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Abstract

We show that far from capturing a formally new phenomenon, informational
herding is really a special case of single-person experimentation — and ‘bad herds’
the typical failure of complete learning. We then analyze the analogous team equi-

librium, where individuals maximize the present discounted welfare of posterity. To
do so, we generalize Gittins indices to our non-bandit learning problem, and thereby
characterize when contrarian behaviour arises: (i) While herds are still constrained
efficient, they arise for a strictly smaller belief set. (ii) A log-concave log-likelihood
ratio density robustly ensures that individuals should lean more against their myopic
preference for an action the more popular it becomes.
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1 INTRODUCTION

Informational herding has been a subject of much interest for the last fifteen years. The

context is seductively simple: An infinite sequence of individuals must decide on an action

choice from a finite menu. Everyone has identical preferences and actions, and each may

condition his decision both on his endowed private signal about the state of the world, and

on all predecessors’ decisions. But crucially, he cannot see their private signals.

In this setting, Bikhchandani, Hirshleifer, and Welch (1992) (BHW) and Banerjee

(1992) showed that a herd eventually arises — eventually, all decision-makers (DMs) make

the same choice, possibly unwise. This simple pathological outcome has understandably

attracted much attention. Clarifying a claim of BHW, we showed in Smith and Sørensen

(2000) (SS) that beliefs converge in the limit upon a cascade set, where only one action

is taken with probability one. SS proved that cascade sets have interior points — and so

bad herds may occur — iff the DMs’ private signals are uniformly bounded in strength.

Efficiency and Herding. This paper attempts a definitive welfare analysis of

the informational herding model. It has often been expressed that herding is a socially

inefficient outcome. We are aware of no general formalization or proof of this intuitive

claim for the original herding setting. For instance, Banerjee loosely justifies the ‘herding

externality’ label by showing that it fails to maximize the long run average of payoffs.

But this weak statistical claim quite restrictively demands that no weight be placed on

current payoffs.1 Moreover, deducing the efficient solution for this simple payoff objective

is problematic: Banerjee’s proposed remedy for the externality is simply to exclude early

individuals from viewing others’ actions at all. We are able to characterize efficient forward-

looking behaviour, shedding light on the informational herding externality. We contrast

behaviour in the selfish or myopic herding equilibrium, and the team equilibrium (Radner

1962), where everyone maximizes the present discounted welfare of individuals.

The overarching thesis that we formalize and prove is that it is efficient for individuals

to behave in a contrarian fashion. By this, we suggestively mean that they should skew

their choices towards the less popular actions, so that their actions will better reflect their

private information. We have found two different manifestations of this principle.

First, in the long-run, the belief cascade sets — namely, public beliefs where all further

1Vives (1993) introduces a repeated market setting, in which many agents period-by-period come to
reveal their original private information through noisy observations. Vives (1997) studies the team problem
in this setting, where every agent takes into account that more aggressive trading helps to reveal useful
information to the other agents. We adopt here an analogous approach to the herding model.
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learning stops — are smaller. For we show that in the team equilibrium, cascade sets

monotonically strictly shrink as the discount factor rises. Only in the extreme patience

limit are incorrect herds impossible. But we also establish a limit to contrarian behaviour.

While incorrect herds might be seen as a market failure, they are in fact constrained-

efficient: Cascade sets only vanish as the discount factor tends to one: Even when DMs

are very patient, weighting immediate gains very little, informational herds arise in the

team equilibrium; with bounded private beliefs, such herds are misguided (ex post) with

positive chance. So herding owes to the inability of individuals to signal private information

by finitely many actions, and not to their selfishness.

Second, in the major result of this paper, we analyze behavior in the short run — that

is, at any finite stage before the limit. There we must formalize a notion of contrarianism

at the margin: The more the weight of history favours taking an action, the more likely an

informed DM should lean against taking it. This marginal penalty for ‘popular’ actions

is optimal only under a plausible new informational assumption: The unconditional signal

distribution must have a log-concave density of the log-likelihood ratio. We believe that

this is the first use of log-concavity in the experimentation or herding literatures.

Analyzing behaviour away from the limit in a discrete time dynamic optimization model

is well-known to be hard. A famous exception is Gittins’ (1979) multi-armed bandit indices,

where the optimal decision rule is to choose the action with the highest index. In another

key contribution of this paper, we have modified his methodology for our setting. So unlike

Gittins’ perfect information context, an action’s index is not simply its present discounted

social value. Rather, individuals’ signals are hidden from view, and so social rewards

must be translated into private incentives using the marginal social value, to produce

the privately estimated social value of each action. Our contrarianism comparative static

succeeds by showing that the difference of consecutive indices, which measures the marginal

return to a higher posterior threshold, is monotonic in public beliefs. We have also used

this new result throughout the analysis as a simplifying tool. For instance, it affords an

easy proof of the optimality of belief interval rules.

Experimentation Déjà Vu. This paper was sparked by a simple question about

informational herding: Haven’t we seen this before? We were piqued by its similarity to

the familiar failure of complete learning in optimal experimentation. Rothschild’s (1974)

analysis of the two-armed bandit is a classic example: An impatient monopolist optimally

experiments with two possible prices each period, with fixed uncertain purchase chances

for each price. Rothschild showed that the monopolist (i) eventually settles down on one
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price, and (ii) selects the less profitable price with positive probability. To us, this had

the clear ring of: (i) an action herd occurs, and (ii) with positive chance is misguided.

This paper begins by formally justifying this intuitive link. We prove that informational

herding is not a new phenomenon, but a camouflaged context for this old one: single

person experimentation, with possible incomplete learning. Our proof respects the herding

paradigm quintessence that predecessors’ signals be hidden from view. In a nutshell, we

replace all DMs by agent machines that automatically map any realized private signals

into action choices; the true experimenter then must furnish these automata with optimal

history-contingent ‘decision rules’. We therefore reinterpret actions in the herding model as

the experimenter’s stochastic signals, and the DMs’ decision rules as his allowed actions.

We perform this formal embedding for a general observational learning context. This

experimentation embedding is crucial for setting up our planner’s problem.

The plan of this paper is as follows. Section 2 describes a general observational learning

model, and then re-interprets it as an optimal single-person experimentation model. The

herding model and team equilibrium are introduced in section 3, where our action indices

are introduced. We then describe optimal strategies using index rules, and prove our short-

run contrarian result in section 4. The long-run model is considered in section 5; there we

show the cascade sets are non-empty, and that they shrink with the discount factor. A

conclusion follows, while many proofs are appendicized.

2 TWO EQUIVALENT LEARNING MODELS

In this section, we first set up a general observational learning model subsuming the herding

models. All models in this class are then formally embedded in the experimentation

framework. Afterwards, we specialize our findings to the informational herding model.

2.1 The Observational Learning Model

Information. An infinite sequence of decision-makers (DMs) n = 1, 2, . . . acts in

that exogenous order. The actions have uncertain payoffs. There is a given common prior

belief over the compact space Ω, whose elements ω are the states of the world.

The nth DM observes a partially informative random private signal realization σn

about the state of the world. We may assume WLOG that the private signal observed

by a DM is actually his private belief which results from Bayesian updating given σn
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and the prior;2 that is, σn ∈ Σ, where Σ = ∆(Ω) consists of probability measures over Ω.

Conditional on the state, the signals are assumed to be i.i.d. across DMs, drawn according

to the probability measure µω ∈ ∆(Σ) in state ω ∈ Ω.

Bayesian Decision-Making. Everyone chooses from a compact action set A.

Action a ∈ A earns a payoff u(a, ω) in state ω ∈ Ω, the same for all DMs. Before choosing

an action, the n’th DM first observes his private signal/belief and the history consisting

of the n− 1 predecessors’ actions.

Each DM’s Bayes-optimal decision uses the observed action history and his own private

belief. A DM can compute the strategies of all predecessors, and can use the common

prior to calculate the ex ante probability distribution over histories in either state. Bayes’

rule then implies a public belief π ∈ Σ for any history. A final application of Bayes’ rule

incorporates the private belief σ to give the private posterior belief ρ ∈ Σ.

Given the posterior belief ρ, the DM picks the action a ∈ A which maximizes his

expected payoff ū(a, ρ) =
∫

Ω
u(a, ω)dρ(ω). Let X be the space of decision rules — namely,

maps x from Σ into ∆(A), the probability measures x(σ) over A. Any rule x ∈ X induces

a distribution over actions for all private beliefs σ.

The Stochastic Process of Beliefs. The distribution of signals σ depends on

the state ω, so that the distribution over actions a depends on both the state ω and the

decision rule x. There is a density ψ(ω, x) ≡
∫

x(σ)(a)µω(dσ); unconditional on the state,

it is ψ(π, x) ≡
∫

Ω
ψ(ω, x)π(dω). This yields a distribution over next period public beliefs.

Thus, 〈πn〉 follows a Markov process with state-dependent transition chances.

2.2 Informational Herding as Experimentation Déjà Vu

And out of old bookes, in good faithe,

Cometh al this new science that men lere.

— Geoffrey Chaucer (The Assembly of Fowles, line 22)

Our immediate goal is to recast the observational problem outcome as a single person

optimization. A first stab brings us to the forgetful experimenter, who each period receives

a new informative signal, takes an optimal action, and then promptly forgets his signal;

the next period, he can reflect only on his action choice. But this is not a model of Bayes-

optimal experimentation, since it assumes and in fact requires irrational behaviour. How

then can an experimenter not observe the private signals, and yet take informative actions?

2Hereafter, we therefore often use private belief and private signal interchangeably.
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For context, consider McLennan’s (1984) sequel to Rothschild (1974). He allowed

the monopolist to charge one of a continuum of prices, with two possible linear purchase

chance ‘demand curves’. McLennan found that the resulting uninformative price when the

demand curves crossed may well eventually be chosen by an optimizing monopolist.

Rothschild’s and McLennan’s models give examples of potentially confounding actions,

later introduced in EK: Easley and Kiefer (1988). In brief, such actions are optimal for

unfocused beliefs for which they are invariants (i.e. taking the action leaves the beliefs

unchanged). Of particular significance is the proof in EK (on page 1059) that with finite

state and action spaces, potentially confounding actions generically do not exist, and

thus complete learning must arise.3 Rothschild and McLennan might be seen as separate

anticipations of EK’s general insight. Rothschild escapes it by means of a continuous

state space, whereas McLennan resorts to a continuous action space. Yet there appears

no escape for the herding paradigm, where both flavours of incomplete learning, incorrect

limit cascades and confounded learning (see SS), generically arise with two actions and

two states. This puzzle suggests the inverse mapping that we now consider.

In recasting our general observational learning model as a single person experimentation

problem, we must focus on the myopic experimenter with discount factor 0 (ruling out

active experimentation). Steering away from a forgetful experimenter, we shall regard

the observational learning story from a new perspective. Consider the nth DM, who uses

both the public belief πn and his private signal σn in forming and acting upon his posterior

beliefs ρn. We may separate these two steps by the conditional independence of πn and σn.

Regard Mr. n as: (i) observing πn, but not his private signal; (ii) optimally determining

the rule x ∈ X, and submitting it to an agent ‘choice’ machine; and (iii) letting that

machine observe his private signal and take his action a ∈ A for him. The payoff u(a, ω)

is unobserved, lest that provide an additional signal of the state of the world.

Thus, the observational learning model corresponds to a single-person experimentation

model where: The state space is Ω. At stage n, the experimenter EX chooses an action

(the rule) x ∈ X. Given this choice, a random observable statistic a ∈ A is realized with

chance ψ(ω, x) in state ω. Finally, the period’s payoff u(a, ω) is realized but not observed.4

When private beliefs σ have distribution µω in state ω, and when EX fully disounts future

payoffs, then he chooses the same optimal decision rule x described in section 2, resulting in

3Eg: payoffs in a one-armed bandit, with a potentially confounding safe arm, are not generic in R
2.

4This model doesn’t strictly fit into the EK mold, where stage payoffs depend only on the action and
the observed signal, but (unlike here) not on the parameter ω ∈ Ω. This is the structure of Aghion, Bolton,
Harris, and Jullien (1991), who admit unobserved payoffs. Alternatively, we could posit that EX has fair
insurance, and only sees/earns his expected payoff each period and not his random realized payoff.
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Observational Learning Model Impatient Experimenter Model

State: ω ∈ Ω State: ω ∈ Ω
Public Belief after nth DM: πn Belief after n observations: πn

Optimal decision rule: x ∈ X Optimal action: x ∈ X
Private signal/belief of nth DM: σn Randomness in the nth experiment: σn

Action taken by each DM: a ∈ A Observable signals: a ∈ A
Density over actions: ψ(ω, x) Density over observables: ψ(ω, x)
Payoffs: private information Payoffs: unobserved

Table 1: Embedding. This table displays how our infinite person observational learning
model fits into the impatient single person experimentation model.

action a ∈ A with chance ψ(ω, x). Table 1 summarizes this embedding of the observational

learning model into a myopic experimentation model.

Notice how this addresses both lead puzzles. First, the experimenter never knows the

private beliefs σ, and thus does not forget them. Second, incomplete learning (bad herds)

are entirely consistent with EK’s generic finding of complete learning for models with finite

action and state spaces. Simply put, actions do not map to actions but to signals when one

rewrites the observational learning model as an experimentation model. The true action

space for EX is the infinite space X of decision rules.5

3 FORWARD-LOOKING INFORMATIONAL HERDING

3.1 Two Forward-Looking Informational Herding Models

We now specialize to the simpler informational herding framework, following SS, with two

states and exactly A <∞ actions. We assume that action 1 is best in state L, and action

A in state H . No two action payoffs are tied in either state.

This observational learning paradigm involves an informational externality, because

taking an action partially conveys one’s hidden private signal. The individuals jointly

possess enough information to perfectly reveal the true state of the world, yet given the

sequential structure, do not. SS prove that with bounded private beliefs, the resulting

5Such an embedding is well-known and obvious for rational expectations pricing models, since the price
is publicly observed, and an inverse mapping is not required.

SS considered two modifications of the informational herding paradigm. With i.i.d. ‘crazy’ preference
types, one adds an exogenous chance of a noisy signal (i.e. random action). With individuals randomly
drawn from one of T different preference types, let the EX choose a T -vector of optimal decision rules
from XT with (only) the choice machine seeing the task and private belief, and choosing the action a.
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herding equilibrium is sometimes ex post inefficient. But is this ex ante inefficient, subject

to the sequential structure, and hidden signal assumption? To address this question, we

consider alternative objectives, where everyone is altruistic, and aims to maximize an

discounted average of payoffs. Adapting Radner (1962), we call an equilibrium in this

revised model a team equilibrium. We underscore however that individuals’ preferences

are not perfectly aligned as in Radner, since they still weight their own payoffs highest.

Assume a state space Ω = {H,L}, with both states equi-likely ex ante (prior chance 1/2).

Private belief σ is the chance of state H , so that Σ = [0, 1]. To avoid trivialities, µH and

µL are not (a.s.) identical, so that some signals are informative. Each distribution may

contain atoms, but to ensure that no signal will perfectly reveal the state of the world,

we insist that µH and µL be mutually absolutely continuous. Let supp(µ) denote their

common support. If supp(µ) ⊆ (0, 1), then private beliefs are bounded ; they are unbounded

if co(supp(µ)) = [0, 1] — namely, if arbitrarily strong private beliefs exist.

Given the equi-likely states, the unconditional distribution of private beliefs is described

by the probability measure µ = (µH + µL)/2. The derivative dµL/dµH of beliefs in the

two states is well-defined and finite, by mutual absolute continuity. The ‘no introspection’

property of SS asserts (dµL/dµH)(σ) = (1 − σ)/σ, so that dµH/dµ = 2σ and dµL/dµ =

2(1 − σ). We can thus take µ to be the primitive distribution of the private signal, from

which the state-dependent probability measures µH and µL are derived.

The Team Equilibrium. We first suppose that every DM is altruistic, but subject to

the informational herding restriction. A strategy sn for the n’th DM is a map from history

to X, assigning the rule xn ∈ X for each history; s = (s1, s2, . . .) denotes a strategy profile.

A team equilibrium is a Bayes-Nash equilibrium of the game where the nth DM maximizes

the average present welfare of posterity, themselves included E[(1 − δ)
∑

∞

k=0 δ
kun+k|πn].

The Social Optimum. We next reinterpret EX ’s problem as that of an informationally

constrained social optimum: Maximize the average present value of posterity’s welfare

E[(1 − δ)
∑

∞

n=1 δ
n−1un]. Here, the realized payoff sequence is 〈un〉 for DM’s n = 1, 2, . . ..

So the EX ’s objectives are perfectly aligned with a hypothetical social planner. To respect

the herding restriction, we assume that the planner neither knows the state nor can observe

the individuals’ private signals, but can both observe and induce any actions taken.

A policy is the Markovian restriction of a strategy: a map ξ : [0, 1] → X, where ξ(π)

is the rule given belief π. If the social optimum exists, then there exists a policy which

attains the maximum, since the problem is Markovian in public beliefs π, via Bayes rule.
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The Second Welfare Theorem. Inspired by Vives (1997), we now briefly recast an

insight of Radner (1962) for our framework.

Lemma 1 For any discount factor δ < 1, any social optimum is a team equilibrium.

Further, the most efficient team equilibrium is described by a Markov policy.

Proof: As the planner can use any team equilibrium strategy, the second claim follows

from the first. So fix the current DM and public belief π. To see that the planner’s

optimum s is a team equilibrium, assume that successors use it, but that some DM n has

a strictly better reply x̂. Then the planner can improve his value at π by fully mimicking

this deviation, i.e. by (i) taking x̂ in the first period and (ii) continuing with s as if the first

period history had been generated by sn(π). This contradicts optimality of the policy. �

3.2 Optimal Behaviour via Index Rules

Dynamic Programming. Our analysis here follows Aghion, Bolton, Harris, and Jullien

(1991) and §9.1–2 of Stokey and Lucas (1989). The value function vδ(·) : Σ 7→ R for the

planning problem with discount factor δ is vδ(π) = supsE[(1 − δ)
∑

∞

n=1 δ
n−1un|π], where

the expectation is over the payoff sequences given the strategy profile s. Recall that ū(a, π)

denotes the expected payoff from action a at belief π. Define ψ(ω, x) =
∫

x(σ)(a)µω(dσ)

for ω = L,H , and put ψ(π, x) = πψ(H, x) + (1 − π)ψ(L, x), in a suggestive abuse of

notation. If q(a, π, x) = πψ(H, x)/ψ(π, x) is the Bayes-updated posterior belief from π

when action a is observed and rule x is applied, we may formulate the Bellman equation:

vδ(π) = sup
x∈X

{

∑

a∈A

ψ(π, x) [(1 − δ)ū(a, q(a, π, x)) + δvδ(q(a, π, x))]

}

(1)

A unique solution vδ to the Bellman equation exists, and it is convex and continuous in π.

Generalized Gittins Indices. We now consider the classical multi-armed bandit (see

Bertsekas (1987), §6.5). A patient experimenter each period must choose one of n actions,

with uncertain independent reward distributions. He must then trade-off the informa-

tional and myopic payoffs associated with each action. Gittins (1979) showed that optimal

behaviour in that model can be described by simple index rules: Attach to each action the

value of the problem with just that action and the largest possible lump sum retirement

reward yielding indifference. Then, each period, choose the action with the highest index.

We now argue that the policy employed in a team equilibrium has a likewise appealing
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form: For a given public belief π and posterior ρ, the DM chooses the action a with the

largest index. This index will include the social payoff as privately estimated by the DM.

Below, we employ the standard notation ∂g(z) for the subdifferential of the convex

function g at z — i.e., the set of all slopes m that obey g(ẑ) ≥ g(z) +m · (ẑ − z) for all ẑ.

Proposition 1 (The Index Rule) Fix a team equilibrium s, and a decision maker n

who has arrived at prior belief π. To each action a ∈ A, there exists a function v̄(a, π, ρ),

affine in n’s private posterior belief ρ, such that n’s average present value of action a is

wδ(a, π, ρ) = (1 − δ)ū(a, ρ) + δv̄(a, π, ρ) (2)

where q(a) ≡ q(a, π, sn(π)) is the public posterior belief induced by action a. Moreover, in

the social optimum, v̄(a, π, ρ) = vδ(q(a)) +m(a, π)(ρ− q(a)) where m(a, π) ∈ ∂vδ(q(a)).

Proof: Action a of n at prior π leads to a subgame where the state-contingent expected

discounted future payoffs of his successors are v̄(L) and v̄(H). Then n’s expected value

of this subgame is v̄(a, π, ρ) ≡ ρv̄(H) + (1 − ρ)v̄(L). The present value expression (2)

follows. In the social optimum, the continuation value is v̄(a, π, q(a)) = vδ(q(a)). Because

the planner can always employ the same subgame strategy starting at an arbitrary public

belief q as is optimal at q(a), we have v̄(a, π, q) ≤ vδ(q). Thus, the slope of this affine

function necessarily lies in the subdifferential ∂vδ(q(a)). �

That the planner can always ensure himself a payoff function tangent to the value

function by simply not adjusting his policy was critical to this proof. This idea also

implies convexity of the value function (Lemma 2 of Fusselman and Mirman (1993)).

3.3 Optimal Action Belief Interval Rules

SS shows that the myopic DM uses a belief interval rule: Action a is taken for beliefs in

a subinterval of [0, 1], and for generic payoffs, these intervals overlap only at endpoints.

This is also true with patience, as Lemma 2 proves.

Lemma 2 Fix any team equilibrium strategy s. For any public belief π, the rule sn(π) is

almost surely described by a dissection of [0, 1] into closed intervals Ia(π) ≡ Īa, generically

overlapping at endpoints only, such that action a is optimal iff σ ∈ Ia.

Proof: By Proposition 1, the value of each action depends affinely on the posterior r(π, σ).

Thus, an action is optimal for r(π, σ) in an interval. Since r is increasing in its second

argument, an action is optimal on an interval for σ. �
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Intuitively, the interval structure is not only myopically best, but it also ensures the

greatest information value, by producing the riskiest posterior belief distribution.

By Lemma 1, the planner’s solution too is described by the interval rules of Lemma 2.

So the search for optimal rules can be narrowed down to a compact set. An optimal

rule then exists (eg. Aghion, Bolton, Harris, and Jullien (1991), Theorem 4.1), and so by

Lemma 1, a team equilibrium also exists. The appendix also establishes part (b) below:

Lemma 3 (a) A social planner’s policy ξδ : [0, 1] → X and team equilibrium both exist.

(b) The correspondence π 7→ ξδ(π) is upper hemi-continuous in π.

Communicating private information by a finite mesh size is a problem that is not

without history. Sobel (1953) investigated an interval structure in a simple statistical

decision problem. More recently, Dow (1991) has also studied the nature of such a coarse

information process in a two period search model. A consumer first observes one signal

σ1 ∈ R, but can remember in the future only whether σ1 ∈ Ei, for an endogenous coarse

partition E1, . . . , En of R. In the second period, the consumer observes σ2 ∈ R, and then

chooses an action a ∈ {1, 2} to maximize the expected payoff given Ei and σ2. Since no

decision is made in the first period, this corresponds to δ = 1 for us. Like us, Dow shows

that the DM communicates to his future selves with connected intervals of signals.6

We first characterize the cascade sets, the belief regions where learning stops.

Lemma 4 (a) An optimal policy almost surely induces action a iff π ∈ Ja(δ), where

Ja(δ)⊂ [0, 1] is empty, a point, or an interval.

(b) 0∈J1(δ) and 1∈JA(δ) for any δ∈ [0, 1), and ∪A
a=1Ja(δ) 6= [0, 1].

Proof: It is optimal to induce any action a almost surely iff vδ(π) = ū(a, π). As ū(a, π)

is affine in π, and vδ(·) is weakly convex, this equality holds on a closed interval Ja(δ).

Also, action 1 is myopically strictly optimal when π = 0. Since it updates to continuation

belief π = 0 for any rule, it is also dynamically optimal for any discount factor δ ∈ [0, 1).

A similar proof holds for π = 1. Finally, if ∪A
a=1Ja(δ) = [0, 1], then vδ(π) = maxa ū(a, π) is

piecewise linear, and information has no value. This is impossible at any kink of vδ(π). �

Interval Ordering. Lemma 2 does not say that intervals are arranged in the myopic

order. For while swapping the interval order preserves the informational content of the

actions, it might entail a myopic loss. Eg., let action 2 be slightly better than action 1

6Chernoff (1952) interprets hypothesis acceptance or rejection as a bi-partition of the available infor-
mation, and he studies the optimal such partition. Again, when δ < 1 our problem is more complex.
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Figure 1: Action ordering. The unconditional private belief density is f(σ) = Kσ6 over
the range (0, 4/7), where K = 78/47, with mean belief 1/2. Action a = 1, 2 has payoff a
in state H and 3 − a in state L. The myopic (δ = 0) basin for action 1 is (0, 3/7). When
δ = .95, the graph shows the individual’s posterior belief y against his prior belief π at the
threshold x(π). The basin for action 1 now shrinks to [0, .3). For π ∈ (.3, .4) ⊂ (0, 3/7),
reversing the action order is optimal: the myopically optimal action 1 is taken at high
beliefs, while the myopically worse action 2 is taken at the less likely low private beliefs.

in state H , but much worse in state L. Consider the policy that takes action 1 for all

but very low beliefs. Then swapping the intervals raises the chance that the mostly worse

action 2 is taken, and so might be suboptimal. Figure 1 illustrates this possibility.

Dominated Actions. Lemma 2 also does not rule out using dominated actions for more

information is transmitted with more actions. To see this, assume A actions, discount

factor δ > 0, and bounded beliefs. Since action A is uniquely optimal in state H , this

remains true for any public belief π in the interior of the cascade set JA = [π̄, 1]. The

associated value function v is then affine on JA, but not on any interval extending JA

to the left — i.e. it is strictly convex at π̄. Now add an extra action A + 1 with payoff

u(A + 1, ω) = u(A, ω) − ε, for all states ω, where ε > 0. Even though A + 1 is strictly

dominated by A, we argue that A+1 is used with positive chance for small enough ε > 0.

If action A + 1 is never used, then v remains the value function of the new problem.

One optimal policy at π̄ is then to take A almost surely. Instead map private signals below

1/2 into A, and above 1/2 into A + 1. This strictly spreads the posterior beliefs when

qA < π̄ < qA+1. Since the value function is strictly convex at π̄, the expected continuation
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value exceeds v(π̄) by some η > 0. On the other hand, the policy change implies a myopic

loss less than ε. When δη − (1 − δ)ε > 0, the modified policy beats the optimal policy —

a contradiction. But then v cannot be the value function of the modified problem, and so

the new action A+ 1 must be used with positive chance.

Optimal Taxes? Lemma 2 ignores implementation. The team equilibrium assumes

everyone cares about posterity. Can the planner’s outcome be decentralized with selfish

individuals? Since the only observables are actions, action-dependent transfer payments

are the only available policy instrument — assuming that only contemporaneous actions

are rewarded/punished. Suppose that everyone maximizes his expected one-shot myopic

payoff u(a, π) plus incurred transfers. Faced with any such incentives, our proof of Lemma 2

that interval rules are optimal is still valid, since our indices affinely adjust. But since such

transfers can never reverse the myopic ordering of actions, and so are not sufficient if the

optimal action ordering differs from the optimal action ordering. We leave as an open

whether sufficient conditions exist for which transfers decentralize the planner’s solution.

Below, we explore how patience affects the informational herding problem. Section 4

derives a novel comparative static valid at any public belief, showing how individuals lean

against the conventional wisdom when δ > 0. Section 5 then shows how cascade sets

shrink as individuals grow more patient.

4 THE SHORT RUN COMPARATIVE STATIC

4.1 Two Actions

We now derive a local comparative statics result. For clarity, we first simply assume two

actions: a low action ` taken at low beliefs and a high action h, taken at high beliefs.

While it seems intuitive that action ` is myopically best for low beliefs and action h for

high beliefs, this intuition is misleading (see Figure 1). This is a local notion, and in

principle the low and high actions could depend on the public belief π.

By Lemma 4, both actions are taken with positive probability when π is in the open

non-empty interval M=[0, 1] \ (J`(δ) ∪ Jh(δ)). We first rule out an annoying possibility.

A-1 A unique rule x(π) is optimal in some open neighbourhood N(π̄) ⊆M of π̄.

Our decision rule x implies a private belief threshold θ, separating the belief intervals

12



for the two actions. The action ordering cannot switch in the open neighbourhood N(π̄).7

The public, private, and posterior beliefs π, σ, and ρ are related by the monotone maps:

ρ = r(π, σ) ≡ πσ

πσ + (1 − π)(1 − σ)
⇔ σ =

(1 − π)ρ

(1 − π)ρ+ π(1 − ρ)
= r(1 − π, ρ)

The rule x is thus locally summarized by the posterior belief threshold y ≡ r(π, θ).

Clearly, in the myopic case when δ = 0, the optimal posterior threshold y(π) between

the intervals of private posterior beliefs for actions ` and h is constant in π. We provide

conditions under which the best team policy at δ > 0 encourages contrarian behaviour

relative to the myopic policy. (We fix δ > 0, and so suppress the δ superscript.) Specifically

we prove that y(π) increases in π. So for higher public beliefs π, the DM is discouraged

from choosing the increasingly popular action h versus `. This experimentation benefits

successors, since the less likely action moves public beliefs more.

A critical hurdle that must be overcome is the following: It is natural to suppose, and

crucial for the argument, that the posterior public belief following each action is monotone

in the prior. Recall that actions constitute a discrete filter on the underlying signals. Thus,

such a public posterior is an average of unobserved private posteriors that could lead to the

action. Action ` (or h) is taken whenever such a private posterior falls below (or above)

a threshold. Thus, we require monotonicity of a truncated random variable. In the spirit

of Burdett (1996), we find that a log-concavity assumption is the missing ingredient.

Let f be the unconditional private belief density for µ. The private belief log-likelihood

ratio Λ(σ)=log(σ/(1−σ)) then has density φ(Λ) ≡ f(σ(Λ))σ′(Λ) = f(σ(Λ))eΛ/(1 + eΛ)2.

A-2 The log-likelihood ratio density φ(Λ) exists, and is strictly log-concave.

Proposition 2 (Contrarianism) Assume π̄ ∈ M and δ > 0. Under A-1 and A-2,

contrarian behaviour is encouraged: the threshold y(π) strictly increases in π ∈ N(π̄).

Proof: The proof exploits the first order condition and the value function convexity.

It works even when v is not globally differentiable,8 because differentiability obtains at

precisely those points where it is required. In light of (1), and our assumed action order,

7Indeed, local uniqueness and a uhc rule correspondence precludes policy jumps, and thus in particular,
any switch between h = 2 and h = 1. This can be seen, eg., using the metric introduced proof of Lemma 3.

8Differentiability of the value function in problems of learning is an open problem. We thank Rabah
Amir, David Easley, Andrew McLennan, Paul Milgrom, Len Mirman, Yaw Nyarko, and Ed Schlee for
discussions about the differentiability of the value function in experimentation problems. Amir (1996)
establishes differentiability at all continuation states in a deterministic problem.
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the maximand of the Bellman equation in this two action world is

B(π, y) = ψ(π, y)[(1− δ)ū`(q`) + δv(q`)] + (1 − ψ(π, y))[(1 − δ)ūh(qh) + δv(qh)] (3)

where9 ūa(y) = ū(a, y), ψ(π, y) = ψ(`, π, y), and q` = q(`, π, y) < y < qh = q(h, π, y).

Step 1 (First Order Condition) If y solves maxy B(π, y), then the value function v

is differentiable at the continuation beliefs qa after actions a = 1, 2. Moreover,

By(π, y)=
∂ψ

∂y
{(1−δ)ū`(y)+δ[v(q`)+v

′(q`)(y−q`)]−(1−δ)ūh(y)−δ[v(qh)+v′(qh)(y−qh)]} (4)

Proof: If we assume first that v is differentiable at q` and qh, then By(π, y) equals

∂ψ

∂y
((1 − δ)ū`(q`) + δv(q`)) + ψ

(

(1 − δ)
∂ū`(q`)

∂q`

∂q`
∂y

+ δv′(q`)
∂q`
∂y

)

−∂ψ
∂y

((1 − δ)ūh(qh) + δv(qh)) + (1 − ψ)

(

(1 − δ)
∂ūh(qh)

∂qh

∂qh
∂y

+ δv′(qh)
∂qh
∂y

)

Recalling that ū` and ūh are affine functions, and using Lemma 5 below, this produces (4).

If v is not differentiable at q` or qh or both, then its right derivative strictly exceeds

its left — i.e. a ‘convex kink’. Since q` and qh are increasing functions of y, and since

∂ψ/∂y > 0 and q` < y < qh, (4) applies to one-sided derivatives — in other words,

By−(π, y) < By+(π, y). But optimality of y implies that the left derivative is nonnegative,

and the right derivative nonpositive. The convex kink cannot then obtain. �

Lemma 5 (y − q1)∂ψ/∂y = ψ∂q1/∂y and (q2 − y)∂ψ/∂y = (1 − ψ)∂qh/∂y.

The lemma admits a simple intuition. Observe that y and qa are the marginal and

average private beliefs leading to action a, while ψa is the total chance of taking a. Think of

these as a firm’s marginal costMC, average cost AC, and quantityQ. Then (ρ−q)∂ψ/∂ρ =

ψ∂q/∂ρ reduces to the producer theory result that (MC − AC)/q = AC ′(q).

The first order condition in Step 1 is related to our index result of Proposition 1. Since

∂ψ/∂y > 0, the first order condition says that the indices coincide at knife-edge beliefs:

wδ(`, π, y) = wδ(h, π, y). This could also be rewritten as the equality at belief y of a myopic

gain and a dynamic loss from a marginal shift in the threshold belief (see Figure 2):

(1 − δ) [ū`(y) − ūh(y)] = δ [(v(qh) + v′(qh)(y − qh)) − (v(q`) + v′(q`)(y − q`))] (5)

9As the policy rule x is equivalently represented by posterior threshold y, this proof replaces the
function qa(π, x) with qa(π, y).
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0 q` y qh 1

ū`(1)

τ(1, q`)

τ(1, qh)

ūh(1) = v(1)

ū`(0) = v(0)

τ(0, q`)

τ(0, qh)

Figure 2: First order condition. The convex curve is the value function v as a function
of beliefs. It intersects the myopic value functions at 0 and 1. Given the threshold posterior
belief y, we show the tangents to v at posteriors q`, qh. The vertical arrows over y indicate
the myopic loss and dynamic gain from a marginal change in y. The first order condition
states that the lengths of these arrows stand in proportion δ/(1 − δ).

When n = 2, the first agent’s decision merely conveys to the second agent whether the

belief ρ is above or below the threshold y. From (5) it follows that the optimal threshold

lies at the intersection of the two tangents.10

Let us now turn to the comparative static exercise. By Lemma 6 below, the public

posteriors q`, qh are increasing in the public prior belief π. Next, by Lemmas 7 and 8 (as

in Figure 2), the RHS of (5) is falling in each of q`, qh, and thus π, by the convexity of the

value function. This yields a sufficient condition for an increasing optimizer y(π).

Step 2 (Single-Crossing Property) For all π, π′ ∈ N(π̄) with π < π′: (a) the function

B(π, y) obeys the single crossing property By−(π′, y(π)) > 0, and so (b) y(π′) > y(π).

Proof: For (a), rewrite By−(π, y) = Υ(y, q`(π, y), qh(π, y))∂ψ(π, y)/∂y, where

Υ(y, q`, qh) ≡ (1 − δ)[ū`(y) − ūh(y)] + δ[τ(y, q`) − τ(y, qh)]

and where τ(y, q) ≡ v(q) + v′(q−)(y − q) is the affine function left-tangent to v at q.

10Our result generalizes Dow’s Proposition 2, which relies on the perfect patience as well as a particularly
simple second-period value function. We note in passing that Dow’s Example 3 illustrates the multiplicity
of optimal solutions which can arise in this class of problems.
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Since By−(π, y(π)) = 0, we have By−(π′, y(π)) > 0 iff

Υ(y(π), q`(π
′, y(π)), qh(π

′, y(π))) > Υ(y(π), q`(π, y(π)), qh(π, y(π)))

Since only the continuation beliefs change, this is equivalent to

τ(y(π), q`(π
′, y(π)))− τ(y(π), qh(π

′, y(π))) > τ(y(π), q`(π, y(π))) − τ(y(π), qh(π, y(π)))

When π < π′, we have q`(π, y(π)) < q`(π
′, y(π)) < y(π) < qh(π, y(π)) < qh(π

′, y(π)) by

Lemma 6. From Lemmas 7 and 8, we find that τ(y(π), qh(π, y(π))) ≥ τ(y(π), qh(π
′, y(π)))

and τ(y(π), q`(π
′, y(π))) ≥ τ(y(π), q`(π, y(π))). Also, at least one inequality is strict since

some continuation belief qa lies inside M , by Claim 10. This proves the needed inequality.

For (b), suppose first that y(π′) = y(π). Then By−(π′, y(π′)) = By−(π′, y(π)) > 0

by (a), contradicting the optimality of y(π′). Or suppose that y(π′) < y(π). In this case,

by a variant of the Fundamental Theorem of Calculus for convex functions (see Claim 1),

B(π′, y(π)) − B(π′, y(π′)) =
∫ y(π)

y(π′)
By−(π′, z)dz

Since the optimizer y(π) is unique, the u.h.c. map π 7→ y(π) is also continuous. By the

Intermediate Value Theorem, for all z ∈ (y(π′), y(π)), there then exists π′′ ∈ (π, π′) with

y(π′′) = z. Thus, by part (a), the above integrand By−(π′, z) = By−(π′, y(π′′)) > 0, and

so B(π′, y(π)) > B(π′, y(π′)). This contradicts optimality of y(π′). �

The next step provides conditions for the posterior belief after any action a to increase

in the public belief π. While at first glance intuitive, it is generally violated by the standard

atomic signal distributions. The log-concavity assumption comes crucially into play here.

Lemma 6 For fixed y, the continuation public belief qa(π, y) is strictly increasing in π.

Proof: Let θ(π) solve y = r(π, θ). Since an increase in q`(π, y) is equivalent to an increase

in q`(π, y)/[1− q`(π, y)], we need only show the latter rises in y. Now,

q`(π, y)

1 − q`(π, y)
=

(

π

1 − π

)

∫ θ(π)

0
fH(σ)dσ

∫ θ(π)

0
fL(σ)dσ

=

(

π

1 − π

)

∫ θ(π)

0
σ f(σ)dσ

∫ θ(π)

0
(1 − σ) f(σ)dσ

(6)

given densities fH(σ) = 2σf(σ) and fL(σ) = 2(1 − σ)f(σ) for the measures µH and µL.

Changing densities via the posterior likelihood ratio λ = πσ/[(1− π)(1− σ)], we find (see
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§A.6) that (1− π)(1− σ)f(σ)dσ = g(π, λ)dλ and πσf(σ)dσ = λg(π, λ)dλ for the function

g(π, λ) =
π(1 − π)φ(Λ(σ(λ)))

(π + λ(1 − π))λ

given our density φ(Λ) = f(σ(Λ))eΛ/(1 + eΛ)2. This allows us to rewrite (6) as:

q`(π, y)

1 − q`(π, y)
=

∫ y/(1−y)

0
λg(π, λ) dλ

∫ y/(1−y)

0
g(π, λ) dλ

=

∫ 1

0
λg(π, λ)I(λ) dλ

∫ 1

0
g(π, λ)I(λ) dλ

= E

[

λ
∣

∣

∣
0 ≤ λ ≤ y

1 − y

]

where I is the indicator function of λ ∈ [0, y/(1 − y)]. The above increases in π provided

g(π, λ) obeys the monotone likelihood ratio property, which it does (see §A.6).

A similar proof works for action h, given qh(π, y)/(1−qh(π, y)) = E[λ|λ ≥ y/(1−y)]. �
Convex functions obey a useful tangent property, summarized here (proved in §A.4).

Lemma 7 (Tangents to a Convex Function) Fix 0 ≤ z1 < z2 < z3 < z4 < z5 ≤ 1.

Let τi : R → R be tangent functions to v at zi for i = 1, 2, 4, 5. Then τ1(z3) ≤ τ2(z3)

with strict inequality unless v is affine between z1 and z2, and τ5(z3) ≤ τ4(z3) with strict

inequality unless v is affine between z4 and z5.

We prove in §A.4 that if small information is worthless today, then it is also tomorrow.

But as seen in the next example, the optimization today is simple, and yields a constant

posterior belief threshold. Hence, the information has value today — i.e., strict convexity.

Lemma 8 (Strict Convexity) The value function v is strictly convex on M .

A Two Period Example. While our theory was proven for infinite horizon models,

we illustrate it in a simple closed-form two period example.11 A professor and a student

share a common prior π, and observe conditionally iid signals σp and σs with common

state-dependent densities fH(σ) = 2σ and fL(σ) = 2(1 − σ). The unconditional density

f(σ) = 1 over private beliefs is uniform (0, 1), and so the induced unconditional density

over log-likelihood ratios is log-concave, and assumption (∗) holds. The professor sees

a signal, and takes an action; his student observes his action, but not his signal. The

professor is totally self-sacrificial: He takes action a ∈ {1, 2} to maximize his student’s

expected payoff alone, where u(2, H) = u(1, L) = 1, u(1, H) = u(2, L) = 0.

11We could have brought finite horizon models under the umbrella of this theory, but it would have
greatly complicated both the notation and the dynamic programming proof, having to deal with both
finite and infinite horizon cases.
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If the student starts with a continuation public belief q, then she will take action 2

exactly when her signal σs ≥ 1 − q. Given the conditional signal densities, her value

function is Vs(q) = (1 − q)
∫ 1−q

0
2(1 − σs)dσs + q

∫ 1

1−q
σsdσs = 1 − q + q2. The professor

obviously employs a threshold rule θ = θ(π): He chooses 1 if his signal σp < θ, and 2 if

σp ≥ θ. His problem is to maximize V (π) = EπVs(q), where q = q(a, π, θ) is his student’s

public belief (denoted qa later on). Beliefs are a martingale, or π = E[q|π], so that

V (π) = E[Vs(q)|π] = E(1 − q + q2|π) = 1−E[q|π] +E[q|π]2 = 1− π + π2 +E[(q − π)2|π]

Then the professor’s optimal value exceeds the myopic student value Vs(π) = 1 − π + π2

by the variance of beliefs, which is the value of information. Then

E[(q − π)2|π] =
π − q1
q2 − q1

(q2 − π)2 +
q2 − π

q2 − q1
(π − q1)

2 = (q2 − π)(π − q1) (7)

by the martingale property of beliefs, where the two continuation public beliefs are

q1 =
πθ2

πθ2 + (1 − π)(2θ − θ2)
and q2 =

π(1 − θ2)

π(1 − θ2) + (1 − π)(1 − 2θ + θ2)

Maximizing (7), we find the optimal threshold θ(π) = (π − 1 +
√
π − π2)/(2π − 1) if

π 6= 1/2, with limit θ(1/2) = 1/2. The posterior belief

r(π, θ(π)) =
πθ(π)

πθ(π) + (1 − π)(1 − θ(π))
=

1

2
+

1 − 2
√
π − π2

2(2π − 1)
≷ 1/2 as π ≷ 1/2

This expression is increasing in π, thus illustrating our contrarianism conclusion. We

observe that the possible signals conveyed by the professor’s action are not ordered by

sufficiency, and so Blackwell’s Theorem does not allow us to compare the value of any two

signals. But intuitively, the professor tries to better communicate the state of the world by

erring on the side of a more equally weighted private signal afforded by the informationally

optimal private belief threshold θ = 1/2 away from the myopic threshold θ = 1−π. Indeed,

one can easily check that either π > 1/2, whereupon 1/2 < θ(π) < 1− π, or π < 1/2, and

so 1/2 > θ(π) > 1 − π. Finally, the professor’s optimal value is easily computed from (7):

V (π) = 1 − π + π2 + E[(q − π)2|π] = 1 − π + π2 +

(

2π(1 − π)

2
√
π − π2 + 1

)2

The latter term captures the value of the information conveyed by the professor’s action.
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It measures the excess of the team equilibrium payoff over the herding equilibrium payoff.

It is maximized at π = 1/2.

4.2 Multiple Actions

The proof of the last subsection avoided considering the cross partial derivative of the

Bellman function in beliefs and thresholds. Instead, we firstly proceeded by considering

just the single partial derivative in the threshold in Step 2, and crucially, we operated at

the optimal threshold. Our attempts to extend this approach have fallen short. With more

than two actions, we proceed with a more traditional approach to a comparative statics

exercise. Our approach will therefore be intuitive, but will necessitate a slightly bolder

assumption about the value function.

A-3 The value function is twice continuously differentiable at the continuation beliefs.

With multiple actions, some may be taken with probability zero (inactive). Posit that:

A-1′ A unique rule x(π) employing the same set of α > 2 active actions is optimal in an

open neighbourhood N(π̄) ⊆M of π̄.

Given the revised assumption A-1′, we excise (and ignore) all inactive actions. Denote

the posterior belief thresholds by y = (y1, . . . , yα−1), with y1 < · · · < yα−1.

We extend the definition of the Bellman maximand to the many-actions setting:

B(π, y) ≡
α

∑

a=1

ψ(a, π, y) [(1 − δ)ū(a, q(a, π, y)) + δv(q(a, π, y))]

We need a traditional comparative statics assumption:

A-4 The matrix of second derivatives Byy(π, y(π)) is negative definite for π ∈ N(π̄).

Proposition 3 Assume π̄ ∈ M and δ > 0. Under A-1′, A-2, A-3, and A-4, contrarian

behaviour is encouraged: the threshold vector y(π) strictly increases in π ∈ N(π̄).

The first order condition for y is again rewritten

Bya
(π, y) ≡ ∂ψ(a, π, y)

∂ya
[(1 − δ)ūa(ya) + δτa(ya) − (1 − δ)ūa+1(ya) − δτa+1(ya))] (8)
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where τa(y) is the tangent function to v at qa. A marginal change in y affects Bya
only

through ya, ya−1 (affecting q(a, π, y)), and ya+1 (affecting q(a + 1, π, y)). An increase

in ya−1 will increase q(a, π, y), and since q(a, π, y) < ya and v is convex, the tangent

value τ(ya, q(a, π, y)) will increase. In turn, Byaya−1
≥ 0 from (8). This supermodularity

property, together with negative definiteness implies that the inverse matrix is nonpositive:

Lemma 9 Let B be a negative definite real matrix with non-negative off-diagonal ele-

ments. Then all entries in B−1 are nonpositive, and strictly negative on the diagonal.

Proof: As the inverse B−1 of a negative definite matrix exists and is negative definite, the

diagonal elements of B−1 are negative. That B−1 ≤ 0 can be concluded from Theorems 2′

and 4 of McKenzie (1960). To keep the presentation self-contained, we offer here an

alternative proof. For any vector z ≥ 0, consider the function F (x, t) = x′Bx + tz′x

where t ∈ R. Note that Fx(x, t) = 2x′B + tz′. Then F is supermodular in x since B has

all non-negative off-diagonal elements. Also, F has increasing differences in (x, t) since

Fxt = z′ ≥ 0. Since B has full rank, the first order condition 2Bx = −tz has a unique

solution x∗(t). Since Fxx = B is negative definite, x∗(t) is the unique maximizer of F .

The monotone comparative statics result of Topkis implies that x∗(t) is weakly increasing.

Application of the implicit function theorem to 2Bx + tz = 0 gives x∗t (t) = −(1/2)B−1z.

Since x∗(t) is increasing, B−1z ≤ 0. Since z ≥ 0 is arbitrary, we conclude that B−1 ≤ 0. �

To complete the proof of the Proposition, apply the implicit function theorem to

the first order equation By(π, y(π)) = 0 to get yπ(π) = −B−1
yy (π, y(π))Bπy(π, y(π)). By

Lemma 9, −B−1
yy (π, y(π)) has all non-negative elements, strictly positive on the diagonal.

Our proof of the single-crossing property extends to show that all elements of the vector

Bπy(π, y(π)) are strictly positive. Thus yπ(π) has all strictly positive entries.

5 LONG RUN COMPARATIVE STATICS

5.1 Long Run Behaviour in the Optimal Solution

We now ask what happens after an infinite time, which has been the focus of the informa-

tional herding literature. Before developing our more novel result here, the first subsection

below adds patience to the main limit characterization results of SS.

As usual, the belief process converges by the martingale convergence theorem. Not

only must beliefs settle down, but also the planner is never dead wrong about the state.
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Figure 3: Typical value function. Stylized graph of v(π, δ), δ ≥ 0, with three actions.

Lemma 10 The belief process 〈πn〉 is a martingale unconditional on the state, converging

a.s. to some limiting random variable π∞. The limit π∞ is concentrated on (0, 1] in state H.

A proof of this folk result is found in SS. The next result is an expression of EK’s Theorem 5

that the limit belief π∞ precludes further learning. In the informational herding model,

this is only possible during a cascade, when one action is chosen almost surely, and thus

is uninformative. The next characterization of the stationary points of the stochastic

process of beliefs 〈πn〉 directly generalizes the analysis for δ = 0 in SS. See Figure 3 for an

illustration of how the shape of the optimal value function reflects the cascade sets.

Lemma 11 (Cascade Sets)

(a) For all δ ∈ [0, 1), the support of the limit belief π∞ is in the sets J1(δ) ∪ · · · ∪ JA(δ).

(b) With unbounded private beliefs, only the extreme cascade sets J1(δ), J1(δ) are nonempty.

(c) If the private beliefs are bounded, then J1(δ) = [0, π(δ)] and JA(δ) = [π̄(δ), 1], where

0 < π(δ) < π̄(δ) < 1. For large enough δ < 1, all cascade sets disappear except for J1(δ)

and JA(δ), while limδ→1 J1(δ) = {0} and limδ→1 JA(δ) = {1}.

Proof: All but the initial limit belief result are established in the appendix. To see why

that one is true — that a limit cascade must occur, as SS call it — observe that for

any belief π̂ not in any cascade set, at least two signal outcomes (i.e. actions in A) are

realized with positive probability. By the interval structure, the highest such signal is

more likely in state H , and the lowest more likely in state L. So the next period’s belief

differs from π̂ with positive probability. Intuitively, or by the characterization result for

Markov-martingale processes in appendix B of SS, π̂ cannot lie in the support of π∞. �
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The proof of this result also shows that the larger is δ, the weakly smaller are all cascade

sets: Indeed, this drops out rather easily from the monotonicity of the value function in δ.

We defer asserting this result for now, as Proposition 5 (later) leverages weak monotonicity.

Lemma 12 (Convergence of Beliefs) Consider a solution of the planner’s problem.

(a) For unbounded private beliefs, π∞ is concentrated on the truth for any δ ∈ [0, 1).

(b) With bounded private beliefs, learning is incomplete for any δ ∈ [0, 1): That is, unless

π0 ∈ JA(δ), there is positive probability in state H that π∞ /∈ JA(δ).

(c) With bounded private beliefs, the chance of complete learning (π∞ ∈ JA(δ) in state H)

tends to 1 as δ ↑ 1.

(d) In the two state informational herding model, if the unconditional log-likelihood ratio

density φ(Λ) is strictly log-concave, then beliefs can never enter a cascade set from outside.

Proof: Part (a) follows from Lemma 10 and Lemma 11-a,b.

Part (b) follows just as in Theorem 1 of SS. We now extend that proof to establish the

limiting result for δ ↑ 1 in part (c). First, Lemma 11 assures us that for δ close enough

to 1, π∞ places all weight in J1(δ) and JA(δ). The likelihood ratio Λn ≡ (1 − πn)/πn is

a martingale conditional on state H . Because the likelihood ratio (1 − σ)/σ is bounded

above by some Λ̄ < ∞ for all private beliefs σ, the sequence 〈Λn〉 is bounded above by

Λ̄(1 − π(δ))/π(δ), and the mean of Λ∞ must equal its prior mean (1 − π0)/π0. Since

limδ→1 π(δ) = 0, the weight that π∞ places on J1(δ) in state H must vanish as δ → 1.

For part (d), note that assumption A-2 precludes non-monotonic continuation beliefs,

by Lemma 6. By SS, these are necessary for the existence of nontrivial cascades. �

Part (d) is a contribution about cascade sets quite apart from our contrarianism thrust.

It shows how Lemma 6 in §4 is really an independent result in its own right. The discrete

signal examples of cascades in BHW trivially all violate assumption A-2.

Observe how incomplete learning besets even an extremely patient planner. So this

problem does not fall under the purview of EK’s Theorem 9, where it is shown that if the

optimal value function v is strictly convex in beliefs π, learning is complete for δ near 1.

For here, the planner optimally behaves myopically for very extreme beliefs: That is,

v(π) = ū1(π) for π near 0, and v(π) = ūA(π) for π near 1, both affine functions. This

points to the source of the incomplete learning: lumpy signals (actions, in the herding

model) rather than impatience. It is simply individuals’ inability to properly signal their

private information via a finite action mesh that eventually frustrates the learning process.

We are now positioned to reformulate the learning results of the last section at the

level of actions. For this, we recall that a herd obtains on action a at stage N if all
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individuals n = N,N +1, N +2, . . . choose action a. As SS shows, while a cascade implies

a herd, the converse is false. To show that herds arise, we can generalize the Overturning

Principle of SS to this case: The appendix establishes (in Claim 13) that for beliefs π near

Ja(δ), actions other than a will push the updated public belief far from its current value.

Thus, convergence of beliefs implies convergence of actions — or, a limit cascade implies

a herd. Since cascade sets are constrained efficient (Lemma 12) and beliefs must converge

(Lemma 12), herding is likewise constrained best (proof appendicized):

Proposition 4 (Herding is Constrained Efficient) Consider any planner’s solution:

(a) An ex post optimal herd eventually starts for δ ∈ [0, 1) and unbounded private beliefs.

(b) With bounded private beliefs, a herd on an action eventually starts. Unless π0 ∈ JA(δ),

a herd arises on an action other than A with positive chance in state H for any δ ∈ [0, 1).

(c) The chance of an incorrect herd with bounded private beliefs vanishes as δ ↑ 1.

It is no surprise that the planner ends up with full learning with unbounded beliefs, for

this occurs even with selfish individuals (i.e. myopic learning). More interesting is that

the planner optimally incurs the risk of an ever-lasting incorrect herd. Herding is truly a

robust property of the observational learning paradigm.

5.2 Monotonic Cascade Sets

We finally establish a strict limit comparative static: If the planner is indifferent about

learning at some belief (i.e. at the edge of a cascade set), then he strictly prefers to learn

if he is slightly more patient.

Proposition 5 Assume bounded beliefs. All non-empty cascade sets shrink strictly when δ

rises: ∀a ∈ A, if δ2 > δ1 and Ja(δ1) 6= ∅, then Ja(δ2) ⊂ Ja(δ1).

In other words, as individuals grow more patient, the set of cascade beliefs which foreclose

on learning strictly shrinks. In particular, the cascade set is strictly smaller than the

myopically efficient level for even slightly patient individuals. This is an analogue of our

short-run comparative static Proposition 2, since it means that for any positive discount

factor, some individuals should behave in a contrarian fashion, violating the cascade.

However, here no log-concavity assumption is needed.

The proof makes use of two key results, with sufficient independent interest that we

hereby summarize them here (but appendicize their proofs).
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Lemma 13 (Strict Value Monotonicity) The value function increases strictly with δ

outside the cascade sets: for δ2 > δ1, vδ2(π) > vδ1(π) for all π 6∈ J1(δ2) ∪ · · · ∪ JA(δ2).

Intuitively, provided the planner’s strategy in some future eventuality strictly prefers a

non-myopic action, his continuation value must strictly exceed his myopic value. We show

that this holds for any continuation public belief outside both cascade sets Ja(δ1) ⊇ Ja(δ2).

So a more patient player who weights the continuation value more, will enjoy a higher value.

Call two rules equivalent if they are represented by the same thresholds, with the same

associated mixing, if any, at the endpoints. Comparing with Step 1 of §4, we now partially

characterize the differentiability of the value function at the edge of cascade sets.

Lemma 14 (Differentiability) Let π̂∈(0, 1) be an endpoint of cascade set Ja(δ). If all

rules optimal at π̂ are equivalent, then vδ(·) is differentiable at the belief π̂.

Since cascade sets do change with the discount factor, we now explain why we proved a

Second Welfare Theorem (Lemma 1) but not a First. For there exists a team equilibrium

which is not optimal. To see why, assume an initial public belief π ∈ Ja \ Ja(δ). Then

herding on action a is a team equilibrium: Given that everyone subsequent believes that

individual n’s action is uninformative, the best he can do is to maximize his own current

payoff, and when π ∈ Ja it is myopically optimal to take action a with probability one.

But since π /∈ Ja(δ), this is not optimal.

6 CONCLUSION

This paper has discovered and explored the fact that informational herding is simply

incomplete learning by a single experimenter, suitably concealed. Our mapping, recasting

everything in rule space, has led us to an equivalent social planner’s problem. In so doing,

we have contributed to the small literature on optimal interval rules. While the revelation

principle in mechanism design also uses such a ‘rule machine’, the exercise is harder for

multi-period, multi-person models with uncertainty, since the planner must respect the

agents’ belief filtrations. While this is trivially achieved in rational expectation price

settings, one must here exploit the public beliefs, and largely invert the model.

Once informational herding is understood as single-person Bayesian experimentation,

it no longer seems so implausible that incorrect herds may be constrained efficient. For

incomplete learning is if anything the hallmark of optimal experimentation models, even

with forward-looking behaviour. This is the setting we then explored.
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The thrust of our paper consists of two strict comparative static results, which formalize

and illustrate the social efficiency of contrarian behaviour in an informational herding

model. First, in the short-run — that is, at any particular finite stage — given a log-

concave log-likelihood ratio density, as an action becomes more popular, individuals should

more strongly lean against taking it on the basis of their private information. This log-

concavity condition is new in information economics. Very loosely, its motivation owes to

the fact that Bayes rule entails a linear aggregation of log-likelihood ratios.

Second, we showed that with a finite action space, informational herding is not in

itself bad, but is in fact a constrained efficient long-run outcome of the social planner’s

problem, and is robust to changing the planner’s discount factor. For any bounded signal

distribution, cascade sets for actions strictly shrink in the discount factor δ < 1. So (i)

for some public beliefs, the team solution calls for violating a myopic cascade, but (ii) the

cascade set never vanishes for any discount factor δ.

Our exploration has hinged crucially on an extension of the Gittins index of the social

present value of each action. This formulation differs from the standard bandit index

because of the agency problem: Since private signals are privately observed, aligning

private and social incentives entails a translation using the marginal social value.

En route to our main results, we have found two useful cases where we can prove

differentiability of the value function in problems of learning. We are aware of no other

examples in the literature of such conditions. We have also found a simple robust condition

under which cascades cannot be entered in two state herding models.

We close with remarks on related literature that has appeared after we first wrote

this paper. Sgroi (2002) proposes that late individuals in the herding model can benefit

from a change in the observational regime, so that the first N individuals cannot see

their predecessors’ actions. This policy is available to the social planner in our model:

Individuals need simply use the myopically optimal threshold x(π0), where π0 is the initial

public belief. In general, this special policy is sub-optimal. Doyle (2002) considers the

social planner’s problem in the investment delay problem of Chamley and Gale (1994).

A APPENDIX: OMITTED PROOFS

A.1 Upper-hemicontinuity: Proof of Lemma 3-(b)

Given the interval structure of Lemma 2, the planner simply determines the chances

ψ(π, ξδ) of choosing each action, and their order. Represent this by the product of an
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A×A permutation matrix and the vector (ψ(π, ξδ), a = 1, . . . , A). This choice set is com-

pact in R
A2

. Since the objective function in the Bellman equation (1) is continuous in this

choice matrix and in π, the claim now follows from the Theorem of the Maximum (e.g.

Theorem I.B.3 of Hildenbrand (1974)). Finally, the map from these matrices to rules is

continuous.

A.2 On the Log-Concavity Assumption

We note that for a twice differentiable signal density f , Assumption A-2 reduces to

f(σ)f ′′(σ) − [f ′(σ)]2

f(σ)2
+

1

σ(1 − σ)

[

f ′(σ)

f(σ)
(1 − 2σ) − 2

]

≤ 0

This neither implies nor is implied by the common assumption of a log-concave signal

density. It is satisfied if f is log-concave and f ′(σ)/f(σ) ≶ 2/(1 − 2σ) for σ ≶ 1/2. Since

f ′(σ)/f(σ) falls in σ for f log-concave, it suffices that f be log-concave and f ′(0)/f(0) ≤ 2

and f ′(1)/f(1) ≥ −2. The canonical family of Beta distributions on [0, 1] with non-

explosive tails satisfies it. The distribution of the log-likelihood ratio is an equally natural

primitive of our model, and admits all well-known log-concave distributions. (See Marshall

and Olkin (1979), §18.B.2.d, for a partial list of the families with log-concave densities.)

Any concavity assumption is defined relative to the additive structure of the variable’s

space, and the log-likelihood ratio space is natural for then Bayes’ rule is additive.

A.3 Marginal and Average Private Signals: Proof of Lemma 5

We prove the first relation — the other is symmetric. Put ψ = πψH + (1 − π)ψL, where

ψω = µω([0, θ]) for the private belief threshold θ = r(1−π, y). Recalling that dµH/dµ = 2σ

and dµL/dµ = 2(1−σ), we have ∂ψ/∂y = 2f(θ)[πθ+(1−π)(1−θ)](∂θ/∂y). Differentiating

the quotient q1 = πψH/ψ, we find that

ψ
∂q1
∂y

= ψ
∂

∂θ

(

πψH

πψH + (1 − π)ψL

)

∂θ

∂y
=
π(1 − π)[θψL − (1 − θ)ψH ]f(θ)

ψ

∂θ

∂y

Finally, the relation obtains once we see that

(y − q1)
∂ψ

∂y
= 2

(

πθ

πθ + (1 − π)(1 − θ)
− πψH

ψ

)

f(θ)[πθ + (1 − π)(1 − θ)]
∂θ

∂y
�

26



A.4 Properties of Convex Functions

Proof of Lemma 7: When v is affine on [z1, z2], tangents τ` and τh coincide, and so τ`(z3) =

τh(z3). Otherwise, the tangents differ, with τh steeper than τ`. Since v is convex, the

tangent at z` lies below v at zh, and so τ`(zh) ≤ v(zh) = τh(zh). Also, τh(z3) − τh(zh) >

τ`(z3) − τ`(zh). Altogether, τ`(z3) < τh(z3). The other case follows similarly. �

Claim 1 (Differentiability) The function B has a well-defined left derivative By−(π, y)

obeying B(π, y) − B(π, y′) =
∫ y

y′
By−(π, z) dz for y, y′ ∈ (0, 1).

Proof: The only issue are the kinks (if any) of v. Being convex, it is left-differentiable, and

obeys v(qa(π, y)) − v(qa(π, y
′)) =

∫ qa(π,y)

qa(π,y′)
v′(q−) dq, by Rockafellar’s Corollary 24.2.1. �

A.5 Strict Convexity: Proof of Lemma 8

Claim 2 The value function is affine on an interval [z1, z2] iff the same contingent strat-

egy is optimal starting from anywhere in that interval.

Proof: The optimal contingent strategy for all the future, starting from any belief π ∈
[z1, z2], yields some state-dependent values v̄(H) and v̄(L). The line joining the points

(0, v̄(L)) and (1, v̄(H)) is the tangent to v at π. As in the proof of Proposition 1, the same

contingent strategy is optimal starting anywhere in [z1, z2]. Conversely, holding constant

the contingent strategy for all the future merely adjusts the chances of v̄(H) and v̄(L). �

Claim 3 (An Auxiliary Affine Optimization) Let y∗ ∈ [0, 1] be an optimal posterior

threshold at belief π ∈ [0, 1], inducing continuation beliefs qa after seeing action a = `, h.

Define the affine function ũa(y) = (1− δ)ūa(y)+ δτa(y) for action a = `, h, where τa is the

tangent function to v at qa. Then y ∈ [0, 1] is an optimal posterior threshold belief at π

if y maximizes

B̃(π, y) = ψ(π, y)ũ`(y) + (1 − ψ(π, y))ũh(y).

Also, y∗ solves maxy∈[0,1] B̃(π, y).

Proof: Since v is convex, the tangent functions are weakly below v, so all y satisfy

B(π, y) ≥ B̃(π, y). Since τa(qa) = v(qa), we also have B̃(π, y∗) = B(π, y∗). Thus, if

B̃(π, y) ≥ (>)B̃(π, y∗) then B(π, y) ≥ B̃(π, y) ≥ (>)B̃(π, y∗) = B(π, y∗). �

Proof of Lemma 8: Contrary to strict convexity, assume that v is affine on some

[z1, z2] ⊆ M . By Claim 2, the same contingent strategy, and so first-period rule x, is
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optimal throughout [z1, z2]. Bayes updating after any observation a continuously and

monotonically maps the prior belief interval [z1, z2] into a posterior belief image interval

[q(a, z1, x), q(a, z2, x)]. At this point, the optimal contingent strategy for all the future is

still constant, so that — by Claim 2 — the value function is affine on this image interval.

By Claim 3, at any belief π ∈ [z1, z2], every solution to maxy∈[0,1] B̃(π, y) is an optimal

posterior threshold. The problem maxy∈[0,1] B̃(π, y) can be solved easily ex post: At any

posterior belief ρ, take the action a with the greatest ũa(ρ), i.e. the same action on one side

of the intersection point y of the affine functions ũ` and ũh. (Since π ∈ M , both actions

must be taken, precluding y = 0, 1.) Since the tangent functions at the continuation

beliefs, and thus ũa, do not depend on π, the optimal solution is invariant to π ∈ [z1, z2].

The constant rule x implies a constant private belief threshold θ. But the relation y =

r(π, θ) uniquely determines π, and so cannot be satisfied on all of [z1, z2]. Contradiction.

A.6 The Function g

We show that g obeys (1 − π)(1 − σ)f(σ)dσ = g(π, λ)dλ. Since φ(Λ) ≡ f(σ(Λ))σ′(Λ):

(1 − π)(1 − σ)f(σ)dσ = (1 − π)(1 − σ)φ(Λ(σ(λ)))
dΛ

dσ

dσ

dλ
dλ =

π(1 − π)φ(Λ(σ(λ)))

(π + λ(1 − π))λ
dλ

To see the MLRP Property of g, we show that ∂2 log(g(π, λ))/(∂λ∂π) > 0. Indeed,

this inequality holds iff the following has a positive cross partial:

log
φ(Λ(σ(λ)))

(π + λ(1 − π))
= log φ(Λ(σ(λ))) − log(π + λ(1 − π))

The second term is clear. As Λ(σ(λ)) = log(σ(λ)/(1 − σ(λ))) = log((1 − π)λ/π), we have

∂

∂λ
log φ(Λ(σ(λ))) =

φ′(Λ(σ(λ))

φ(Λ(σ(λ)))

∂

∂λ
Λ(σ(λ)) =

φ′(log((1 − π)λ/π))

λφ(log((1 − π)λ/π))

which is increasing in π since log((1 − π)λ/π) is strictly decreasing in π and since φ′/φ is

a decreasing function, by the log-concavity assumption.

A.7 Cascade Sets: Proof of Lemma 11

Let the Bellman operator Tδ be given by Tδv, equal to the RHS of (1). Note that for v ≥ v′

we have Tδv ≥ Tδv
′. As is standard, Tδ is a contraction, and vδ(·) is its unique fixed point
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in the space of bounded, continuous, weakly convex functions.

Let ū(π) = maxa ūa(π) be the myopic expected utility frontier function.12

Claim 4 (Iterates and Limit) The sequence {T n
δ ū} consists of pointwise increasing

weakly convex functions that converge to vδ(·). The value vδ(·) weakly exceeds ū, and

strictly so outside the cascade sets: vδ(π) > ū(π) ∀δ ∈ [0, 1) and ∀π 6∈ ∪A
a=1Ja(δ).

Proof: To maximize
∑

a∈A ψ(π, x) [(1 − δ)ūa(q(a, π, x)) + δū(q(a, π, x))] over x for given

π, one rule x̂ almost surely chooses the myopically optimal action. Then q(x̂(σ), π, x̂) = π

a.s., resulting in value ū(π). Optimizing over all x ∈ X, Tδū(π) ≥ ū(π) for all π. By

induction, T n
δ ū ≥ T n−1

δ ū, yielding (as usual) a pointwise increasing sequence converging

to the fixed point vδ(·) ≥ ū. Finally, when π is outside the cascade sets, by definition it is

not optimal to almost surely induce one action. So, vδ(π) > ū(π). �

We have not found a published or cited proof of the following folk result.13

Claim 5 (Weak Value Monotonicity) The value function is weakly increasing in δ:

Namely, for δ1 > δ2, vδ1(π) ≥ vδ2(π) for all π.

Proof: Clearly,
∑

a∈A ψ(π, x)ūa(q(a, π, x)) ≤
∑

a∈A ψ(π, x)v(q(a, π, x)) for any x and any

function v ≥ ū. If δ1 > δ2, then Tδ1 ū ≥ Tδ2 ū, since more weight is placed on the larger

component of the RHS of (1). Because one possible policy under δ1 is to choose the ξ

optimal under δ2, we have T n
δ1
ū ≥ T n

δ2
ū. Let n→ ∞ and apply Claim 4. �

Claim 6 (Weak Inclusion) All cascade sets weakly shrink when δ increases: In other

words, ∀a ∈ A, if 1 > δ1 > δ2 ≥ 0, then Ja(δ1) ⊆ Ja(δ2).

Proof: As seen in Claims 4 and 5, vδ1(π) ≥ vδ2(π) ≥ ū(π) ≥ ūa(π) for all π, when δ1 > δ2.

For π ∈ Ja(δ1), we know vδ1(π) = ūa(π) and thus vδ2(π) = ūa(π). The optimal value can

thus be obtained by inducing a a.s., so that π ∈ Ja(δ2). �

Claim 7 (Unbounded Beliefs) With unbounded private beliefs, the cascade sets for the

extreme actions are J1(δ) = {0} and JA(δ) = {1}. All other cascade sets Ja(δ) are empty.

Proof: SS establish for the myopic model that all Ja(0) are empty, except for J1(0) = {0}
and JA(0) = {1}. Now apply Lemma 4 and Claim 6. �

12Observe how this differs from v0(π) ≡ sup
x

∑

a
ψ(π, x)ūa(q(a, π, x)). In other words, v0(π) allows the

myopic individual to observe one signal σ before obtaining the ex post value ū(r(π, σ)). In our example
of §4.1, we have ū(π) = max〈π, 1 − π〉 and v0(π) = 1 − π + π2.

13But Aghion, Bolton, Harris, and Jullien (1991) do assert without proof (p. 625) that the patient value
function exceeds the myopic one.
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Claim 8 (Bounded Beliefs) If the private beliefs are bounded, then J1(δ) = [0, π(δ)]

and JA(δ) = [π̄(δ), 1], where 0 < π(δ) < π̄(δ) < 1.

Proof: We prove that for sufficiently low beliefs it is optimal to choose a rule x that

almost surely induces 1; the argument for high beliefs is very similar. Since action 1 is

optimal at belief π = 0, and is not weakly dominated, it must be the optimal choice for

beliefs π ≤ π̃, for some π̃ > 0. Thus, ū1(π) = ū(π) on [0, π̃]. Since each ūa is affine,

ū1(π) > ūa(π) + η for all a 6= 1 for some η > 0, and for all beliefs π in the interval [0, π̃/2].

No observation a ∈ A can produce a stronger signal than any σ ∈ supp(µ) ⊆ [σ, σ̄] ⊂
(0, 1). So any initial belief π is updated to at most q̄(π) = πσ̄/[πσ̄+(1−π)(1− σ̄)]. For π

small enough, q̄(π) ∈ [0, π̃/2] and q̄(π) − π is arbitrarily small, and so is vδ(q̄(π)) − vδ(π)

small by continuity of v — in particular, less than η(1 − δ)/δ for small enough π. By the

Bellman equation (1), any action a 6= 1 is strictly suboptimal for such small beliefs. �

Claim 9 (Limiting Patience) For large enough δ, all cascade sets disappear except for

J1(δ) and JA(δ), while limδ→1 J1(δ) = {0} and limδ→1 JA(δ) = {1}.
Proof: Fix δ ∈ [0, 1), and an action index a (1 < a < A) for which Ja(δ) = [π1, π2], for

some 0 < π1 ≤ π2 < 1. Since there are informative private beliefs, ∃σ̄∗ ∈ (1/2, 1) with

1 > µH([σ̄∗, 1]) > µL([σ̄∗, 1]) > 0. We now consider an alternative rule x taking a− 1 and

a when σ respectively lands in intervals Ia−1 = [0, σ̄∗] and Ia = [σ̄∗, 1] (see Lemma 2).

Updating the prior π with the event {σ ∈ [σ̄∗, 1]} results in the posterior belief q(π) =

πµH((σ̄∗, 1])/[πµH((σ̄∗, 1]) + (1 − π)µL((σ̄∗, 1])] in state H . For any compact subinterval

I ⊂ (0, 1), in particular one with I ⊇ Ja(δ), there exists ε ≡ ε(I) > 0 with q(π) − π ≥ ε

for all π ∈ I. Thus, q maps the interval [π2 − ε/2, π2] into (but not necessarily onto)

[π2 + ε/2, 1]. Choose γ > 0 so large that ūa(π) < ūa+1(π) + γ for all π ∈ [0, 1]. Since

vδ(π) > ūa(π) outside Ja(δ) = [π1, π2], and both are continuous in π, we may also choose

η > 0 so small that vδ(π) > ūa(π) + η for all π ∈ [π2 + ε/2, 1]. By Claim 5, we thus have

vδ′(π) > ūa(π)+ η for all δ′ > δ. If δ′ > δ is so large that (1− δ′)ū < δ′η, then the Bellman

equation (1) reveals that our suggested rule x beats inducing a a.s. when π ∈ [π2−ε/2, π2].

By iterating this procedure a finite number of times, each time excising length ε/2 from

interval Ja(δ), we see that Ja(δ) evaporates for large enough δ.

If a = 1 or A, apply this procedure repeatedly: Ja(δ) ∩ I vanishes for δ near 1. �
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A.8 Strict Value Monotonicity: Proof of Lemma 13

We first consider a stronger version of Claim 5. Call the private signal distribution 2S

(Two Signals) if its support contains only two isolated points.

Claim 10 (Unreachable Cascade Sets) Fix δ ≥ 0. If 2S fails, then for any π not

in any δ-cascade set (F): an action a is taken with positive chance inducing a posterior

belief q(a, π, x) not in any δ-cascade set. If 2S holds, then (F) obtains for all non-cascade

beliefs π except possibly at most A − 1 points, each the unique belief between any pair of

nonempty cascade sets Ja′(0) and Ja(0) from which both cascade sets can be reached.

Proof: At a non-cascade belief π, at least two actions are taken with positive chance, and

by the interval structure, some action shifts the public belief upwards while another shifts

it downwards. With unbounded beliefs, q(a, π, x) never lies in a cascade set; so assume

bounded beliefs. Let co(supp(F )) = [σ, σ̄]. Assume that π lies between the nonempty

cascade sets Ja′(0) < Ja(0), and let π = sup Ja′(0) and π̄ = inf Ja(0). By definition of

these cascade sets, r(π, σ̄) ≤ r(π̄, σ). If all possible actions at π led into a cascade set,

then r(π, σ) ≤ π and r(π, σ̄) ≥ π̄. But these inequalities can only hold with equality since

r(r(π, σ̄), σ) ≥ r(π̄, σ) ≥ r(π, σ̄) ≥ r(r(π, σ), σ̄) = r(r(π, σ), σ̄)

and because the outer terms coincide, as Bayes-updating commutes. So, between Ja′(0)

and Ja(0) there exists at most one point π̂ which can satisfy both equations; moreover,

such a point exists iff 2S holds. Indeed, given 2S, we may simply choose π̂ to solve

r(π̂, σ̄) = π̄, while if 2S fails, then with positive chance, a nonextreme signal is realized,

and the posterior q is not in a cascade set. With δ > 0 we have weakly smaller cascade

sets by Claim 6 of the Lemma 11 proof, so a π̂ failing (F) is even less likely to exist — in

fact it would further require sup Ja′(δ) = sup Ja′(0) and inf Ja(δ) = inf Ja(0).

Finally, assume 2S. Consider any π̂ with reachable cascade sets Ja′(δ) and Ja(δ). Then

the rule x̂ mapping σ into a′ (low signal to π) and σ̄ into a (high signal to π̄) is indeed

optimal. By convexity, vδ(π) is at most the average of vδ(π̄) and vδ(π) (weights given by

transition chances), and x̂ achieves this average. So vδ(·) is affine on (π̄, π). �

We now finish proving Lemma 13. By Claim 4 of Lemma 11’s proof, vδ1(π) > ū(π) for

π outside the δ1-cascade sets. Fix π outside the δ2-cascade sets. If π lies in a δ1-cascade

set we’re done, as vδ1(π) = ū(π) < vδ2(π). Suppose π lies outside the δ1-cascade sets.

Assume first that π satisfies (F) of Claim 10 for δ1 (and thus also for δ2). Then at

least one action a is taken with positive chance inducing a belief q(π, ξδ1(π), a) not in a
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δ1-cascade set. Thus, vδ1(q(π, ξ
δ1(π), a)) > ū(q(π, ξδ1(π), a)). Since δ2 > δ1,

vδ1(π) = (Tδ1vδ1(·))(π) < (Tδ2vδ1(·))(π) ≤ (Tδ2vδ2(·))(π) = vδ2(π) (9)

Next assume that some π̂ between Ja′(δ1) and Ja(δ1) fails (F) for δ1. If (9) holds

at π̂, we are done. Assume not. Claim 10 noted that between consecutive cascade sets

such π̂ must be unique, and that it implied 2S. In that case, (9) holds in a punctured

neighbourhood (π, π) ∪ (π, π̄) of π̂, where π = sup Ja′(δ1) and π̄ = inf Ja(δ1). Also, from

the last paragraph of Claim 10’s proof, vδ1(·) was everywhere an affine function on [π, π̄],

which in turn, is a supporting tangent line to the convex function vδ2(·) at π̂ (see Claim 5).

As it touches vδ2(·) at π̂ only, vδ2(π) > vδ1(π) and vδ2(π̄) > vδ1(π̄).

To find a lower bound to vδ2(π̂), apply rule x̂ from Claim 10’s proof at the belief π̂.

Since x̂ maps σ into π ∈ Ja′(δ1) and σ̄ into π̄ ∈ Ja(δ1), it yields myopic first-period values

ūa′(π) = vδ1(π) and ūa(π̄) = vδ1(π̄), and continuation values vδ2(π) and vδ2(π̄). By the

right hand side of (1), this mixture is worth strictly more than vδ1(π̂):

vδ1(π̂) = ψ(a′, π̂, x̂)vδ1(π) + ψ(π̂, x̂)vδ1(π̄)

< ψ(a′, π̂, x̂) [(1−δ2)vδ1(π)+δ2vδ2(π)] + ψ(π̂, x̂) [(1−δ2)vδ1(π̄)+δ2vδ2(π̄)]

which is clearly at most vδ2(π̂). Given this contradiction, (9) must hold at π̂. �

A.9 Differentiability: Proof of Lemma 14

We proceed in part by establishing claims. Assume that the value v is not differentiable

at π̂, and that all optimal rules at π̂ are equivalent. We show this leads to a contradiction.

Namely, if all optimal rules at π̂ are equivalent, then v is differentiable at π̂, as asserted.

Claim 11 ∀ε > 0 ∃η > 0 such that when |π − π̂| < η, any optimal rule at π induces

action a with chance at least 1 − ε in states H,L.

Proof: Since π̂ ∈ Ja(δ), one optimal rule at π̂ induces a with chance one. This property

is shared by all rules optimal at π̂. Next, if ψ(π, ξδ) = πψ(H, ξδ) + (1− π)ψ(L, ξδ) is near

1, so are both ψ(H, ξδ) and ψ(L, ξδ). The claim follows from Lemma 3-(b). �

Claim 12 ∀N ∈ N ∀ε > 0 ∃η > 0 so that if |π − π̂| < η then under any optimal strategy

from π, action a is taken for the first N periods with chance at least 1 − ε in states H,L.
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Proof: Fix η < 1/2. By Claim 11, for πn near π̂, action a occurs with chance at least

1−η in each state starting from πn. If a occurs, then πn+1 obeys |πn+1−πn| ≤ 4π̂(1− π̂)η,

by Bayes rule. So |πn+1−πn| can be chosen arbitrarily small when a occurs, for πn near π̂.

Choose the initial π so close to π̂ that if a occurs for the next N periods, the posterior

stays so close to π̂ that a occurs with conditional chance at least (1 − ε)1/N each period.

Namely, let ρ1 6= π̂ be so close to π̂ that ρ1(1 − ρ1) ≤ 3π̂(1 − π̂)/2 and at any π within

|ρ1 − π̂| of π̂, all optimal rules take a with chance at least (1 − ε)1/N in each state. Let

η1 = |ρ1 − π̂| and choose ρ2 6= π̂ within η1/[8π̂(1− π̂)] of π̂ and so close to π̂ that a occurs

with chance at least 1 − η1 in each state from any π within |ρ2 − π̂| of π̂. Iterate this to

choose η2 = |ρ2 − π̂| and then ρ3, and then ρ4, . . . , ρN . If the initial π lies within |ρN − π̂|
of π̂, then it stays within |ρ1 − π̂| of π̂ the next N periods when a occurs in each period. �

Finally, we finish the proof of Lemma 14. Any optimal strategy starting at belief π

yields some state-contingent values v̄L and v̄H . The affine function φ(ρ) through φ(0) = v̄L

and φ(1) = v̄H is then tangent to the value function at π.

Since it is optimal to take a forever at π̂, one tangent to v at π̂ is the affine function

h which intersects u(a, L) at π = 0 and u(a,H) at π = 1. Consider the left and right

derivatives of v at π̂, with corresponding tangent lines h1(ρ) and h2(ρ) at belief ρ. One of

those tangents — say, h1 — must differ from h (when h1 differs, necessarily a > 1). Define

vL
1 = h1(0) > φ(0) = u(a, L) and vH

1 = h1(1) < φ(1) = u(a,H). Since u(1, L) ≥ vL
1 >

u(a, L), a unique m > 0 exists satisfying vL
1 = mu(1, L) + (1 −m)u(a, L).

As v is convex, it is differentiable almost everywhere. So let πk ↑ π̂ be a sequence of

beliefs converging up to π̂, with the value function differentiable at each πk. The tangent

function is then uniquely determined for each πk, and its intercepts at ρ = 0, 1 are the

state-dependent payoffs of any optimal strategy started at πk, namely vL(πk) ≥ vL
1 and

vH(πk) ≤ vH
1 . The inequalities of course follow by convexity of v and πk < π̂.

Now choose N so large and ε so small that m/2 ≥ 1 − (1 − δN)(1 − ε). Note that

action 1 is strictly the best action in state L. Then by Claim 12, for all large enough k,

the expected value vL(πk) in state L of the optimal strategy starting at πk is at most

vL(πk) ≤ (1 − δN)(1 − ε)u(a, L) + [1 − (1 − δN)(1 − ε)]u(1, L)

≤ (1 −m/2)u(a, L) + (m/2)u(1, L)

< (1 −m)u(a, L) +mu(1, L) = vL
1 ≤ vL(πk)

since u(1, L) > u(a, L), as noted above. Contradiction. �
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A.10 Constrained Efficient Herding: Proof of Proposition 4

Near Ja(δ) we should expect to observe action a. The next lemma states that when other

actions are observed they lead to a drastic revision of beliefs, or there was a non-negligible

probability of observing some other action which would overturn the beliefs.

Claim 13 (Overturning Principle) For δ ∈ [0, 1), assume Ja(δ) 6= ∅. Then there

exists ε > 0 and an ε-neighbourhood K ⊃ Ja(δ), such that ∀π ∈ K ∩ (0, 1), either:

(a) ψ(π, ξδ(π)) ≥ 1 − ε, and |q(b, π, ξδ(π)) − π|>ε for all b 6= a that occur; or

(b) ψ(π, ξδ(π)) < 1 − ε, and ψ(π, ξδ(π))≥ε/A, |q(a, π, ξδ(π))−π|>ε for some a ∈ A.

Proof: Choose η > 0 small enough such that for any π sufficiently close to Ja(δ), we

have ψ(b, π, ξδ(π)) < 1 − η for any b 6= a. If such η does not exist, since the optimal rule

correspondence is u.h.c., almost surely taking action b is optimal at some π̂ ∈ Ja(δ) ⊂ Ja.

This is impossible, as b incurs a strict myopic loss, and captures no information gain.

First, assume bounded private beliefs. By (c) of Lemma 11, for π close enough to 0 or 1,

the only optimal rule is to stop learning. Thus, we need only consider π in some closed

subinterval I of (0, 1). Let co(supp(µ)) = [σ, σ̄]. By the existence of informative beliefs,

σ < 1/2 < σ̄. Let ε > 0 be the minimum of η, µH([σ, (2σ+ 1)/4]), and µL([(2σ̄+ 1)/4, σ̄])

(notice that (2σ + 1)/4 is the midpoint between σ and 1/2).

Assume ψ(π, ξδ(π)) ≥ 1 − ε for some π ∈ I. Then any action b 6= a is a.s. only taken

for beliefs within either [σ, (2σ + 1)/4] or [(2σ̄ + 1)/4, σ̄]. Any such b implies case (a)

(selecting, if necessary, ε even smaller).

If instead ψ(π, ξδ(π)) < 1 − ε, then each action is taken with chance less than 1 − ε.

By construction of ε, different actions are taken at the two extreme private beliefs (by the

interval structure of the optimal rule). At least one of the A actions occurs with chance

at least ε/A, does not include private beliefs near 1/2, and therefore moves beliefs by at

least ε (selecting, if necessary, ε even smaller), as claimed in case (b).

Next consider unbounded private beliefs. Let the absolute slope of the value function

v have upper bound κ. Since no two payoffs are tied at 0, there exists a small ζ > 0

such that the myopic action payoffs ū(a, ρ) maintain the same ranking, and the difference

|ū(a, ρ) − ū(a′, ρ)| exceeds κζ for all a 6= a′, for all ρ ∈ [0, ζ ].

Assume that π is near the cascade sets {0} or {1} — say π near 0. Then only one

â ∈ A can have low continuation belief q(â, π, ξδ(π)) ∈ [0, ζ ]. If not, consider the altered

policy that redirects private beliefs from two such actions into the myopically higher of

the two. This yields a first-period payoff gain of more than κζ , and a future value loss of

at most κζ (for q remains in [0, ζ ]). So the altered policy is a strict improvement.
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Assume ψ(1, π, ξδ(π)) ≥ 1 − ε. Then â = 1 since q(1, π, ξδ(π)) ≤ π/(1 − ε) ≤ ζ , for

small enough π and ε. As only action 1 has continuation belief in [0, ζ ], case (a) is satisfied.

Finally, assume ψ(1, π, ξδ(π)) < 1 − ε. Then ψ(â, π, ξδ(π)) < 1 − ε. Otherwise, â 6= 1

and a myopic gain of at least (1 − ε)ζ − εU obtains from swapping the private beliefs

for 1 and â, without any change in future value (here U denotes the maximal possible

myopic payoff difference). Thus there is a gain if ε is small enough: contradiction. Since

ψ(â, π, ξδ(π)) < 1 − ε there must exist some other action taken with chance at least ε/A

yielding continuation belief outside [0, ζ ]. Thus, case (b) holds. �

For the proof of Proposition 4, we first cite the extended (conditional) Second Borel-

Cantelli Lemma in Corollary 5.29 of Breiman (1968): Let Y1, Y2, . . . be any stochastic

process, and Dn ∈ F(Y1, . . . , Yn), the induced sigma-field. Then almost surely

{ω|ω ∈ Dn infinitely often (i.o.)} = {ω|
∞

∑

1

P (Dn+1|Yn, . . . , Y1) = ∞}

Fix an optimal policy ξδ. Choose ε > 0 to satisfy Claim 13 for all actions 1, 2, . . . , A.

For fixed a, define events En = {πn is ε-close to Ja(δ)}, Fn = {ψ(πn, ξ
δ(πn)) < 1− ε}, and

Gn+1 = {|πn+1 − πn| > ε}. If En ∩Fn is true, then Claim 13 scenario (b) must obtain, and

so P (Gn+1|πn) ≥ ε/A. Then
∑

∞

n=1 P (Gn+1|π1, . . . , πn) = ∞ conditional on En ∩ Fn i.o.

By the above Borel-Cantelli Lemma, almost surely Gn obtains i.o. conditional on En ∩Fn

i.o. But since 〈πn〉 almost surely converges by Lemma 10, Gn i.o. is a probability zero

event. By implication, En ∩ Fn i.o. has probability zero.

Consider the event H that 〈πn〉 has a limit in Ja(δ) and En ∩ Fn occurs only finitely

often. By definition, H implies that eventually En ∩ F c
n ∩Gc

n+1. But En ∩ F c
n implies that

every action b 6= a leads to Gn+1, by Claim 13 (a). Action a is then eventually taken on

H . Sum over all a to get a chance one event, by Lemmas 10 and 11. �

A.11 Monotonic Cascade Sets: Proof of Proposition 5

Since Ja(δ2)⊆Ja(δ1) by Claim 6 of §A.7, and Ja(δ1) = {π|vδ1(π)− ūa(π) = 0} is closed by

continuity of vδ1(π) − ūa(π) in π, we need only prove p = inf Ja(δ1) /∈Ja(δ2).

Case 1. Assume that at public belief p and with discount factor δ1, some optimal

rule x̂ does not a.s. take action a. Instead, with positive chance, x̂ takes some action b

producing a posterior q(ak, π, x) not in any δ1-cascade set. [Since a is myopically optimal

at p ∈ Ja(δ1) ⊆ Ja(0), the optimal rule x̂ cannot induce any other myopically suboptimal

action a′ 6= a at a stationary belief.] So from Lemma 13, vδ2(q(b, π, x̂)) > vδ1(q(ak, π, x̂)) ≥
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ūk(q(ak, π, x̂)), and as we can always employ the rule x̂ with the discount factor δ2,

vδ2(p) ≥
∑

aj∈A ψ(aj, p, x̂) [(1 − δ2)ūj(q(aj, p, x̂)) + δ2vδ2(q(aj, p, x̂))]

>
∑

aj∈A ψ(aj, p, x̂) [(1 − δ1)ūj(q(aj, p, x̂)) + δ1vδ1(q(aj, p, x̂))] = vδ1(p)

Consequently, we have vδ2(p) > vδ1(p) = ūa(p) and so p /∈ Ja(δ2).

Case 2. Next suppose that the optimal rule at public belief p with discount factor

δ1 is unique. Then the partial derivative vδ1(p) exists by Lemma 14. By the convexity

of the value function, any selection from the subdifferential ∂v(π) converges to vδ1(p)

as π increases to p. Since the optimal rule correspondence is upper hemicontinuous by

the Maximum Theorem, and uniquely valued at p, the posterior belief q(b, π, ξδ1(π)) is

continuous in π at p for any rule optimal selection ξδ1 and any action b.

Let σ = inf supp(µ) be the lower endpoint of the private belief distribution. As

the optimal rule at p almost surely prescribes action a, we let q(a, p, ξδ1(p)) = p and

q(a′, p, ξδ1(p)) = r(p, σ)[= r]. By their definition, wδ1
a (π, p) and wδ1

a′ (π, p) are then jointly

continuous in (π, p) at (p, σ). [In the expression for wδ1
a′ , m′

a lies between the slopes of

ū1 and ūA, and is multiplied by a function that is continuous and vanishing at (p, σ),

given q(a′, p, ξδ1(p)) = r(p, σ).] Also, wδ1
a (p, σ) ≥ wδ1

a′ (p, σ) since p lies in the cascade

set Ja(δ1), while wδ1
a (π, σ) < wδ1

a′ (π, σ) for π < p, since p is the endpoint of Ja(δ1). So

wδ1
a (p, σ) = wδ1

a′ (p, σ) by continuity. This equality can be rewritten in a very useful form:

ūa(r) − ūa′(r) = δ1
[

ūa(r) − ūa′(r) + vδ1(r) − vδ1(p) −mδ1
a (r − p)

]

(10)

Moreover, from the previous proof of Proposition 1, mδ1
a is the slope of ūa, because the

function ha(ρ) = vδ1(p) +mδ1
a (ρ− p) evaluates the prospect of taking action a forever.

We prove wδ2
a (p, σ) < wδ2

a′ (p, σ), and so conclude p /∈ Ja(δ2). If not, assume wδ2
a (p, σ) ≥

wδ2
a′ (p, σ), i.e. p = inf Ja(δ2). Subtracting wδ1

a (p, σ) ≥ wδ1
a′ (p, σ), we have the contradiction:

0 ≥ [wδ2
a (p, σ) − wδ2

a′ (p, σ)] − [wδ1
a (p, σ) − wδ1

a′ (p, σ)]

= (δ2 − δ1) [ūa(r) − ūa′(r) − vδ1(p)] + δ2vδ2(r) − δ1vδ1(r) − δ2m
δ2
a (r − p) + δ1m

δ1
a (r − p)

> (δ2 − δ1) [ūa(r) − ūa′(r) − vδ1(p)] + δ2vδ1(r) − δ1vδ1(r) − δ2m
δ1
a (r − p) + δ1m

δ1
a (r − p)

= (δ2 − δ1)
[

ūa(r) − ūa′(r) − vδ1(p) + vδ1(r) −mδ1
a (r − p)

]

= (δ2 − δ1) [ūa(r) − ūa′(r)] /δ1 ≥ 0

Indeed, when p ∈ Ja(δ1), one optimal policy ξδ
1 induces a almost surely at belief p, so that
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q(a′, p, ξδ1(p)) = q(p, ξδ2(p), a′) = r. The first equality then follows from (2) for each index,

and vδ2(p) = vδ1(p) when p ∈ Ja(δ1) ∩ Ja(δ2). The second exploits mδ1
a = mδ2

a (true as

both are the slope of ūa), and vδ2(r) > vδ1(r), as given by Lemma 13. The final inequality

follows since p ∈ Ja(δ1) ⊆ Ja(0), so that a is myopically optimal at r.
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