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Abstract. We study the algebraic structure of an I(d) vector
autoregressive process, where d is restricted to be an integer. This
is useful to characterize its polynomial cointegrating relations and
its moving average representation, that is to prove a version of the
Granger representation theorem valid for I(d) vector autoregressive
processes.
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1. Introduction

Since Engle and Granger (1987) introduced the concept of cointe-

gration many scholars have worked in this field either from the Wold

representation of the process (Engle and Granger, 1987, Engle and Yoo,

1991, Phillips, 1991, Gregoire and Laroque, 1993, Stock and Watson,

1993, Gregoire and Laroque, 1994) or from the autoregressive formu-

lation (Johansen, 1988, Ahn and Reinsel, 1990, Johansen, 1992, 1996,

Paruolo, 1996) and have addressed and solved many issues regarding

representation, estimation and inference.

More recently, we find a series of papers dealing exclusively with

the algebraic properties of cointegrated systems which are relevant for

understanding their order of integration and for deriving their differ-

ent representations: Archontakis (1998) discusses the I(1) case through

the Jordan decomposition of the companion form, Haldrup and Salmon
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(1998) use the Smith-McMillan form to characterize I(2) process, la Cour

(1998) gives an algorithm for the I(d) case, Neusser (2000) studies the

I(1) model by means of the Drazin inverse while Faliva and Zoia (2002)

discuss I(1) and I(2) processes using a newly found result on the inver-

sion of partitioned matrices. A general discussion of multiple frequency

unit root processes can be found in Gregoire (1999) and in Bauer and

Wagner (2003).

In this paper we extend the study of the algebraic structure and

thus of the representation theory to I(d) vector autoregressive process,

where d can be any integer. The main difficulty in doing so resides

in establishing the conditions under which the process it is integrated

of the given order d; this is because the standard I(1) and I(2) rank

conditions (see Johansen, 1996) are neither immediately available from

the autoregressive nor from the error correction representation and are

found only when the inversion of the characteristic polynomial is con-

ducted explicitly (see Johansen, 2005, for an exhaustive survey of the

mathematical results concerning the representation theory). When we

want to consider higher order processes the conditions become more

and more involved and it is very hard to be able to isolate them through

direct inversion (an attempt to do so can be found in la Cour, 1998).

Here we proceed differently: starting from the fact that the order of

integration of the process equals the difference between the multiplicity

of the unit root in the characteristic equation and in the adjoint matrix

polynomial (see Franchi, 2006), we use the adjoint matrix to give i)

the Johansen’s rank type condition, ii) the cointegration properties

of the process, and iii) its polynomial cointegrating relations for any

order of integration. This becomes feasible because the study of the

adjoint allows to characterize the inverse without having to perform

the inversion directly.

2. Basics

The definition of order of integration of a stochastic process is

Definition 2.1. The linear process Xt = C(L)εt, εt ∼ i.i.d. is called

I(0) if C(z) =
∑∞

i=0 Ciz
i converges for |z| < 1 + δ for some δ > 0 and

C(1) 6= 0p; if ∆dXt is I(0) then Xt is I(d).

A stationary process is defined as the infinite moving average of an

i.i.d. sequence with coefficients Ci such that its covariance structure
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cov(Xt, Xt+h) =
∑∞

i=0 CiΩC ′
i+h is well defined. Note that by this defi-

nition any invertible MA(∞) is I(0) but also those processes for which

|C(1)| = 0 and C(1) 6= 0 are I(0). In these cases there exist lin-

ear combinations of the original process which have a negative order

of integration, the phenomenon called co-stationarity by Gregoire and

Laroque (1993).

The definitions of cointegration and polynomial cointegration are

Definition 2.2. The I(d) process Xt is cointegrated if there exists β

such that β′Xt is I(b) with b < d. It is polynomially cointegrated if there

exists βk for k = 1, · · · , d, such that
∑d

k=1 β′k∆
k−1Xt is stationary.

As usual we say that a process is cointegrated when it is integrated

of a given order and there exist linear combinations of Xt having a

lower order of integration; we say that it is polynomially cointegrated

when it is possible to define a stationary process by combing linearly

the process at different points in time. Obviously, the lowest order of

integration for which polynomial cointegration arises is two.

We want to study the polynomial cointegration properties of the

integrated process which is defined as the solution of the autoregressive

equation

(2.1) Xt = Π1Xt−1 + Π2Xt−2 + · · ·+ ΠkXt−k + εt

where Xt is p−dimensional and εt is an i.i.d. sequence.

The solution of (2.1) is an integrated process when the roots of the

characteristic equation are either one or lie outside the unit circle, that

is

(2.2) |Π(z)| = (z − 1)mg(z), g(1) 6= 0

where Π(z) = I −∑k
i=1 Πiz

i is the characteristic polynomial of (2.1),

|Π(z)| = det(Π(z)) and the roots of g(z) are all outside the unit circle.

Note that g(1) 6= 0 implies that m > 0 is the multiplicity of the unit

root in the characteristic equation. From |Π(1)| = 0 we have that

rank(Π(1)) = r1 < p and thus that Π(1) can be written as the product

of two p× r1 matrices δ1 and γ1 of full rank r1; that is −δ1γ
′
1 = Π(1).

Before discussing when the solution of (2.1) is integrated of order d,

note that the Taylor series representation of Π(z)

Π(z) =
d−1∑
v=0

Π(v)(1)

v!
(z − 1)v + (1− z)dΠd(z)
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allows us to rewrite (2.1) as

d−1∑
v=0

(−1)v Π(v)(1)

v!
∆vXt + Πd(L)∆dXt = εt

from which we immediately see that since εt is i.i.d. and Πd(L)∆dXt

is a finite moving average of an I(0) process the linear combination∑d−1
v=0(−1)v Π(v)(1)

v!
∆vXt is stationary.

Hence the coefficients in

(2.3) γ′1Xt − δ̄′1

d−1∑
v=1

(−1)v Π(v)(1)

v!
∆vXt

provide the polynomial cointegrating relation in the γ1 direction. As

one can imagine γ1 is one of the many cointegrating vectors of an I(d)

process; it will be clear that the others are derived exactly as this one,

the only difference being that some more algebra is needed to reveal

their coefficients.

3. Order of integration

Let Πa(z) be the adjoint matrix of Π(z); then Franchi (2006) shows

that

Πa(z) = (z − 1)aH(z)

where H(1) 6= 0 and we call a ≥ 0 the multiplicity1 of the unit root in

the adjoint matrix polynomial. The inverse is then equal to

Π(z)−1 =
Πa(z)

|Π(z)| =
H(z)

(z − 1)m−ag(z)
, z 6= {z : |Π(z)| = 0},

where H(1) 6= 0, g(1) 6= 0 and m− a > 0.

It is interesting to see that the reason why the multiplicity of the

unit root in the characteristic equation is not sufficient to determine

the order of integration is simply that the factor z− 1 appears both at

the numerator and at the denominator of Π(z)−1 and cancels. Exactly

as it is in the univariate case the order of integration is equal to the

order of the pole of the inverse function at the unit root. Then what is

important is the difference between the two multiplicities and not the

number of unit roots in the characteristic equation alone. That is, we

have that

1Note that is in the matrix sense, that is the adjoint matrix is zero not only its
determinant.
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Theorem 3.1. The process Xt in (2.1) is integrated of order

d = m− a

where m is the multiplicity of the unit root in |Π(z)| and a is the mul-

tiplicity of the unit root in Πa(z).

Proof. The roots of g(z) being outside the unit circle imply that

the function

C(z) =
H(z)

g(z)
, z 6= {z : g(z) = 0}

is well defined for |z| < 1 + δ for some δ > 0. Thus C(z) =
∑∞

i=0 Ciz
i

converges on the same disc and it is such that C(1) = H(1)
g(1)

6= 0; this

means that ∆m−aXt is I(0) and thus that Xt is integrated of order

d = m− a.

Requiring m− a = 1 or m− a = 2 (see Franchi, 2006) is equivalent

to assume the well known I(1) and I(2) rank conditions in Johansen

(1996). So we replace a statement about the rank of matrix which is not

immediately available from the autoregressive representation with one

on that can be easily computed given Π(z), as the following example

shows.

Example: The matrix polynomial

Π(z) =




1 0 − z
2
(1− z)2

0 1− z 0

− z
2
(1− z) 0 (1− z)3




has determinant

|Π(z)| = (1− z)4(1− z2

4
)

so that m = 4 and g(1) = 3
4
. The adjoint matrix polynomial is

Πa(z) =




(1− z)4 0 z
2
(1− z)3

0 (1− z)3(1− z2

4
) 0

z
2
(1− z)2 0 1− z




so that a = 1, H(1) = diag(0, 0, 1) 6= 0 and the process is I(3).

4. Some interesting algebraic relations

It is the simplification in theorem 3.1 that makes the derivation of

the general result in theorem 4.1 possible; in fact the sequence of rank

conditions we are used to will appear very naturally without performing

the inversion explicitly. The reason being that Π(z)−1 is a scalar times
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H(z) and the relation between Π(z) and H(z) is incorporated in the

identity Π(z)Πa(z) = Πa(z)Π(z) = |Π(z)|I, which is now written as

(4.1) Π(z)H(z) = H(z)Π(z) = (z − 1)dg(z)I.

At the unit root this expression is δ1γ
′
1H(1) = H(1)δ1γ

′
1 = 0 and

since H(1) 6= 0 it implies

(4.2) H(1) = γ1⊥φ1δ
′
1⊥

for some φ1 6= 0. Since H(z) = H(1) + (z − 1)H1(z) for some finite

matrix polynomial H1(z) we can write

Π(z)−1 =
γ1⊥φ1δ

′
1⊥

(z − 1)dg(z)
+

H1(z)

(z − 1)d−1g(z)
, z 6= {z : |Π(z)| = 0},

from which we immediately see that γ1 is a cointegrating vector since

γ′1Π(z)−1 has at most a pole of order d− 1 at the unit root. Obviously

a vector β can be cointegrating if and only if it is such that β′H(1) = 0.

In theorem 4.1 we will show (see (4.6), (4.8) and (4.9)) that for an

I(d) process, H(1) has the following nested structure

H(1) = γ1⊥ · · · γd⊥φdδ
′
d⊥ · · · δ′1⊥,

where φd is the full rank matrix which provides the Johansen’s rank

condition for the order of integration and δs and γs are defined by the

reduced rank nature of specific matrices (see (4.5) and (4.7)). So we are

basically extending what we already know for I(1) and I(2) processes,

the main difficulty being that we need to keep track of the evolution of

the reduced rank matrices that define the sequence of δs and γs.

Once we understand H(1) we understand cointegration; in fact the

cointegrating vectors are simply given by βs = γ̄1⊥ · · · γ̄s−1⊥γs. The

polynomial cointegration properties of the process will instead be un-

derstood by studying the term β′sH1(z) (see (4.4)).

Since (z − 1)dg(z)I needs to be differentiated at least d times to be

different from zero at z = 1, the derivative of order n of (4.1) at z = 1

immediately gives the following relations2

(4.3)

−δ1γ
′
1H

(n) +
n∑

v=1

(
n

v

)
Π(v)H(n−v) =

{
0 if n = 1, · · · , d− 1

d!gI if n = d.

2For notational convenience we write Π, H and g instead of Π(1), H(1) and
g(1); similarly, we also drop the reference to one in the derivatives, that is we let
Π(n) = dn

dzn Π(z)
∣∣
z=1

and H(n) = dn

dzn H(z)
∣∣
z=1

. When convenient we write Π̇ and
Π̈ for first and second derivatives.
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The manipulation of this expression yields i) the Johansen’s rank

type condition for the order of integration (see (4.8)), ii) the cointe-

gration properties of the process (see (4.9)), and iii) its polynomial

cointegration properties (see (4.4)). The main algebraic results are

collected in the following theorem.

Theorem 4.1. Let m − a = d, n = 1, · · · , d − 1, s = 1, · · · , n and

ns = n + 1− s; then

(4.4) β′sH
(ns) = ᾱ′s

ns∑
v=1

(
ns

v

)
θs

vH
(ns−v)

where βs = ζ̄s−1γs, ζs = ζs−1γs⊥, αs = η̄s−1δs, ηs = ηs−1δs⊥ and η0 =

ζ0 = I; φ1 in (4.2) and the coefficients in (4.4) are defined by the

recursion

(4.5) −δs+1γ
′
s+1 = η′sθ

s
1ζs

and

(4.6) γs+1⊥φs+1δ
′
s+1⊥ = φs

where

(4.7) θ1
v = Π(v) and θs

v = θs−1
1

s−1∑
j=1

β̄jᾱ
′
jθ

j
v +

θs−1
v+1

v + 1
for s 6= 1.

The recursion ends with

(4.8) φd = g(η′dθ
d
1ζd)

−1

being full rank and then

(4.9) H = ζdφdη
′
d.

Proof. See Appendix.

Some interesting features of the result should be considered: first

of all note that as long as s < d, δ′s⊥ · · · δ′1⊥θs
1γ1⊥ · · · γs⊥ in (4.5) has

reduced rank and thus it can be written as the product of two non

square matrices δs+1 and γs+1 that span the same lower dimensional

space generated by the matrix. When s = d (see (4.8)) the matrix

η′dθ
d
1ζd is full rank, it spans the full space in which it lives and no

additional smaller base can be defined.

The main difficulty in getting these rank properties correctly resides

in the fact that it requires to look at the right matrices (the θs
1) in the

right coordinates (the ηs and ζs) and the evolution of θs
1 is not trivial
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(see (4.7)). These rank conditions are very important because they

define the sequence of coefficients that will be used for cointegration

and polynomial cointegration.

In theorem 5.2 we will show that the polynomial cointegration prop-

erties can be fully understood from (4.4). Even more simply, from (4.9)

we immediately see that βs = ζ̄s−1γs is a cointegrating vector (see the-

orem 5.1): the nested structure of H = γ1⊥γ2⊥ · · · γd⊥φdη
′
d defines the d

directions in which linear combinations of the process have lower order

of integration. The first ones lie in the space which is orthogonal to

sp(γ1⊥), the second ones lie in that part of sp(γ1⊥) which is orthogonal

to sp(γ2⊥), the third ones lie in that part of sp(γ2⊥) which is orthog-

onal to sp(γ3⊥), and so on. At any round we split the space spanned

by sp(γs−1⊥) into the two orthogonal subspaces given by sp(γs) and

sp(γs⊥) and use the first direction for βs and part of the second one for

βs+1. We keep on splitting smaller and smaller spaces until we reach

the full rank matrix φd which fills up all the space in which it lives and

no other cointegrating vector can be defined.

Before discussing the stochastic counterpart of these algebraic re-

sults, let us see how they specialize in the I(1) and I(2) cases; from

(4.7) we have that θ1
1 = Π̇ and θ2

1 = Π̇γ̄1δ̄
′
1Π̇+ Π̈

2
, thus when d = 1 (4.8)

gives

|δ′1⊥Π̇γ1⊥| 6= 0

which is the well known I(1) condition; when d = 2 (4.5) defines

−δ2γ
′
2 = δ′1⊥Π̇γ1⊥

and from (4.8) we know that

(4.10) η′2θ
2
1ζ2 = δ′2⊥δ′1⊥{Π̇γ̄1δ̄

′
1Π̇ +

Π̈

2
}γ1⊥γ2⊥

is full rank, which is the usual I(2) condition. Then (4.9) gives

H = γ1⊥φ1δ
′
1⊥

with |φ1| 6= 0 in the first case and

H = γ1⊥γ2⊥φ2δ
′
2⊥δ′1⊥

with |φ2| 6= 0 in the second.
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5. The stochastic counterpart

Theorem 5.1 (Cointegration). The vectors βs, s = 1, · · · , d, in theo-

rem 4.1 (and no others) are the cointegrating vectors.

Proof. From ζd = ζs−1γs⊥ · · · γd⊥, βs = ζ̄s−1γs and H = ζdφdη
′
d it

follows that β′sH = 0; then β′sΠ(z)−1 has a pole at most of order d− 1

at z = 1 and the process β′sXt is integrated of order b < d.

An I(d) process is such that there are d directions in which linear

combinations of Xt have a lower order of integration and these are

given by β1, β2, · · · , βd as defined in theorem 4.1. When d = 1 the

only cointegrating relation is given by γ′1Xt and the process is directly

reduced to stationary; when d = 2 both γ′1Xt and γ′2γ̄
′
1⊥Xt are I(1)

processes. The important difference among the βs can be appreciated

only when we consider the polynomial cointegrating relations. The

reason being that depending on which direction we choose the order of

integration can be reduced differently. Think about the well known I(2)

case: in the β1 = γ1 direction we can combine the two I(1) processes

γ′1Xt and ∆Xt in such a way that their linear combination is stationary

but no such way exists in the β2 = γ̄1⊥γ2 direction where the only way

of reducing γ′2γ̄
′
1⊥Xt to stationarity is by differentiation.

This is exactly what happens in the general case (see theorem 5.2):

in the β1 direction we can go from I(d) to stationarity by taking linear

combinations, in the β2 direction from I(d) to I(1) by linear combina-

tions and then to stationarity by first differences, in the β3 direction

from I(d) to I(2) and then use ∆2 to achieve stationarity, and so on

until the βd direction in which no linear combination can reduce the

order of integration and we must use ∆d−1 to achieve stationarity.

As theorem 5.2 makes clear this is the consequence of the algebraic

relations among the derivatives of H(z) which are described in (4.4).

Theorem 5.2 (Polynomial cointegration). Let αs, βs and θs
v be as in

theorem 4.1 and ψs
v = (−1)v

v!
θs

v; then the process

β′s∆
s−1Xt − ᾱ′s

d−s∑
v=1

ψs
v∆

v+s−1Xt, s = 1, · · · , d

is stationary.

Proof. See Appendix.
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Note that for s = 1 the polynomial cointegrating relation β′1Xt −∑d−1
v=1 ψ1

v∆
vXt is nothing but

γ′1Xt − δ̄′1

d−1∑
v=1

(−1)v Π(v)

v!
∆vXt

which was derived in (2.3) applying the balancing argument. While

these coefficients were immediately available from the outset of the

analysis, αs, βs and ψs
v have required some manipulations to be re-

vealed.

Now we state the general representation theorem.

Theorem 5.3 (Representation of integrated processes). Let Xt in

(2.1) be I(d), the coefficients as in theorem 4.1, ψs
v = (−1)v

v!
θs

v and

s = 1, · · · , d; then Xt has the representation

(5.1) Xt = CdS
d
t + · · ·+ C1S

1
t + Cd(L)εt + A

where Sb
t ∼ I(b) is obtained by cumulating b times εt, Cd(L)εt is sta-

tionary, A depends on initial values, and

(5.2) Cd = (−1)d H

g
= (−1)dζd(η

′
dθ

d
1ζd)

−1η′d.

Moreover, βs is a cointegrating vector and

(5.3) β′s∆
s−1Xt − ᾱ′s

d−s∑
v=1

ψs
v∆

v+s−1Xt

is a polynomial cointegrating relation.

Proof. Since Π(z)−1 has a pole of order d at z = 1 its Laurent

expansion is given by

Π(z)−1 =
d−1∑
v=0

Cd−v

(1− z)d−v
+ L(z)

where

Cd−v = (−1)d−v dv

dzv

H(z)

g(z)

∣∣∣∣
z=1

and L(z) converges for |z| < 1 + δ for some δ > 0; thus (5.1) and (5.2)

follow. The cointegration and polynomial cointegration properties were

proved in theorems 5.1 and 5.2.

From the moving average representation in (5.1) we see that Xt is

composed of I(1) up to I(d) processes which are generated by cumulat-

ing εt plus a stationary infinite moving average part given by Cd(L)εt.
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Each of the non stationary components is loaded into Xt through the

corresponding C coefficient and in (5.2) we give the explicit expression

of Cd, which defines the cointegrating relations βs. The other C coef-

ficients are more complicated and not very interesting in themselves;

what is important is to understand which linear combinations of the

process are stationary. These are the polynomial cointegrating rela-

tions described in (5.3) which state that the processes

β′1Xt − ᾱ′1
∑d−1

v=1 ψ1
v∆

vXt,

β′2∆Xt − ᾱ′2
∑d−2

v=1 ψ2
v∆

v−1Xt,

...

β′d−1∆
d−2Xt − ᾱ′d−1ψ

d−1
1 ∆d−1Xt,

and

β′d∆
d−1Xt

are stationary. So we see that in the β1 direction we can combine the

process in such a way that we go from I(d) to stationarity, in the β2

direction from I(d) to I(1) by polynomial cointegration and then to

stationarity by first differences, in the β3 direction from I(d) to I(2)

and then to stationarity by ∆2, and so on up to the βd direction in

which no polynomial cointegration is present we must use ∆d−1 to

achieve stationarity.

Note that the result specializes for d = 1 into

Xt = C1

t∑
i=1

εi + C1(L)εt + A

where

C1 = −γ1⊥(δ′1⊥Π̇γ1⊥)−1δ′1⊥

and

γ′1Xt

being stationary and for d = 2 into

Xt = C2

t∑
j=1

j∑
i=1

εi + C1

t∑
i=1

εi + C2(L)εt + A

where

C2 = γ1⊥γ2⊥(η′2θ
2
1ζ2)

−1δ′2⊥δ′1⊥

and

γ′1Xt + δ̄′1Π̇∆Xt and γ′2γ̄
′
1⊥∆Xt
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being stationary. These are the well known results for I(1) and I(2)

processes (see Johansen, 1996).

6. An example: the representation of I(3)

As a Corollary to Theorem 4.1 we have that

Corollary 6.1. Let

Π = −αβ′,

α′⊥Π̇β⊥ = ξη′, and

α′2θβ2 = γλ′

where γ and λ are p − r − s × u matrices of full rank u < p − r − s,

β2 = β⊥η⊥, α2 = α⊥ξ⊥, and θ = Π̈
2

+ Π̇β̄ᾱ′Π̇.

The I(3) rank condition is

|α′3θ1β3| 6= 0

where

α3 = α⊥ξ⊥γ⊥,

β3 = β⊥η⊥λ⊥,

θ1 =

...
Π

6
+ Π̇β̄ᾱ′

Π̈

2
+ θβ̄ᾱ′Π̇− θβ̄1ᾱ

′
1θ, and

β1 = β̄⊥η, α1 = ᾱ⊥ξ.

Moreover,

β′Ḣ = ᾱ′Π̇H,(6.1)

β′Ḧ = ᾱ′Π̈H + 2ᾱ′Π̇Ḣ(6.2)

β′1Ḣ = −ᾱ′1θH, and(6.3)

H = β⊥η⊥λ⊥φγ′⊥ξ′⊥α′⊥, φ = (α′3θ1β3)
−1g.(6.4)

The moving average representation is

Xt = C3S
3
t + C2S

2
t + C1S

1
t + C3(L)εt + A

where

C3 =
H

g
, C2 =

Ḣ

g
− ġ

g
C3, and C1 =

Ḧ

2g
− ġ

g
C2 − g̈

2g
C3.

By (6.4) we have

β′C3 = 0, η′β̄′⊥C3 = 0, and λ′η̄′⊥β̄′⊥C3 = 0
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and by (6.1), (6.2), and (6.3) that

β′C2 = ᾱ′Π̇C3,(6.5)

β′C1 = ᾱ′
Π̈

2
C3 + ᾱ′Π̇C2, and(6.6)

β′1C2 = −ᾱ′1θC3.(6.7)

Thus cointegration and polynomial cointegration occur in the follow-

ing way:

Corollary 6.2 (Polynomial cointegration in I(3) systems). Let Xt be

I(3) and λ′1 = λ′η̄′⊥β̄′⊥; then

i) β′Xt, β′1Xt and λ′1Xt are I(2),

ii) β′1Xt + ᾱ′1θ∆Xt is I(1), and

iii) β′Xt − ᾱ′Π̇∆Xt − 1
2
ᾱ′Π̈∆2Xt is I(0).

7. Conclusion

We prove the Granger representation theorem for I(d) vector autore-

gressive processes and characterize the cointegration and polynomial

cointegration properties of such processes.
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Appendix

Proof of Theorem 4.1. The proof of (4.4) - (4.7) is by induction

on s, so we begin by proving that the result holds for s = 1.

For convenience here we write (4.3)

(7.1) −δ1γ
′
1H

(n) +
n∑

v=1

(
n

v

)
Π(v)H(n−v) = 0, n = 1, · · · , d− 1.

Pre-multiply it by δ̄′1, let β1 = γ1, α1 = δ1, n1 = n and θ1
v = Π(v); then

we have

(7.2) β′1H
(n1) = ᾱ′1

n1∑
v=1

(
n1

v

)
θ1

vH
(n1−v)

which shows that (4.4) and (4.7) hold for s = 1.

To see that also (4.5) and (4.6) hold, write (7.1) for n = 1 and use

H = γ1⊥φ1δ
′
1⊥, φ1 6= 0 to have

−δ1γ
′
1Ḣ + θ1

1γ1⊥φ1δ
′
1⊥ = 0,

pre and post-multiply it by δ′1⊥ and δ̄1⊥, let η1 = δ1⊥ and ζ1 = γ1⊥ to

get

η′1θ
1
1ζ1φ1 = 0.

Since |η′1θ1
1ζ1| 6= 0 contradicts φ1 6= 0, η′1θ

1
1ζ1 must be of reduced rank

and thus it can be written as the product of two non square matrices

(7.3) −δ2γ
′
2 = η′1θ

1
1ζ1.

Then δ2γ
′
2φ1 = φ1δ2γ

′
2 = 0 follow from the identities in (4.1) and imply

γ2⊥φ2δ
′
2⊥ = φ1

for some φ2 6= 0 and H = γ1⊥γ2⊥φ2δ
′
2⊥δ′1⊥ = ζ2φ2η

′
2. This completes

the proof of the statement for s = 1.

To see how the proof works in general we now discuss the case s = 2;

the second derivative of (4.1) at z = 1 is

ΠḦ + 2Π̇Ḣ + Π̈H = 0

that is (see (7.10) below)

−δ1γ
′
1Ḧ + 2θ1

1Ḣ + θ1
2H = 0.

Pre-multiplying it by η′1 = δ′1⊥ we have that (see (7.11) below)

(7.4) 2η′1θ
1
1Ḣ + η′1θ

1
2H = 0
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and by the identity I = γ1⊥γ̄′1⊥ + γ̄1γ
′
1 = ζ1ζ̄

′
1 + β̄1β

′
1 we write

η′1θ
1
1Ḣ = η′1θ

1
1ζ1ζ̄

′
1Ḣ + η′1θ

1
1β̄1β

′
1Ḣ.

By (7.3) we have that

η′1θ
1
1ζ1ζ̄

′
1Ḣ = −δ2γ

′
2ζ̄
′
1Ḣ

and by (7.2) for n1 = 1 that

β′1Ḣ = ᾱ′1θ
1
1H

which means that

η′1θ
1
1β̄1β

′
1Ḣ = η′1θ

1
1β̄1ᾱ

′
1θ

1
1H.

Setting β2 = ζ̄1γ2, we then have that

η′1θ
1
1Ḣ = −δ2β

′
2Ḣ + η′1θ

1
1β̄1ᾱ

′
1θ

1
1H

which implies that (7.4) can be written as (see (7.12) below)

(7.5) −δ2β
′
2Ḣ + η′1θ

2
1H = 0

where

θ2
1 = θ1

1β̄1ᾱ
′
1θ

1
1 +

θ1
2

2
.

Pre-multiplying (7.5) by δ̄′2 and setting ᾱ2 = η1δ̄2, we see that (see

(7.13) below)

β′2Ḣ = ᾱ′2θ
2
1H.

Now pre and post-multiply (7.5) by δ′2⊥ and η̄2 and use H = ζ2φ2η
′
2

to get

η′2θ
2
1ζ2φ2 = 0.

Since |η′2θ2
1ζ2| 6= 0 contradicts φ2 6= 0, η′2θ

2
1ζ2 must have reduced rank

and thus it can be written as

−δ3γ
′
3 = η′2θ

2
1ζ2.

Then δ3γ
′
3φ2 = φ2δ3γ

′
3 = 0 follow from the two versions of the identity

(4.1) and imply

γ3⊥φ3δ
′
3⊥ = φ2

for some φ3 6= 0. This completes the proof of the statement for s = 2.

Now we show that if the statement holds for s = 1, · · · , k then

it holds for s = k + 1 for any k. Let βk = ζ̄k−1γk, ζk = ζk−1γk⊥,
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ᾱk = ηk−1δ̄k, ηk = ηk−1δk⊥, nk = n + 1 − k and write (4.4) - (4.7) for

s = k; that is

(7.6) β′kH
(nk) = ᾱ′k

nk∑
v=1

(
nk

v

)
θk

vH
(nk−v),

(7.7) −δk+1γ
′
k+1 = η′kθ

k
1ζk,

(7.8) γk+1⊥φk+1δ
′
k+1⊥ = φk,

and

(7.9) θk
v = θk−1

1

k−1∑
j=1

β̄jᾱ
′
jθ

j
v +

θk−1
v+1

v + 1
.

Substituting ᾱk = ηk−1δ̄k into (7.6) we see that

(7.10) −δkβ
′
kH

(nk) + η′k−1

nk∑
v=1

(
nk

v

)
θk

vH
(nk−v) = 0

and by pre-multiplying it by δ′k⊥, letting ηk = ηk−1δk⊥, changing index

in the summation, and using nk+1 = nk − 1 that

(7.11)

(
nk

1

)
η′kθ

k
1H

(nk+1) + η′k

nk+1∑
v=1

(
nk

v + 1

)
θk

v+1H
(nk+1−v) = 0.

By the identity I = ζkζ̄
′
k +

∑k
j=1 β̄jβ

′
j we write

η′kθ
k
1H

(nk+1) = η′kθ
k
1ζkζ̄

′
kH

(nk+1) + η′kθ
k
1

k∑
j=1

β̄jβ
′
jH

(nk+1);

by (7.7) we have that

η′kθ
k
1ζkζ̄

′
kH

(nk+1) = −δk+1γ
′
k+1ζ̄

′
kH

(nk+1)

and by (4.4) for j = 1, · · · , k that

β′jH
(nk+1) = ᾱ′j

nk+1∑
v=1

(
nk+1

v

)
θj

vH
(nk+1−v)

which means that

η′kθ
k
1

k∑
j=1

β̄jβ
′
jH

(nk+1) = η′kθ
k
1

k∑
j=1

β̄jᾱ
′
j

nk+1∑
v=1

(
nk+1

v

)
θj

vH
(nk+1−v).

Rearranging terms and setting βk+1 = ζ̄kγk+1, we then have that

η′kθ
k
1H

(nk+1) = −δk+1β
′
k+1H

(nk+1)+η′k

nk+1∑
v=1

(
nk+1

v

)
θk
1

k∑
j=1

β̄jᾱ
′
jθ

j
vH

(nk+1−v)
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which implies that (7.11) can be written as

(7.12) −δk+1β
′
k+1H

(nk+1) + η′k

nk+1∑
v=1

(
nk+1

v

)
θk+1

v H(nk+1−v) = 0

where

θk+1
v = θk

1

k∑
j=1

β̄jᾱ
′
jθ

j
v +

θk
v+1

v + 1

and hence (4.7) holds for s = k + 1.

Pre-multiplying (7.12) by δ̄′k+1 and setting ᾱk+1 = ηkδ̄k+1, we see

that

(7.13) β′k+1H
(nk+1) = ᾱ′k+1

nk+1∑
v=1

(
nk+1

v

)
θk+1

v H(nk+1−v)

which is (4.4) for s = k + 1.

To see that also (4.5) and (4.6) hold for s = k + 1, note that the

repeated application of (7.8) implies H = ζk+1φk+1η
′
k+1; now let nk+1 =

1 in (7.12), pre and post-multiply it by δ′k+1⊥ and η̄k+1 to get

η′k+1θ
k+1
1 ζk+1φk+1 = 0.

Since |η′k+1θ
k+1
1 ζk+1| 6= 0 contradicts φk+1 6= 0, η′k+1θ

k+1
1 ζk+1 must have

reduced rank and thus it can be written as

−δk+2γ
′
k+2 = η′k+1θ

k+1
1 ζk+1

proving that (4.5) holds for s = k+1. Then δk+2γ
′
k+2φk+1 = φk+1δk+2γ

′
k+2 =

0 follow from the two versions of the identity (4.1) and imply

γk+2⊥φk+2δ
′
k+2⊥ = φk+1

for some φk+2 6= 0, which is (4.6) for s = k + 1. Then (4.4) - (4.7) hold

for s = k + 1 and the induction part of the proof is complete.

To see that (4.8) is true, note that using the previous recursion the

derivative of order d can be written as

−δdγ
′
dḢ + η′d−1θ

d
1H = gI.

Pre-multiplying by δ′d⊥ and using ηd = ηd−1δd⊥, we have η′dθ
d
1H = gδ′d⊥.

Since H = ζdφdη
′
d and δ′d⊥η̄d = I, post-multiplication by η̄d turns it

into

η′dθ
d
1ζdφd = gI

and the proof is complete.
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Proof of Theorem 5.2. The Taylor expansion of H(z) at z = 1

is written as

H(z) =
d−s∑
v=0

H(v)

v!
(z − 1)v + (z − 1)d−s+1A(z)

and then

(7.14) β′sH(z) = β′s

d−s∑
v=1

H(v)

v!
(z − 1)v + (z − 1)d−s+1β′sA(z)

follows from β′sH = 0.

Using (4.4) and rearranging terms, we have that

β′s

d−s∑
v=1

H(v)

v!
(z − 1)v = ᾱ′s

d−s∑
v=1

θs
v

v!

d−s∑

k=v

H(k−v)

(k − v)!
(z − 1)k

and since

(z − 1)vH(z) =
d−s∑

k=v

H(k−v)

(k − v)!
(z − 1)k + (z − 1)d−s+1B(z)

we have that

β′s

d−s∑
v=1

H(v)

v!
(z − 1)v = ᾱ′s

d−s∑
v=1

θs
v

v!
(z − 1)vH(z) + (z − 1)d−s+1C(z).

Then (7.14) is rewritten as

(7.15) {β′s − ᾱ′s

d−s∑
v=1

θs
v

v!
(z − 1)v}H(z) = (z − 1)d−s+1D(z).

Dividing both sides of (7.15) by (z − 1)dg(z) we have that

{β′s − ᾱ′s

d−s∑
v=1

θs
v

v!
(z − 1)v}Π(z)−1 =

D(z)

(z − 1)s−1g(z)

which means that

(z − 1)s−1{β′s − ᾱ′s

d−s∑
v=1

θs
v

v!
(z − 1)v}Π(z)−1

has no pole at z = 1. Since the difference operator is defined as ∆ =

1−L we use (−1) to turn z− 1 into 1− z and the proof is complete.
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