with our general notation for both the individual and population cases),

suppose that: HI  denotes the common set of health outcomes, either hi  or h  denotes a health

outcome, �I  denotes the common individual intensity relation, and w h( )  denotes an individual

difference function. Theorem 1 states that for any individual difference function w h( )  there

exists a population difference function of the form, W a w h a w hN N( ) ( ) ( )h = +…+1 1 , where

the weights 
  
ai > 0 , i N= …1, , , are unique up to a positive multiple.

In an equal preferences model, a ratio a ai j/  of weights in a population difference function,

W a w h a w hN N( ) ( ) ( )h = +…+1 1 , is the same as the ratio ˆ / ˆa ai j  of the corresponding weights

in any other population difference function, ˆ ( ) ˆ ˆ ( ) ˆ ˆ ( )W a w h a w hN Nh = +…+1 1 . This property of

invariance is important for assessing the weights in terms of interpersonal tradeoffs, and for this

reason, we will refer to the weights in an equal preferences model as interpersonal weights. In a

general health evaluation model, the weights are not invariant in this sense.

The second simplification is to assume that the interpersonal weights in an equal preferences

model are equal. By the invariance property, if some weights ai  are equal, then any weights âi

are equal. An equal preferences model with equal interpersonal weights will be called an equal

weights model. In such a model, any positive number can be chosen as a common interpersonal

weight. In particular, we can choose 
  
ai = 1  or a Ni = 1 / . Thus, we have the following result.

Corollary 1.  In an equal weights model, for any individual difference function w h( )  each of the

following functions is a population difference function:

W w h w hN( ) ( ) ( )h = +…+1 ,      W N w h w hN( ) / ( ) ( )( )h = +…+1
1 (2)
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Next, we state conditions on a population intensity relation in an equal preferences model,

each of which is satisfied if and only if the interpersonal weights are equal.

As what may be an awkward notation, suppose that for two health outcomes h , ′h ,  h

denotes the health distribution in which h hi =  for i N= …1, , , and ( ; )h h hi = ′  denotes the

health distribution in which h hi = ′  and h hj =  for j i≠ . Suppose, moreover, that for three

health outcomes h , ′h , ′′h ,  ( , ; )h h h h hi j= ′ = ′′  denotes the health distribution in which

h hi = ′ , h hj = ′′ , and h hk =  for k i j≠ , .

(a)  For any health outcomes h , ′h  and for any two individuals i j, , society is indifferent

between the change h → = ′( ; )h h hi  in population health and the change h → = ′( ; )h h hj  in

population health. (For instance, if h h→ ′  is an improvement in a person’s health, then society

is indifferent as to which person obtains the improvement.)

In terms of our general notation for both the individual and population cases, an intensity

relation �  defined on a set H  induces a so-called ordinal relation, to be denoted by �o , that

compares the elements h  in H . Often, the ordinal relation is defined by:  h ho� ′  if and only if

h h h h→ ′ →� . A difference function for the intensity relation �  (i.e., a cardinal scale) also

represents the ordinal relation �o , but a function that represents the ordinal relation �o  (i.e., an

ordinal scale) may or may not represent the intensity relation � .

When an intensity relation �  has a difference function, then for a fixed initial element h :

h h h h→ ′ → ′′�  if and only if ′ ′′h ho�  (as one can check). Thus, preferences between changes

with the same initial element are described by the ordinal relation.

The following condition is based on the ordinal relations induced by �I  and �P .

(b)  For any health outcomes h , ′h , ′′h  and for any two individuals   i j, , society is indifferent

between the health distributions ( , ; )h h h h hi j= ′ = ′′  and ( , ; )h h h h hi j= ′ = ′′ .

Theorem 2.  In an equal preferences model, conditions (a) and (b) are equivalent to one another

and to the condition that the interpersonal weights are equal.

When a population is divided into subpopulations (e.g., grouped according to age), each of

the conditions (a), (b) can be restricted to the subpopulations.
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Corollary 2.  In an equal preferences model, suppose that the population is divided into subpop-

ulations. Then, conditions (a) and (b) when weakened to hold within each subpopulation are

equivalent to one another and to the condition that the interpersonal weights within each

subpopulation are equal.

There are circumstances in which the relation �P  satisfies conditions (a), (b) only when they

are restricted to subpopulations and yet one can justifiably assign equal weights for the entire

population. This is the case if the range of possible health distributions is limited such that the

health outcomes in each health distribution have the same average amount is each subpopulation.

Theorem 3.  Suppose that w h( )  is an individual difference function in an equal preferences

model. Suppose also that the population is divided into subpopulations P Pk1, ,…  of sizes

n nk1, ,…  and that the population intensity relation �P  satisfies conditions (a), (b) for each of

the subpopulations. Then, for any health distribution h = …( , , )h hN1  that has the same average

amount of the cardinal scale w h( )  in each subpopulation, that is,

1 1

1 1n
w hii n

w hiiP P
k k

( ) ( )∈ = … = ∈∑ ∑ , (3)

the evaluation of h  in (1) with the weights a ak1 1+…+ =  equals its evaluation in (2) with the

equal weights a Ni = 1 / , i N= …1, , . Both evaluations are the common average in (3).

Moreover, the equalities (3) hold for any cardinal scale w h( )  or for no cardinal scale w h( ) .

When are unequal interpersonal weights needed?

What differences among the members of a population should imply unequal importance for

the same health outcomes for different individuals?  One possibility is differences in age. Here,

we discuss several reasons why different weights might be assigned to people of different ages.

First, age can be related to the social importance of individuals. Murray (1994) and Murray

and Acharya (1997) argue that since working-aged adults make greater economic contributions

than do children or seniors their health has greater social importance. The authors assign unequal

weights to persons of different ages as part of a “Disability Adjusted Life Years” (DALY) scale

for health time-streams. Often, in a DALY scale the weight assigned to a person aged 25 is about

twice the weight assigned to someone aged 6 or 67. See Anand and Hanson (1997) for a critical
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review. In our opinion, it is not justified to infer unequal social importance from unequal

economic roles. Moreover, U.S. health policies (e.g., health programs for children and Medicare)

implicitly assign greater weights to children and to seniors than to working-aged adults.

Second, age can be related to concerns for equality. Greater age tends to imply greater

lifetime health and longevity. Williams (1997) argues for assigning weights that favor equality in

people’s lifetime quality-adjusted life years. The weights resulting from this ‘fair-innings

argument’ will be greater for younger people than for older people.

Greater age also tends to imply lesser future health and longevity. One can argue for assigning

weights that favor equality in people’s future quality-adjusted life years. The weights resulting

from this future-equality argument will be greater for older people than for younger people.

Another criterion—one in the spirit of utilitarianism—is to assign weights that favor the sum

of improvements in health and longevity. To examine this criterion, first assume that health

outcomes are defined as health states—with the duration of a health state and any ensuing states

unknown. A change in health states (e.g., from fatality to a state of no health problem) is likely to

produce a greater improvement in a person’s health and longevity for a younger person than for

an older person. So when health outcomes are defined as health states the resulting weights may

be greater for younger people. But when health outcomes are defined as health-duration pairs, a

change in health outcomes entails the same improvement in health and longevity for an older

person as for a younger person. So for health-duration pairs, knowing the ages of the population

members does not provide a reason for assigning unequal weights.

Typically, the comparison of policy options in an equal weights model with health states will

differ from a comparison of the same options in an equal weights model with health-duration

pairs or health outcome-streams. In particular, fatalities will count the same regardless of age in

an equal weights model with health states whereas a fatality for an older person will count less

t han a fat al i ty f or  a younger  person in an equal  weight s m odel wi th heal t h- durat ion pai rs or  heal th

outcome-streams. In such a context, one cannot assign equal weights both in a model with health

states and in the corresponding model with health-duration pairs or health outcome-streams.

Similar observations have been made for expected-utility models; see, e.g., Bordley (1994) and

Hammitt (2002).
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5.  Health States

This section discusses the case in which a health outcome is a state of a person’s health. For

example, the health outcome may be a morbidity or an injury or it may be the condition of a

person’s health in general. A health outcome defined in this manner will be called a health state.

In the next section, a health state is part of a health outcome rather than the health outcome

itself. In order to have a consistent notation, we will denote a health state by si  and the set of

health states by Si . Hence, in this section hi  becomes si  and Hi  becomes Si .

An important part of a model of health states is a scale that measures ordinal comparisons of

health. The scale is often called ‘health-related quality of life’ or ‘quality-of-life’ (see, e.g., Gold

et al., 1996, Dolan et al., 1996, and Dolan, 2000). We will call such a scale a quality scale, and

we will denote it by q si( ) .

The first part of this section discusses the possible linkage between a predetermined quality

scale q si( )  and an individual intensity relation � i . In particular, we discuss when q si( )  is an

individual difference function. The second part of this section broadens the discussion to include

a population intensity relation �P . In particular, we discuss how the presence of �P  makes

possible certain procedures for assessing an individual difference function from a quality scale.

Quality scales have been developed both for morbidity and trauma. Most of the established

scales are multiattribute expected-utility functions. As examples of this type of scale there are:

the Functional Capacity Index, the Quality of Wellbeing scale (Kaplan and Anderson, 1996), the

Health Utilities Indices (Torrance et al., 1982, 1995, 1996; Feeney et al., 1996; and Furlong et

al., 1998), the Health and Activities Limitation Index (HALex), the SF-36 metric for health

status measurement, and the EuroQoL quality of life scales (Kind, 1996; Dolan, 1997; and

Richardson et al., 2001).

Procedures to assess a quality scale have been developed, either as part of a health study or as

a separate undertaking. Examples of these assessment procedures (commonly called scales)

include: time tradeoff scales, standard gamble scales, person tradeoff scales, and rating scales;

see, e.g., Torrance (1976, 1986) and Dolan et al. (1996).

Here, we assume that a quality scale q si( )  has been chosen or assessed for the purpose of

measuring the health of each individual in a population. This assumption implies that the sets Si
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of health states are a common set, which we will denote by S . The assumption does not imply

any connection between q si( )  and the individual intensity relations � i . In order to examine

when the scale q si( )  is connected to a relation � i , we will use the following condition.

Properness condition.  The range of the quality scale q si( )  is a non-point interval.

We expect that in most if not all applications, the health states will be described by one or

more so-called dimensions, each of which is measured by a scale. Then, a health state si  is a

vector of scale amounts, and the set S  of health states is the product set of the ranges of the

scales. If every scale is categorical, i.e., it has a finite set of values, then the set is finite, and thus

the quality scale q si( )  cannot be proper. On the other hand, if at least one of the scales is

continuous, i.e., it has an interval set of values, then the quality scale may or may not be proper.

We intend to discuss in a later paper conditions which imply that a quality scale must be proper.

Conditions (c) and (d) below are weaker than the definitions of ordinal and cardinal scales,

and hence easier to verify. Nevertheless, in the context of proper intensity relations and quality

scales they suffice to imply that q si( )  is an individual difference function.

(c)  For any health states, si  and ′si , q s q si i( ) ( )> ′  if and only if si  is preferred to ′si  according

to the ordinal preferences induced by the individual intensity relation � i .

(d)  For any changes, s si i→ ′  and ˆ ˆs si i→ ′ ,  if q s q s q s q si i i i( ) ( ) ( ˆ ˆ )′ ′ ) − (− = > 0 , then the

changes are indifferent according to the individual intensity relation � i .

Theorem 4.  Suppose that q si( )  is a proper quality scale and that � i  is a proper individual

intensity relation. Then:

(i)  q si( )  and � i  satisfy condition (c) if and only if q si( )  is an ordinal scale for � i  and any

individual difference function has the form w s f q si i( ) ( ( ) )=  where f q( )  is a strictly increasing

and continuous function.

(ii)  q si( )  and � i  satisfy conditions (c) and (d) if and only if q si( )  is an individual difference

function for � i .

When q si( )  and � i  satisfy conditions (c) and (d), the task of determining an individual

difference function is completed. And when they satisfy the ordinal condition (c) but not the
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cardinal condition (d), the task is reduced to that of assessing a function f q( )  having the

properties in (i). Such a function will be called a conversion function since it converts the

‘ordinal’ units of the quality scale into the ‘cardinal’ units of an individual difference function.

The combination of conditions (c) and (d) for every i N= …1, ,  implies that the individual

intensity relations � i  are equal. However, condition (c) for every i N= …1, ,  does not have this

implication since the conversion functions f q( )  can vary from one individual to another.

Next, we describe two types of procedures for assessing an individual difference function.

Throughout this paper, we define the term ‘assessment’ to include any means of obtaining social

values: e.g., elicitation from a decision maker, stated assumptions, or the use of survey results.

Equal-differences procedures

The following procedures for assessing an individual difference function will be called equal-

differences procedures. First, we assume that a proper quality scale q si( )  that satisfies condition

(c) has been determined, and second we omit this assumption.

As one equal-differences procedure, assess a sequence, s s n( ) ( ), ,0 … , of health states with

increasing scale amounts q si( )  such that s sk k( ) ( )− →1  is indifferent to s sk k( ) ( )→ +1  for each

k n= … −1 1, , . A conversion function can be defined for these health states by f q s kk( ( )) ,( ) =

k n= …0, , ,  and then can be extended to other health states by approximate interpolation.

As another equal-differences procedure, select a pair of extreme health states s( ),0  s( )1  with

q s q s( ) ( )( ) ( )1 0> . For example, s( )0  and s( )1  might be death and no injury. Assess a health state

s( / )1 2  such that s s( ) ( / )0 1 2→  and s s( / ) ( )1 2 1→  are indifferent. Then, f q s f q s( ( )) ( ( ))( / ) ( )1 2 0− =

f q s f q s( ( )) ( ( ))( ) ( / )1 1 2− , and thus f q s( ( ))( / )1 2 = 1
2

0 1
2

1/ ( ( )) / ( ( ))( ) ( )f q s f q s+ . In a similar

manner, assess a health state s( / )1 4  between s( )0  and s( / )1 2  and a health state s( / )3 4  between

s( / )1 2  and s( ).1  A conversion function can be defined for these health states by f q s kk( ( ))( ) =

for k = …0 1
4, / ,  and then can be extended to other health states by approximate interpolation.

The above procedures can also be used to assess an individual difference function w si( )

when no quality scale is available. In the first procedure, define w s kk( )( ) =  for k n= …0, , ,

and in the second procedure, define w s kk( )( ) =  for k = …0 1
4, / , .

In this situation, there are multiple health dimensions (since otherwise the single dimension

provides a quality scale), and thus the procedure must be supplemented with other assessments.
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For each health state s k( ) , one could for example use tradeoffs procedures to assess a number of

health states that are indifferent to s k( ) .

At this point, we broaden the discussion to include a population intensity relation �P . Again,

we first assume that a quality scale q si( )  that satisfies condition (c) has been determined. Then,

there exists a conversion function f q( )  as described in Theorem 4 such that w s f q si i( ) ( ( ) )=  is

an individual difference function and W s sN( , , )1 … = f q s f q sN( ( ) ) ( ( ))1 +…+  is a population

difference function.

Person-tradeoffs procedures

The following procedures for assessing an individual difference function will be called

person-tradeoffs procedures. Similar procedures for other types of scales have been proposed by

several authors (see, e.g., Richardson 1994; Nord, 1995; and Green 2001). Some authors have

observed that person-tradeoffs procedures are intuitively appealing while others have observed

that they lack a foundation, that is, they lack stated conditions on preferences that justify the

procedures. The public health evaluation model provides such a foundation.

Suppose that we have an equal weights model with a proper quality scale q si( ) , and thus the

task is to assess a conversion function. Select two extreme health states s( ),0  s( )1  such that

q s q s( ) ( )( ) ( )1 0> . Since by Theorem A1 an individual difference function is cardinally unique,

there is a unique conversion function f q( )  such that f q s( ( ) )( )0 0=  and f q s( ( ) )( )1 1= . Choose

a list consisting of s( ),0  s( )1  and some intermediate health states, and for each health state si  in

the list assess a number n si( )  such that society is indifferent between an improvement from s( )0

to si  for the entire population and an improvement from s( )0  to s( )1  for n si( )  members of the

population. Then, N f q s n si i× = ×( ( )) ( ) 1, and thus f q s n s Ni i( ( )) ( ) /= . Hence, the conversion

function can be defined by f q s n s Ni i( ( )) ( ) /=  for the health states si  in the list, and then it can

be extended to other health states by approximate interpolation.

The above procedure can also be used to assess an individual difference function w si( )  if no

quality scale is available. In this case, define w s n s Ni i( ) ( ) /=  for the health states si  in the list.

The health states in a person-tradeoffs procedure are selected (e.g., for simplicity) whereas

those in an equal-differences procedure are assessed (and thus represent social values). Hence,
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person-tradeoffs procedures but not equal-differences procedures can be used in those situations

in which only a sparse set of health states can be visualized and thus are available to assess.

A quality scale q si( )  is an individual difference function if and only if it satisfies condition

( d) . One can veri fy (d) dir ectl y, or  one can use an equal  di ff er ences or  per son-t radeoff s procedur e

to determine whether the conversion function is linear. Thus, the public health evaluation model

has the unusual feature that either intrapersonal equal-differences procedures or interpersonal

person-tradeoffs procedures (or a combined procedure) can be used to assess its components.

Social Attitudes toward Inequality

Suppose that s = …( , , )s sN1  denotes a health distribution in which the health outcomes are

health states. A change  s s→ ′  from an initial health distribution s  to a final health distribution

 ′s  consists of changes s si i→ ′  from initial health states si  to final health states ′si . What is

society’s attitude (as modeled in a public health evaluation model) toward inequality in the final

health states?  Here, we discuss two interpretations of this question.

(1)  Society is neutral as to whether a change from one health distribution to another increases

or decreases the degree of inequality in the final health states. To illustrate, suppose that s s s, ,′ ′′

are three health states such that  s  is worst, ′′s  is best, and the changes, s s→ ′  and ′ → ′′s s , are

indifferent according to the individual intensity relation. For example, the health states s s s, ,′ ′′

might be death, severe injury, and no injury. Consider three health distributions s s s, ,′ ′′  in

which an i-th individual has the health states s s s, ,′ ′′  respectively, and everyone else has the

intermediate health state ′s .  The Pareto condition implies that the changes,  s s→ ′  and  ′ → ′′s s ,

are indifferent according to the population intensity relation even though the change  s s→ ′

entails a decrease in inequality whereas the change  ′ → ′′s s  entails an increase in inequality.

(2)  As we show below, in an equal weight model society may or may not be neutral as to

whether a health distribution s = …( , , )s sN1  has equal quality scale amounts q si( ) . For a more

extensive discussion of this issue of social preferences in the context of ordinal welfare functions

rather than in the present context of cardinal welfare functions, see Harvey (1985).

Suppose that s = …( , , )s s  is a health distribution with the same health state s  for each

individual and that s = …( , , )s sN1  is a health distribution with unequal quality scale amounts

for at least two individuals.
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(i) Social preferences will be called inequality neutral provided that for any health distributions

s , s  as described, q s q s q sN N( ) / ( ) ( )( )= +…+1
1  implies that s  is indifferent to s .

(ii) Social preferences will be called inequality averse provided that for any health distributions

s , s  as described, q s q s q sN N( ) / ( ) ( )( )= +…+1
1  implies that s  is preferred to s .

Theorem 5.  For an equal weights model with a quality scale q si( )  that satisfies condition (c):

(i)  Social preferences are inequality neutral if and only if the quality scale q si( )  is an

individual difference function.

(ii)  Social preferences are inequality averse if and only if any conversion function f q( )  is

strictly concave. (Then, q si( )  is not an individual difference function.)

6.  Health-Duration Pairs

A health outcome can be defined to include information on the timing of one or more states

of health. This section discusses health outcomes that are defined as a constant health state and

its duration. A health outcome defined in this manner will be called a health-duration pair. The

duration of a health state can be defined as the time from a specified event, e.g., an accident or

the onset of a disease, in which case different individuals will have different initial times, or it

can be defined as the time from a common initial time, e.g., a specified present time.

A health state will again be denoted by si , and its duration in years will be denoted by t i .

Thus, a health-duration pair for an i-th individual will be denoted by h s ti i i= ( , ) .

Most models of health-duration pairs are expected-utility models; see, e.g., Bleichrodt et al.

(1997) for a discussion of the advantages of such models. The simplest utility functions are of

the form u s t t v si i i i( , ) ( )=  where the linear factor t i  represents risk neutrality toward duration.

In these models, a health-duration pair (or a probability distribution of such pairs) is measured by

a utility amount that represents an equivalent time in a state of optimal health; the amount is

called ‘quality-adjusted life years’ (QALYs) or ‘healthy-years equivalents’ (HYEs).

We regard the various QALY models in Pliskin, Shepard, and Weinstein (1980) as the basic

expected-utility models for health-duration pairs. Alternative conditions on preferences are
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presented in Bleichrodt et al. (1997) and Miyamoto et al. (1998) for expected-utility models and

in Doctor and Miyamoto (2003) and Østerdal (2005) for deterministic models. QALY models for

health-duration pairs are also presented or discussed in Loomes and McKenzie (1989),

Johannesson et al. (1994), Gold et al. (1996), and Dolan (2000).

A very different modeling approach is presented in Mehrez and Gafni (1989). They propose

a procedure in which a health-duration pair is measured in “healthy-years equivalents” (HYEs)

by assessing an indifferent health-duration pair in which  HYE  years of optimal health are

followed by death. See also, e.g., Gafni et al. (1993), Loomes (1995), and Johannesson (1995).

Duration is an essential part of health outcomes modeled either as health states or as health-

duration pairs. Simply stated, the reason is that health occurs over time. In the case of health

states, duration is implicit. It might be constant—or at least independent of the health state and

the individual. Or it might be unknown. In the case of health-duration pairs, duration is explicit.

What is implicit is the person’s health afterward.

This section develops models to be applied when the health state in a health-duration pair is

followed by a state of death. Either the person dies at the end of the time period, or the health

state is a state of death and thus the person is dead from the initial time. We have this ‘death-

afterward’ situation in mind when we assume, for instance, that longer durations are preferable.

As before, assume that the sets Si  of health states are a common set S  and that a proper

quality scale q si( )  is defined on the set S . Also, assume that S  contains one or more states of

death and that these states are the least preferred health states. Similar models can be developed

in which any health state is better than death or in which there are health states worse than death.

For expected-utility models having states worse than death, see Miyamoto et al. (1998).

Suppose that q si( ) ≥ 0  for any health state si  and that q d( ) = 0  where d  denotes a specified

state of death. If the predetermined scale q si( )  does not have these properties, then it can be

replaced by the scale q si q d( ) ( )− . Thus, the range of the scale q si( )  is a non-point interval of

non-negative numbers that contains zero as its lower endpoint.

We assume that the set of durations is the interval T = ∞( , )0 . Thus, the set of health-duration

pairs is defined as the product set H S= × ∞( , )0 . This choice of  T  avoids two issues: that of

interpreting outcomes of zero duration, and that of assigning an upper bound on duration.
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This section discusses the linkage between q si( )  and an individual intensity relation � i . We

define conditions on q si( )  and � i  that imply special forms of an individual difference function,

and we discuss assessment procedures that use these forms. The resulting models are similar to

the expected-utility models referenced above.

Whereas ordinal preferences between health states depend only on the quality scale q si( ) ,

ordinal preferences between health-duration pairs also depend on the duration scale ti . For this

reason, the conditions on preferences in this section are somewhat more complicated than the

corresponding conditions in the previous section.

An individual intensity relation � i  will called scale-proper provided that it has a difference

function w s ti i( , )  such that for any health state   s*  or duration   t *  the range of the function

w si t( , )*  or w s ti( , )*  is an interval and at least one of these ranges is non-point. We show in the

Appendix that if an individual intensity relation is scale-proper, then it is proper.

First, we define conditions on the ordinal preferences induced by an intensity relation � i .

(e1)  For any pairs ( , )s ti i , ( , )′s ti i  with a common duration ti : q s q si i( ) ( )> ′  if and only if

( , )s ti i  is preferred to ( , )′s ti i .

(e2)  For any pairs ( , )s ti i , ( , )s ti i′  with a common health state si : If q si( ) > 0 , then t ti i> ′  if and

only if ( , )si ti  is preferred to ( , )si ti′ . If q si( ) = 0 , then ( , )si ti  is indifferent to ( , )si ti′ .

(e3)  For any health state si  and any health-duration pair ( , )* *s ti i  with q si( )* > 0 , there exists a

duration ti  such that ( , )s ti i  is less preferred than ( , )* *s ti i .

Condition (e1) implies that for a fixed duration ti , the quality scale q si( )  represents ordinal

preferences between health states. Thus, (e1) is a direct analogue of condition (c).

Condition (e2) implies that for a fixed heath state si , if si  is preferred to death then longer

durations are preferred, and if si  is indifferent to death then all durations are indifferent.

Ethical arguments that social preferences should satisfy (e1) but not (e2) or vice versa have

not been propounded. But arguments have been made for an ‘equal value of life’ principle that

society should not compare health-duration pairs with non-death health states; see, e.g., Harris

(1987) and Nord (2001). This principle appears to violate both (e1) and (e2). For reasons why
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social preferences among health outcomes should depend on degrees of health and duration, see,

e.g., Singer et al. (1995), Williams (1997), and Hasman and Østerdal (2004).

Roughly speaking, condition (e3) states that for any health state si  there is a sufficiently brief

duration ti  such that the outcome ( , )s ti i  is less preferred than the comparison outcome ( , )* *s ti i .

Whereas we define T = ∞( , )0  and introduce condition (e3), Bleichrodt et al. (1997) and

Miyamoto et al. (1998) define T = ∞[ , )0  and introduce a ‘zero-condition’ which states that any

two outcomes ( , )si 0  and ( , )′si 0  are indifferent. This condition and the condition that ordinal

preferences are continuous on the set S × ∞[ , )0  implies condition (e3) on the subset S × ∞( , )0 .

Conditions (e1)-(e3) on ordinal preferences imply that an individual intensity relation � i  has

a difference function of the form, w s t g q s ti i i i( , ) ( ( ), )= , as described in the Appendix. The two-

variable function g q t( , )  has a general form and hence would be extremely difficult to assess.

Next, we introduce conditions on cardinal preferences which imply that g q t( , )  is a product

of two single-variable functions. This reduction can greatly simplify the assessment task.

(f1)  Preferences between two changes, ( , ) ( , )s t s ti i i i→ ′  and ( , ˆ ) ( , ˆ )s t s ti i i i→ ′ , with a common

health state si  are the same for any si  with q si( ) > 0 .

(f2)  Preferences between two changes, ( , ) ( , )s t s ti i i i→ ′  and ( ˆ , ) ( ˆ , )s t s ti i i i→ ′ , with a common

duration ti  are the same for any ti .

Theorem 6.  Suppose that q si( )  is a proper quality scale and that � i  is a scale-proper individual

intensity relation. Then, the following are equivalent: (i) q si( )  and � i  satisfy conditions (e1)-

(e3) and (f1); (ii) q si( )  and � i  satisfy conditions (e1)-(e3) and (f2); and (iii) � i  has an

individual difference function with the product form:

w s t D t f q si i i i( , ) ( ) ( ( ))= (4)

where f q( )  and D t( )  are continuous, strictly increasing functions such that f q d( ( )) = 0  and

lim ( )
t

D t
→

=
0

0 . Moreover, each of the functions D t( ) , f q( )  is unique up to a positive multiple.

The function f q( )  in (4) can be interpreted as a conversion function, and the function D t( )

in (4) can be interpreted as a cumulative discounting function, that is, D t d u dut( ) ( )= ∫0 where
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d u( )  is a discounting function. For preferences that are timing neutral (non-discounting), one

can choose d u( ) = 1 for u > 0  and thus D t t( ) =  for t > 0 .

Now, we define conditions that strengthen conditions (f1) and (f2) respectively.

(g1)  For any changes ( , ) ( , )s t s ti i i i→ ′  and ( , ˆ ) ( , ˆ )s t s ti i i i→ ′  with a common health state si , if

t t t ti i i i′ ′ −− = ˆ ˆ , then the changes are indifferent.

(g2)  For any changes ( , ) ( , )s t s ti i i i→ ′  and ( ˆ , ) ( ˆ , )s t s ti i i i→ ′  with a common duration ti , if

q s q s q s q si i i i( ) ( ) ( ˆ ˆ )′ ′ ) − (− = , then the changes are indifferent.

Condition (g1) requires that for a common health state society is indifferent between a

change in a short duration (thus in the near future) and the same change in a long duration (thus

in the distant future). There are ethical arguments in favor of such non-discounting, but most

people place far more importance on the near future than on the distant future; for example, they

would prefer an increase in a short duration to the same increase in a long duration.

Condition (g2) requires that for a common duration society is indifferent between a change

from a bad health state and a change from a good health state that has an equal difference in

quality scale amounts. This condition seems appropriate for many quality scales, and thus there

may be many situations in which (g2) but not (g1) is satisfied.

Theorem 7.  Suppose that q si( )  is a proper quality scale and that � i  is a scale-proper individual

intensity relation. Then:

(i) q si( )  and � i  satisfy conditions (e1)-(e3) and (g1) if and only if � i  has an individual

difference function that is linear in the variable ti , that is:

w si ti ti f q si( , ) ( ( ))= (5a)

where f q( )  is a continuous, strictly increasing function with f q d( ( )) = 0 .

(ii) q si( )  and � i  satisfy conditions (e1)-(e3) and (g2) if and only if � i  has an individual

difference function that is linear in the variable q si( ) , that is:

w si ti D ti q si( , ) ( ) ( )= (5b)

where D t( )  is a continuous, strictly increasing function with lim ( )
t

D t
→

=
0

0 .
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(iii)  q si( )  and � i  satisfy conditions (e1)-(e3) and (g1)-(g2) if and only if � i  has an individual

difference function of the form:

w si ti ti q si( , ) ( )= (5c)

Moreover, each of the functions f q( ) , D t( )  in (5a), (5b) is unique up to a positive multiple.

Expected-utility functions of the form (5a) represent risk neutrality toward future duration,

and expected-utility functions of the form (5b) represent risk neutrality toward quality scale

amounts. See, e.g., Pliskin et al. (1980) and Broome (1993) for discussions of such functions.

7.  QALY and YALQ Scales

A health-duration pair can be evaluated by selecting a ‘standard amount’ of si  or ti  and

finding an amount of the other such that the resulting health-duration pair is indifferent to

( , )si ti . The well-known method is to select a state s* of optimal health as the standard health

state, and for a given health-duration pair ( , )s ti i  assess a duration   ̂t  such that   ( , ˆ )*s t  is

indifferent to ( , )s ti i . As mentioned in Section 6,   ̂t  is called the ‘quality-adjusted life years’ for

the pair ( , )s ti i  and is denoted by QALY. If the health state si  in a pair ( , )s ti i  is less preferred

than s*,  then the quality-adjusted life years   ̂t  for the pair ( , )s ti i  will be less than ti .

The alternative method is to select a standard duration t*. Perhaps, t* is an extremely long

duration (what might be called a Methuselahn duration). For a given health-duration pair ( , )s ti i ,

assess a health state ŝ  such that ( ˆ, )*s t  is indifferent to ( , )s ti i . We will refer to the amount

ˆ ( ˆ)q q s=  as the years-adjusted life quality of the pair ( , )s ti i , and we will denote q̂  by YALQ.

If the duration ti  in a pair ( , )s ti i  is less than t*,  then the years-adjusted life quality q̂  for the

pair ( , )s ti i  will be less than q si( ) .

The QALY scale is well-known, while the YALQ scale appears to be new. For technical

reasons, we will modify the above definitions so that each scale is a function of pairs ( ( ), )q s ti i

rather than a function of health-duration pairs ( , )s ti i . As shown in the Appendix, conditions

(e1)-(e3) imply that each scale represents ordinal preferences between health-duration pairs. 

Suppose that ˆ ( ( ), )t q s ti i= QALY  denotes a QALY scale and that ˆ ( ( ), )q q s ti i= YALQ

denotes a YALQ scale. A QALY scale is defined on pairs ( ( ), )q s ti i  such that 0 < ≤q s qi( ) *
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(where q q s* *( )= ) and ti > 0 , and a YALQ scale is defined on pairs ( ( ), )q s ti i  such that

0 < ≤t ti
*  and q si( ) > 0 . The inequalities ti > 0  are not a restriction since zero durations have

been excluded while the inequalities q si( ) > 0  exclude health states that are indifferent to death.

In general, a QALY scale or a YALQ scale would be difficult to assess since it is a function

of two variables, namely q si( )  and ti . By choosing t ti = *  or q s qi( ) *= , the scales induce the

single-variable scales: Q q s q s ti i* *( ( )) ( ( ), )= QALY  and Y t q ti i* ( ) ( *, )= YALQ . As shown in

the Appendix, the functions Q q si* ( ( ))  and Y ti* ( )  are inverses of one another.

Theorem 8.  Suppose that a quality scale q si( )  and an individual intensity relation � i  satisfy

the assumptions in Theorem 6 and that a health-duration pair ( , )* *s t  with q q s* *( )= > 0  has

been specified. Then, there exists a unique individual difference function of the product form,

w s ti i* ( , ) = D t f q si i( ) ( ( )) , where f q( )  and D t( )  are continuous, strictly increasing functions

such that f q d( ( )) = 0 , f q s( ( ))* = 1 and lim ( )
t

D t
→

=
0

0 , D t( )* = 1. Moreover:

w s t D q s t f q s ti i i i i i* ( , ) ( ( ( ), ) ) ( ( ( ),= =QALY YALQ ))) (6)
and

w s t D t D Q q s f q s f Y q si i i i i* * *( , ) ( ) ( ( ( ) ) ( ( ) ) ( ( (= = ii ) ) (7)

for any health-duration pair ( , )s ti i  with 0 < ≤q s qi( ) * and 0 < ≤t ti
* .

Suppose that condition (g1) is satisfied, that is, society is neutral toward differences in

duration (non-discounting). Then, D t t t( ) / *= , and formulas (6), (7) imply that w s ti i* ( , ) =

QALY( ( ), ) ) ( ) ( ( ) )( )* * *q s t t t Q q s ti i i i
− −=1 2 . As another special case, suppose that condition

(g2) is satisfied, that is, society is neutral toward differences in quality scale amounts. Then,

f q q q( ) / *= , and thus w s t q s t q q s Y ti i i i i i* * *( , ) ( ( ), ) ) ( ) ( ) ( )= =−YALQ 1 (( ) .*q −2  In particular,

a YALQ scale Y ti* ( )  is more appropriate than a QALY scale Q q si* ( ( ))  when: (i) Discounting

is used (rather than timing neutrality), and (ii) The quality scale is defined as or is converted to a

scale such that equal differences in quality scale amounts have the same social importance.

Imagine a situation in which neither of the conditions (g1), (g1) is satisfied. The product

form of a difference function w s ti i* ( , )  and the formulas (6), (7) suggest the following methods

for assessing w s ti i* ( , ) : (i) Assess a cumulative discounting function D t( )  and a conversion
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function f q( ),  (ii) Assess a cumulative discounting function D t( )  and a QALY scale

Q q si* ( ( )),  and (iii) Assess a conversion function f q( )  and a YALQ scale Y ti* ( ) .

The single-variable functions and scales can be assessed by equal-differences procedures,

person-tradeoffs procedures, or other types of procedures. This paper does not undertake a

comprehensive discussion of assessment procedures—either those that like the equal-differences

and person-tradeoffs procedures consist of direct assessments or those that like constant

discounting depend on assuming that the function or scale belongs to a parametric family.

8.  Evaluating Policy Options

This section discusses how a population difference function that has been constructed as part

of a public health study can be used to evaluate the policy options in the study. In contrast to

procedures to obtain a population difference function, these procedures use such a function. The

health outcomes can be of any type: e.g., health states, health-duration pairs, or health streams.

Since a population difference function is a cardinal scale, a change in public health can be

legitimately measured by a difference in function values. By contrast, an expected-utility

function or an ordinal scale cannot be used in this manner unless it is also a difference function.

Assume that each policy option in a public health study is predicted to produce a change

from one health distribution to another. The initial distribution may be, e.g., the predicted public

health for the current policy of intervention or for a policy of non-intervention, and the final

distribution may be, e.g., the predicted public health for the proposed policy option.

It would be more realistic to assume that each policy option leads to a probability distribution

of changes. However, this paper does not discuss such models nor does it discuss when the extra

realism of using probability distributions of changes rather than predicted changes is needed.

By the evaluation of a policy option, we mean the following process: (1) Calculate a change

in public health that is indifferent to the change produced by the policy option. The hypothetical

change may be simpler and more easily understood than the predicted change. (2) Report the

calculated change as an evaluation of the policy option.

Below, we discuss two methods for this process. Each method assumes that a public health

evaluation model (as described in Section 3) has been constructed. In particular, suppose that
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h = …( , , )h hN1  denotes a health distribution and that W a w h a w hN N N( ) ( ) ( )h = +…+1 1 1

denotes a population difference function.

Calculating a common change for everyone

In the first type of evaluation, a health outcome h( )0  has been specified and a health outcome

ĥ  is to be calculated. Suppose that h( )0  and ĥ  denote the health distributions in which everyone

experiences the health outcome h( )0  or ĥ  respectively.

For a policy option with a predicted change h h→ ′  in public health, calculate a health distri-

bution ĥ  such that W W( ˆ ) ( )( )h h− =0 W W( ) ( )h h′ − . Then, the change h h( ) ˆ0 →  is indifferent

to the change h h→ ′ , and in that sense it is equivalent to h h→ ′ . Hence, one can evaluate the

policy option as the hypothetical change h h( ) ˆ0 →  in health outcomes for everyone.

This method of evaluation will be especially simple in two situations. First, it may be

appropriate to choose the same initial distribution h( )0  to evaluate each of the policy options. In

this case, assume that the individual difference functions w hi i( )  have been partially normalized

such that w hi( )( )0 0=  for i N= …1, , , and thus W ( )( )h 0 0= . Then, W W W( ˆ ) ( ) ( ˆ )( )h h h− =0 ,

and thus a policy option can be evaluated as a common hypothetical health outcome ĥ .

Second, an equal preferences model may be appropriate. In this case, suppose that the

common individual difference function is denoted by w h( )  and that the interpersonal weights

have been normalized so that they sum to unity. Then, W W( ˆ ) ( )( )h h− =0 w h w h( ˆ) ( )( )− 0 , and

thus a policy option can be evaluated as a difference ∆ = −w w h w h( ˆ) ( )( )0  in the cardinal scale

w h( ) . The difference ∆w  is independent of the health outcomes h( )0  and ĥ .

Suppose that the health outcomes in an equal preferences model are health states, h si i= .

Then, w h w h f q s f q s( ˆ) ( ) ( ( ˆ)) ( ( ))( ) ( )− = −0 0 . In the case that equal differences in health quality

are equally important (i.e., condition (d) is satisfied), and thus q si( )  is a cardinal scale, it follows

that w h w h( ˆ) ( )( )− =0 q s q s( ˆ) ( )( )− 0 . Then, a policy option can be evaluated as a difference

∆ = −q q s q s( ˆ) ( )( )0  in the quality scale q si( ) .

Next, suppose that the health outcomes in an equal preferences model are health-duration

pairs, h s ti i i= ( , ) . In this case, one may restrict the health-duration pair ˆ ( ˆ, ˆ)h s t=  to one of the

forms, ˆ ( , ˆ)( )h s t= 0  or ˆ ( ˆ, )( )h s t= 0 . In the first case, a policy option can be evaluated as a change
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from t( )0  to t̂  in duration conditional on the health state s( )0 , and in the second case a policy

option can be evaluated as a change from s( )0  to ŝ  in health conditional on the duration t( )0 .

If the individual difference function w h( )  has a product form, then w s t w s t( ˆ, ˆ) ( , )( ) ( )− =0 0

D t f q s D t f q s(ˆ) ( ( ˆ)) ( ) ( ( ))( ) ( )− 0 0 . When timing neutrality is appropriate (i.e., condition (g1) is

satisfied), it follows that w s t w s t t t f q s( , ˆ) ( , ) ( ˆ ) ( ( ))( ) ( ) ( ) ( ) ( )0 0 0 0 0− = − . Then, one can evaluate

a policy option as a change ∆ = −t t tˆ ( )0  in duration conditional on the health state s( )0 . And

when equal differences in health quality are equally important (i.e., condition (g2) is satisfied), it

follows that w s t w s t D t f q s f q( ˆ, ) ( , ) ( ) ( ( ˆ) (( ) ( ) ( ) ( ) (0 0 0 0− = − (( )( ) )s 0 . Then, one can evaluate a

policy option as a change ∆ = −q q s q s( ˆ) ( )( )0  in health quality conditional on the duration t( )0 .

Calculating a subpopulation with a specified change

Again, assume a public health evaluation model as described in Section 3. Assume that two

health outcomes h
*

, h*  have been specified, and suppose that h
*

 and h* denote the health

distributions in which everyone experiences the health outcome h
*

 or h*  respectively. For

n N= …0 1, , , , suppose that h( )n  denotes the health distribution in which the first n  members

of the population experience the health outcome h
*

 and the remaining N n−  members of the

population experience the health outcome h* . Then, in particular h h( )
*

0 =  and h h( ) *N = .

Consider a policy option with a predicted change h h→ ′  in public health. To focus the

discussion, assume that both the change h h→ ′  and the change   h h
*

*→  are improvements in

public health and that h h→ ′  is less preferred than   h h
*

*→ .

One method for evaluating such a policy option is to calculate a number n  between 0 and N

such that W Wn( ) ( )( )
*

h h−  is approximately equal to W W( ) ( )h h′ − . In effect, one is calculating

a subpopulation consisting of the first n  members of the population. Then, the change    h h
*

( )→ n

is indifferent to the change h h→ ′ . Thus, one can evaluate the policy option as the hypothetical

change   h h
*

*→  in health outcomes for the subpopulation defined as the first n  members of the

population. In an equal weights model, one can report either the number n  or the fraction   n N/

of population members with the hypothetical change   h h
*

*→ .
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Appendix:  Proofs of Results

First, we establish the following result which strengthens the condition of ‘properness.’

Theorem A1.  If an intensity relation �  is proper, i.e., it has a difference function w h( )  with a

non-point interval range I , then any difference function for �  is a positive linear transformation

of w h( )  and has a non-point interval range.

Proof.  Suppose that a function z h( )  with a range J  is a difference function for � . Then, w h( )

and z h( )  are both ordinal scales for � , and thus z h f w h( ) ( ( ))=  for some strictly increasing

function f w( ) . The domain of f w( )  is the non-point interval I , and its range is the set J .

For w w< ′  in I , define w w w= ′+1 2 1 2/ / . There exist h h h, , ′  in H  such that w h w( ) = ,

w h w( ) = , and w h w( )′ = ′ . Thus, w w w w− = ′ −  implies that h h h h→ → ′∼  which implies

z h z h z h z h( ) ( ) ( ) ( )− − ′=  which implies f w f w f w( ) / ( ) / ( )= ′+1 2 1 2 . Jensen (1905, 1906)

proved that any continuous function that satisfies the above equation is linear (see, e.g., Aczél,

1966, p. 43), and essentially the same argument can be used to show that any increasing function

that satisfies the equation is linear. The further arguments are straightforward.

Proof of Theorem 1.  We will show that the health evaluation model in Section 3 is a corollary

of the social welfare (SW) model in Harvey (1999). The set C  of alternative consequences for n

individuals in the SW model corresponds to the set H HN1 ×…×  of health distributions for N

individuals in the health evaluation model, and the intensity relations � i  and �  in the SW

model correspond to the intensity relations � i  and �P  here.

We have made significant changes in the assumptions concerning each intensity relation. The

SW model assumes that the set C  mentioned above is topologically connected and that each of

the intensity relations � i  and �  satisfies a set of conditions that implies that it has a continuous

difference function. It follows (as can be shown) that the range of any difference function is an

interval. As the primary part of the condition of ‘properness,’ we merely assume that there exists

a difference function with an interval range. This assumption provides a more general model

since it does not imply the assumptions mentioned above that are used in the SW model.
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The ‘properness’ condition does require, however, that the interval ranges mentioned above

are non-point (which is equivalent to the condition that not all changes are indifferent). In this

sense, the model here is a restriction of the SW model. Our motive for the requirement of a non-

point range is to exclude a situation that we believe to be unimportant and a distraction.

The health evaluation model assumes that an intensity relation � i  depends only on changes

in the i-th component of the set H HN1 ×…× , that is, it depends only on changes in health for

the i-th individual. This assumption implies condition (D) in the SW model which states (in our

terminology) that for any health distributions h( ) , , , ,i i N= …1  there is a health distribution h

such that h  is indifferent to h( )i  according to � i  for each i N= …1, , . The reason is that for the

given distributions h( )i  we can define a health distribution h = …( , , )( ) ( )h hN
N

1
1  where hi

i( )  is

the i-th component of h( )i . Then, for each i N= …1, ,  the distribution h  has the same i-th

component as the distribution h( )i , and thus it is indifferent to h( )i  according to � i .

As one can verify, the Pareto condition here is equivalent to the Pareto conditions (A), (B) in

the SW model. Theorem A1 implies that any individual difference function has an interval range.

Hence, the Pareto condition implies by the proof of the SW model that for any given individual

difference functions w hi i( ) , i N= …1, , , there exists a population difference function of the

weighted-sum form (1). Theorem A1 also implies that any individual difference function has a

non-point range, and it follows that the interpersonal weights must be positive. It is straight-

forward to verify that the weights are unique up to a positive multiple and to verify the converse

implication, namely that the weighted-sum form (1) implies the Pareto condition.

Proof of Corollary 1.  In an equal weights model, for any individual difference function w h( )

one can choose the interpersonal weights as any single positive number.

Proof of Theorem 2.  Suppose that w h( )  is a common individual difference function and that

W a w h a w hN N( ) ( ) ( )h = +…+1 1  is an associated population difference function.

First, assume condition (a). If two changes, h → = ′( ; )h h hi  and h → = ′( ; )h h hj , are

indifferent, then a w h a w h a w h a w hi i j j( ) ( ) ( ) ( )′ − = ′ −  by cancelling common terms. Since we

can choose h , ′h  such that w h w h( ) ( )≠ ′ , it follows that a ai j= .  Next, assume condition (b). If



29

two health distributions ( , ; )h h h h hi j= ′ = ′′  and ( , ; )h h h h hi j= ′ = ′′  are indifferent, then

a w h a w h a w h a w hi ij j( ) ( ) ( ) ( )′ + = + ′  by cancelling common terms, and it follows that a ai j= .

One can verify that, conversely, if the weights are equal then the intensity relations �I  and

�P  satisfy conditions (a) and (b).

Proof of Corollary 2.  Apply Theorem 2 to each subpopulation.

Proof of Theorem 3.  For a given individual difference function w h( ) , Theorem 1 states that

there exist weights a aN1 , ,…  such that W a w h a w hN N( ) ( ) ( )h = +…+1 1  is a population

difference function, and Corollary 2 states that there exist weights ˆ , , ˆa ak1 …  such that ˆ ( )W h =

ˆ ( ) ˆ ( )a w h a w hii iiP k Pk
1

1∈ +…+ ∈∑ ∑  is a population difference function. We can assume that

the weights are normalized such that a aN1 1+…+ =  and n a n ak k1 1 1ˆ ˆ+…+ = . Then, a ai = ˆ1

for i  in P1  and so forth. Hence, W a w h a w hi ii i iiP Pk
( ) ( ) ( )h = ∈ +…+ ∈∑ ∑

1
=

ˆ ( ) ˆ ( ) ˆ ( )a w h a w h Wii iiP k Pk
1

1∈ +…+ ∈ =∑ ∑ h  for any health distribution h .

We wish to compare the population difference function W ( )h  with the function W ( )h =

1
1/ ( ) ( ) )(N Nw h w h+…+  where    W ( )h may or may not be a population difference function.

Suppose that h  is a health distribution which has equal scale averages as in (3), and denote the

common average by w . Then, W W n a w n a w wk k( ) ˆ ( ) ˆ ˆh h= = +…+ =1 1 . Moreover,

W w hii w hii n wN P N P N
k

( ) / ( ) / ( ) / (h = ∈ +…+ ∈ = +∑ ∑1 1 1
1

1
……+ =n w wN ) , and thus

W W w( ) ( )h h= =  as was to be shown.

Proof of Theorem 4.  Since the quality scale q si( )  and the individual intensity relation � i  are

proper, q si( )  has a non-point interval range and � i  has an individual difference function w si( )

with a non-point interval range. Suppose that Iq  and Iw  denote the ranges of q si( )  and w si( ) .

The function w si( )  represents the ordinal relation � i
o  induced by � i  as well as the intensity

relation � i  itself. It follows in particular that the ordinal relation � i
o  is complete, i.e., for any

health states si  and ′si , either si  and ′si  are indifferent or one is preferred to the other.

For part (i), first assume condition (c). Then, for any health states si  and ′si , si  is preferred

to ′si  if and only if q s q si i( ) ( )> ′ . To show that q si( )  is an ordinal scale, it remains to show that

si  is indifferent to ′si  iff q s q si i( ) ( )= ′ . If si  is not indifferent to ′si , then by completeness either
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si  is preferred to ′si  or ′si  is preferred to si . In either case, it follows by (c) that q s q si i( ) ( )≠ ′ .

And if q s q si i( ) ( )≠ ′ , it follows by (c) that either si  is preferred to ′si  or ′si  is preferred to si .

Hence, both q si( )  and w si( )  are ordinal scales for � i
o . By the uniqueness property of

ordinal scales, there is a strictly increasing function f q( )  defined on the interval Iq  such that

w si f q si( ) ( ( ) )=  for si  in S . The range of the function f q( )  is the range Iw  of the function

w si( ) . Since Iq  and Iw  are intervals, it follows that the function f q( )  is continuous.

For part (ii). First assume conditions (c) and (d). By part (i) there is a continuous, strictly

increasing function f q( )  such that w s f q si i( ) ( ( ) )=  is an individual difference function. First,

we show that the function f q( )  is a linear. For any q q< ′  in the interval Iq , there are health

states si , si′  and ŝi  in S  such that q si q( ) = , q s qi( )′ = ′ , and q si q q( ˆ ) / /= + ′1
2

1
2 . Then,

q s q s q s q si i i i( ) ( ˆ ) ( ˆ ) ( )′ − = − > 0  which implies by condition (d) that the changes, si si→ ˆ  and

ŝ si i→ ′ , are indifferent which implies that w si w si w si w si( ) ( ˆ ) ( ˆ ) ( )′ − = −  which implies that

f q s f s f q s f q si i i i( ( )) (( ˆ )) ( ( ˆ )) ( ( ))′ − = − . Hence, f q s f q s f q si i i( ( ˆ )) / ( )) / ( ))( (= +1
2

1
2 ′ , and

thus f q q f q f q( / / ) / ) / )( (1
2

1
2

1
2

1
2+ ′ = + ′ . Since the function f q( )  is continuous and strictly

increasing, this Jensen’s equation implies that f q aq b( ) = +  for some constants   a > 0  and b .

But an individual difference function is cardinally unique by Theorem A1, and thus q si( )  is an

individual difference function.

Proofs of the converse implications are straightforward.

Proof of Theorem 5.  By Theorem 4, there exists a conversion function f q( )  that is continuous,

strictly increasing, and whose domain Iq  is a non-point interval. By Theorem A1, an individual

difference function is cardinally unique, and thus any conversion function has these properties.

Consider any points q q< ′  and q q q= + ′1
2

1
2/ /  in Iq . There exist health distributions

s = …( , , )s s  and s = …( , , )s sN1  such that: q s q( ) = , q s q( )1 = , q s q( )2 = ′ , and q si q( ) =

for   i > 2 . Hence, s  has unequal health scale amounts, and 1 1/ ( ) ( ) ( )( )N q s q s q s qN+…+ = = .

If s  is indifferent to s , then N f q s f q s f q sN× = +…+( ( )) ( ( )) ( ( ))1  which implies that

f q f q f q( ) / ( ) / ( )= + ′1
2

1
2 . Since q q< ′  are any points in Iq  and the function f q( )  is contin-

uous, this Jensen’s equation implies that f q( )  is linear on Iq . It is also strictly increasing, and

thus by cardinal uniqueness the quality scale q si( )  is an individual difference function.
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If s  is preferred to s , then N f q s f q s f q sN× > +…+( ( )) ( ( )) ( ( ))1  which implies that

f q f q f q( ) / ( ) / ( )> + ′1
2

1
2 . Since q q< ′  are any points in the interval Iq  and the function

f q( )  is continuous, it follows that f q( )  is strictly concave on Iq .

Proofs of the converse implications are straightforward.

Theorem A2.  If an individual intensity relation 
  
� i  is scale-proper, then it is proper.

Proof.  Suppose that w s ti i( , )  is a scale-proper difference function for 
  
� i  and that w( )1 , w( )2

are two amounts in the range of w s ti i( , ) . Then, there exists health-duration pairs ( , )( ) ( )s t1 1 ,

( , )( ) ( )s t2 2  such that w s t w( , )( ) ( ) ( )1 1 1=  and w s t w( , )( ) ( ) ( )2 2 2= . Define s s* ( ),= 1  t t* ( ),= 2  and

w w s t* * *( , )= . The interval range I  of the function w s ti( , )*  contains   w *  and w( )2 , and the

interval range J  of the function w s ti( , )*  contains w( )1  and   w * . Thus, the union of I  and J  is

an interval, and it contains w( )1  and w( )2 . Hence, any amount between w( )1  and w( )2  is in the

range of the function w s ti i( , ) . It follows that the range of w s ti i( , )  is an interval. It is non-point

since for some range of w s ti i( , )  restricted to a single variable is non-point.

Theorem A3.  Suppose that q si( )  is a proper quality scale and that 
  
� i  is a scale-proper

individual intensity relation. Then, q si( )  and 
  
� i  satisfy conditions (e1)-(e3) if and only if 

  
� i

has a continuous difference function of the form w s t g q s ti i i i( , ) ( ( ), )=  such that:

(i) For any duration t , g q t( , )  is a strictly increasing function of q .

(ii) For any health quality   q > 0 , g q t( , )  is a strictly increasing function of t .

(iii) g t( , )0 0=  for any duration t , and lim ( , )
t

g q t
→

=
0

0  for any health quality q .

In this case, the ordinal relation  �i
o  defined on health-duration pairs ( , )s ti i  induces an

ordinal relation �q
o  defined on pairs ( , )q t , and the function g q t( , )  is an ordinal scale for �q

o .

Proof.  The properness assumptions imply that the range Q  of q si( )  is a non-point interval and

that 
  
� i  has a difference function w si ti( , ) . The function w si ti( , )  also represents the ordinal

relation � i
o  defined by 

  
� i . and thus � i

o  is complete.

Assume conditions (e1)-(e3). Since � i
o  is complete, condition (e1) implies that for any si ,

′si , and ti :  q s q si i( ) ( )= ′  iff ( , )s ti i  is indifferent to ( , )′s ti i . But, ( , )s ti i  is indifferent to ( , )′s ti i

iff w si ti w si ti( , ) ( , )= ′ . Therefore, w si ti( , ) = g q s ti i( ( ), )  where g q t( , )  is a function of quality

scale amounts q q si= ( )  in the interval Q  and durations t ti=  in the interval  T .
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Condition (e1) implies that for any t *  in T , the function g q t( , )*  is strictly increasing.

Condition (e2) implies that for any q* > 0  in Q , the function g q t( , )*  is strictly increasing and

that for q* = 0  the function g t( , )0  is constant. Since the domains and ranges of these functions

are intervals, it follows that they are continuous. Since they are strictly increasing or constant, it

then follows the function g q t( , )  is continuous.

Since the difference function w si ti( , )  is cardinally unique, we can subtract the constant

g t( , )0  from it and from g q t( , )  to obtain functions, which we also denote by w si ti( , )  and

g q t( , )  such that g t( , )0 0=  for t  in the interval T .

To show that lim ( , )
t

g q t
→

=
0

0  for any health quality q , it suffices to show that for any ε > 0 ,

there exists a duration t  such that g q t( , ) < ε . Since g t( , )0 0=  for any t , there is nothing to

show when   q = 0 . Consider   q > 0  and ε > 0 . First, choose t* = 1 . Since the function g q( , )1  is

continuous and strictly increasing, there is a   q* > 0  such that g q( , )* 1 < ε . Choose an s *  with

q s q( * *) =  and an si  with q s qi( ) = . Condition (e4) implies that there is a duration t  such that

w s t w si( , ) ( *, )< 1 . Hence, g q t g q( , ) ( , )*< <1 ε .

The converse implications are straightforward. Moreover, the ordinal relation  �i
o  on pairs

( , )s ti i  induces an ordinal relation �q
o  on pairs ( , )q t  since for any fixed duration t ti=  the

quality scale q si( )  is an ordinal scale for  �i
o . And the function g q t( , )  is an ordinal scale for

�q
o  since the function g q s ti i( ( ), )  is an ordinal scale for  �i

o .

Proof of Theorem 6.  Assume conditions (e1)-(e3) and (f2). Then, there exists a function

w s t g q s ti i i i( , ) ( ( ), )=  as described in Theorem A3. The intensity relation 
  
� i  on pairs ( , )s ti i

induces an intensity relation 
  
�g  on the pairs ( , )q t , and g q t( , )  is a difference function for 

  
�g .

Condition (f1) implies that for any amount   q > 0 , the relation 
  
�g  induces the same intensity

relation on changes in duration. Each function g q t( , )  with fixed   q > 0  is a difference function

with an interval range for this common intensity relation. Select an amount q* > 0 . Cardinal

uniqueness implies that g q t a q g q t b q( , ) ( ) ( , ) ( )*= +  for any   q > 0  where a q( ) > 0 . Thus, a q( )

and b q( )  are functions of   q > 0 . But, lim ( , )
t

g q t
→

=
0

0  for any amount q , and thus b q( ) = 0  for

  q > 0 . Hence, g q t a q g q t( , ) ( ) ( , )*=  for   q > 0 . Define a( )0 0= . Then, g q t a q g q t( , ) ( ) ( , )*=

for any amount q . Theorem A3 implies that the function f q( )  defined as a q( )  and the function
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D t g q t( ) ( , )*=  are continuous and strictly increasing with f ( )0 0=  and lim
t→0

D t( ) = 0 . Hence,

the difference function w s t D t f q si i i i( , ) ( ) ( ( ))=  has the product form as described.

Conditions (e1)-(e3) and (f2) imply the form (4) as described by similar arguments, and it is

straightforward to verify the converse implications.

If w s t D t f q si i i i( , ) ( ) ( ( ))=  and ˆ ( , ) ˆ ( ) ˆ( ( ))w s t D t f q si i i i=  are two difference functions as

described, then ŵ a w b= +  for some constants a > 0  and b. But b = 0  since f f( ) ˆ( )0 0 0= = .

Hence, ˆ ( ) ˆ( ( )) ( ) ( ( ))D t f q s a D t f q si i i i=  where a > 0 . It is straightforward to show that this

implies that ˆ ( ) ( )D t a D ti i= 1  and ˆ( ( )) ( ( ))f q s a f q si i= 2  for some constants a a1 2 0, > .

Proof of Theorem 7.  For part (i), assume conditions (e1)-(e3) and (g1). For any durations t t< ′ ,

define ˆ / /t t t= + ′1 2 1 2 . Condition (g1) implies that g q t g q t g q t g q t( , ) ( , ˆ) ( , ˆ) ( , )′ − = −  for any

amount q . Hence, g q t t( , / / )1 2 1 2+ ′ = 1 2
1

2/ ( , ) / ( , )g q t g q t+ ′ . For a fixed q , g q t( , )  is a

strictly increasing or constant function, and thus this Jensen’s equation implies that

g q t a q t b q( , ) ( ) ( )= +  where a q( ) > 0  for   q > 0 . By the same arguments as in the previous

theorem, it follows that the difference function w s t g q s ti i i i( , ) ( ( ), )=  is as described in (5a).

The remaining arguments are omitted. The reason is that the proof of the forward implications

in (ii) and (iii) are similar to the above argument and the proof of the converse implications and of

the uniqueness statement are straightforward verifications.

Theorem A4.  Suppose that a quality scale q si( )  and an individual intensity relation � i  satisfy

the assumptions in Theorem A3 and that a pair ( , )* *q t  with q* > 0  has been specified. Then

(using the notation in Theorem A3):

(i)  For any pair ( ( ), )q s ti i  with 0 < ≤q si q( ) *  there exists a unique amount   ̂t  such that

( , ˆ )*q t  is indifferent to ( ( ), )q s ti i . Moreover, 0 < ≤t̂ ti . The scale ˆ ( ( ), )t q s ti i= QALY  defined

in this manner is a continuous ordinal scale for pairs ( ( ), )q s ti i  with 0 < ≤q s qi( ) * .

(ii)  For any pair ( ( ), )q s ti i  with 0 < ≤t̂ ti  there exists a unique amount q̂  such that ( ˆ, )*q t  is

indifferent to ( ( ), )q s ti i . Moreover, 0 < ≤ˆ ( )q q si . The scale ˆ ( ( ), )q q s ti i= YALQ  defined in this

manner is a continuous ordinal scale for pairs ( ( ), )q s ti i  with 0 < ≤t̂ ti .

(iii)  The single-variable functions Q q q t* ( ) ( , )*= QALY  and Y t q t* ( ) ( *, )= YALQ  defined

on 0 < ≤q q *  and 0 < ≤t t*  are inverses of one another.
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Proof.  The proofs of parts (i) and (ii) are similar, and thus we omit the proof of (ii).

To show part (i), suppose that g q s ti i( ( ), )  is an ordinal scale as described in Theorem A3,

and define g t g q t
*

*( ) ( , )= . Then, g t
*
( )  is a continuous and strictly increasing function whose

domain is the interval T = ∞( , )0  and whose range is a non-point interval of the form ( , ]0 b  or

( , )0 b  where the upper endpoint b  in ( , )0 b  may be infinite.

Consider a pair ( ( ), )q s ti i  with 0 < ≤q s qi( ) * . Then, 0 < ≤ =g q s t g q t g ti i i i( ( ), ) ( , ) ( )*
*

.

Hence, there exists a unique t̂  such that g t g q s ti i*
( ˆ) ( ( ), )= , and thus ( , ˆ)*q t  is indifferent to

( ( ), )q s ti i . Moreover, 0 < ≤ˆ *t t . The function w g t=
*

( )  has a continuous, strictly increasing

inverse function g w
*

( )−1 , and thus ˆ ( ( ( ), ) )
*

t g g q s ti i= −1 .

Define QALY( ( ), )q s ti i  as   ̂t  for 0 < ≤q s qi( ) * . Then, QALY( ( ), ) ( ( ( ), ) )
*

q s t g g q s ti i i i= −1 .

Since g q s ti i( ( ), )  is an ordinal scale and the function g w
*

( )−1  is strictly increasing, it follows

that QALY( ( ), )q s ti i  is an ordinal scale. And the function QALY( ( ), )q s ti i  is continuous since

the functions g q s ti i( ( ), )  and 
  
g w

*
( )−1  are continuous.

For part (iii), suppose that t Q q q t= =* ( ) ( , )*QALY  where 0 < ≤q q *  and thus 0 < ≤t t* .

Then, ( , )*q t  is indifferent to ( , )*q t , and thus Y t q t q* ( ) ( *, )= =YALQ . In a similar manner,

q Y t q t= =* ( ) ( *, )YALQ  implies that t Q q q t= =* ( ) ( , )*QALY . Hence the functions Q q* ( )

and Y t* ( )  are inverses of one another.

Proof of Theorem 8.  Consider a pair ( ( ), )q s ti i  with 0 < ≤q s qi( ) *  and 0 < ≤t ti
* . Then, there

exist unique amounts q̂  and   ̂t  such that the pairs ( ˆ, )*q t , ( ( ), )q s ti i , and ( , )*q t  are indifferent.

Moreover, 0 < ≤ˆ ( )q q si , 0 < ≤t̂ ti  and ˆ ( ( ), )t q s ti i= QALY , ˆ ( ( ), )q q s ti i= YALQ . By Theorem

A3, the individual difference function w s ti i* ( , )  can be written as w s t g q s ti i i i* *( , ) ( ( ), )= .

Consider formula (6). The normalization f q( )* = 1 implies that w s t g q ti i* * *( , ) ( , ˆ )= =

D t f q D q s ti i( ˆ ) ( ) ( ( ( ), ) )* = QALY , and the normalization D t( )* = 1 implies that w s ti i* ( , ) =

g q t D t f q f q s ti i* * *( ˆ, ) ( ) ( ˆ ) ( ( ( ), ) )= = YALQ .

Next, consider formula (7). The definition Q q s q s ti i* ( ( )) ( ( ), )*= QALY  implies that the

pairs ( ( ), )*q s ti  and ( , * ( ( )) )*q Q q si  are indifferent. Hence, g q s t g q Q q si i* * * *( ( ), ) ( , * ( ( )) )= ,

and thus D t f q s D Q q s f qi i( ) ( ( ) ) ( * ( ( )) ) ( )* *=  which implies that f q s D Q q si i( ( ) ) ( * ( ( )) )= .

Hence, w s t D t f q s D t D Q q si i i i i i* ( , ) ( ) ( ( ) ) ( ) ( * ( ( )) )= = . The proof that w s ti i* ( , ) =

f q s f Y q si i( ( )) ( ( ( ) )*  is similar.
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