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Abstract   Greater complexity in renewable resource models is achieved by ac-
knowledging that species interact through a predator-prey relationship in which
both species are harvested. The price of greater complexity is that traditional
concepts, such as maximum sustained yield (MSY), have to be revised dramati-
cally. Moreover, having chosen greater complexity, fishery biologists and other
researchers must choose an explicit value for each fish, a rate of exchange of
one species for every other species. Policy makers and social scientists in Tan-
zania, Kenya, and Uganda with a keen interest in Lake Victoria fisheries regard
the resource as a tool for furthering socioeconomic goals, such as foreign ex-
change earnings, employment for women, and nutrition. Comparative analysis
allows policy makers to understand the consequences of choosing these goals in
addition to economically efficient resource use. Foreign exchange earnings, em-
ployment for women, and healthy people are other goals promulgated by
Tanzania, Kenya, and Uganda in the management of Lake Victoria Fisheries. The
conflicts among social goals are evident in the bioeconomic predator-prey model: a
goal favoring a particular species reduces the sustainable harvest of another spe-
cies. Data from Kenya are used to estimate the population dynamics equations.
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Introduction

Lake Victoria, the second largest freshwater lake in the world, supports a rich fish-
ery that comprises hundreds of species. Two interdependent species account for
more than 88% of the harvest value in a recent, representative year. They are the
Nile perch (Lates niloticus) and dagaa (Rastrineabola argentia).
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Although perch and dagaa provide quite different service flows, not surprisingly
there is no discernible integrated fisheries management policy. Perch frequently
have been harvested in weights exceeding 50 kilos, pass through a relatively capital-
intensive process, and are principally exported to Europe. In sharp contrast, the
dagaa are basically sardines that are predated by the perch and harvested by an
artisanal fishery. Dagaa are marketed locally by women and provide nutrition to a
markedly undernourished population (Kulindwa, Ikiara, and Kazoora 2001).

Natural scientists have studied multiple interacting species (Larkin 1966; May
1974; Pielou 1969; Maynard-Smith 1974; Mercer 1982; and Yodzis 1994) but there
has been less study of multiple species in an economic optimization framework, par-
ticularly from a bioeconomic perspective. An important exception is the
development of the Ecosim model (Walters, Christensen, and Pauly 1997; Pitcher
and Cochrane 2002). In this model, the objective function is a weighted linear ag-
gregation of net present value or its log, an employment goal (jobs/value landed), a
population-rebuilding target, and a measure of ecological stability. Applied applica-
tions of Ecosim we have seen exhibit l inear harvest costs; that is,  no stock
externalities, an assumption maintained in the model presented infra.

Multiple-species models are not generous in the analytical results produced.
Clark (1990) concludes that while optimal steady-state values often can be deter-
mined, exact solutions for the optimal path to the steady state are not known and
may not exist for some problems. The simpler the model, the more likely clean re-
sults will emerge. Solow’s (1976) analysis of a Volterra model is insightful, but the
model has no intraspecific competition; that is, natural resource capital has no di-
minishing returns. Still, he concludes that even in the two-species models, there are
no easily obtained qualitative results resembling those gleaned from single-species
models.

Wilen and Brown (1986) make some progress in characterizing the solution to a
predator-prey optimization problem. Modest success comes at the cost of assuming a
unidirectional-coupled system. The lower organism enhances the growth of the up-
per-level organism, but the predator has no effect on the prey. This assumption
seems to be rather strong and is not empirically credible for the perch-dagaa popula-
tion dynamics in Lake Victoria. Ragozin and Brown (1985) established the existence
of a steady state and described the unique approach to it for a predator-prey system
in which only the predator species is harvested. See also Kaplan and Smith (2001)
for a similar formulation to handle an endangered predator.

Sumaila (1997) formulated a predator-prey model through a “numerical proce-
dure,” applied it to the cod and capelin fishery in the Barents Sea, and compared the
cooperative and non-cooperative solutions. It is a multi-cohort, age-structured
model with a different predator-prey structure, so comparisons with the fisheries in
this study are not directly relevant. Fischer and Mirman (1992) also compare coop-
erative with non-cooperative solutions in an analytical model where the population
dynamics of two species are characterized by Cobb-Douglas production functions.1

Here the emphasis is on analyzing the stability of equilibrium for alternative market
structures and species interaction specifications.

Finnoff and Tshchirhart (2003) have taken a novel approach in their study of
predator-prey relationships. They model a food web system with energy units ac-
quired and consumed as prices and do comparative statics with these prices. They
then add a human harvester and regulator in the applied model with the focus on the

1 There is a literature combining predator-prey relations with spatial dimensions. See Supriatna and
Possingham (1999) and references cited. The conclusions drawn bear on specific spatial features of the
model assumed, so comparisons with this study are not evident.
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pollock fishery. Alternative steady-state pollock populations chosen create alterna-
tive steady-state populations for the seven other species in the food web.

The analytical bioeconomic model most resembling the one developed in this
paper follows Hannesson (1983),  who focused on the role of the discount rate in op-
timal solutions and on the possibilities of extinction. Alternatively, this study
focuses on the roles prices have on optimal solutions (Brown, Berger, and Ikiara
2005). This is because policy makers often pursue one or more non-efficiency objec-
tives without understanding the more subtle ramifications of market distorting
policies, which are distinct from the efficiency losses generated by the policies. Har-
vested perch pass through a relatively capital-intensive preparation process and are
principally exported to Europe. Perch sales produce foreign exchange, a highly de-
sired objective by those who can use instruments like export subsidies to distort the
price of perch. However, there is a feedback mechanism in the predator-prey model
that can cause the steady-state harvest of dagaa to decrease when the price of perch
increases. Dagaa are less capital intensive and a key component of artisanal commu-
nities. Additionally, dagaa provide nutrition to a population with substantial food
deficiency.

Under what bioeconomic conditions in a predator-prey model does the promul-
gation of one goal achieved by increasing harvest of one species (e.g. , increased
foreign exchange earnings) cause a diminution in other socio-political success indi-
cators related to the decrease in the harvest (increased price) of the other species?
This study addresses this question by developing a dynamic model for an actual
fishery. In addition, this paper further contributes to the predator-prey literature by
deriving comparative equilibrium static results for all the biological and economic
parameters. After computing optimal solutions, we estimate the private opportunity
cost harvesters would forgo during a recovery period to achieve the socially optimal
level of stocks and harvests for each species.

The Model

Perch (predator) population dynamics follows the Lotka-Volterra formulation:

dR

dt
= ˙ R = f (R) − h1 + αRD, (1.1)

′ f (R) > 0  for R < Rmsy , ′ f (R) R=Rmsy
= 0,

where R = the stock of perch at time t; time subscripts are suppressed, h1 = harvest
of perch, D = the stock of dagaa, and MSY = maximum sustained yield (single stock
definition).

The dagaa enter the perch population dynamics linearly. α is the effect of a unit
change in dagaa on the percent growth rate of perch. Obviously, linear interaction
terms between predator and prey are not the only way to characterize multi-species
population dynamics but are quite common.2

2 Biologists using linear interaction terms in predator-prey models include Larkin (1966) and May
(1974). Clark (1990) cites and uses the Lotka and Volterra equations in his analysis of predator-prey dy-
namics. See also Hilborn and Walters (1992) and Walters (1986). Walters (1986) shows that in a purely
biological model with no harvester behavioral response functions “an apparently minor change in func-
tional assumptions, such as the possibility of predator-satiation of prey, leads to qualitatively different
predictions” (p. 99).
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Assuming the underlying population dynamics for the perch is logistic:

˙ R = r1R 1 −
R

R 

 
  

 
  − h1 + αRD, (1.2)

where r1 = the intrinsic rate of growth for the perch, and R  = the carrying capacity
for the perch (single-stock definition). The logistic is introduced for illustrative pur-
poses, but both biological and economic reasoning require any candidate growth
function to exhibit diminishing returns.

Dagaa (prey) population dynamics are specified as:

dD

dt
= ˙ D = g(D) − h2 − βDR, (2.1)

dg

dD
> 0 for D < Dmsy ,  

dg

dD
D=Dmsy

= 0,

where h2 = harvest of dagaa.
Adopting the logistic form again:

˙ D = r2D 1 −
D

D 

 
  

 
  − h2 − βDR, (2.2)

where β is a measure of the attack rate or searching efficiency of the predator. The
parameters α and β are referred to as “mass action” terms. The populations interact
randomly in proportion to population density as in random contacts in chemical re-
actions. The linear term in equation (1.2) can be written as κβRD, where κ  = (α/β)·κ is
a measure of how efficiently prey are converted into predator biomass. In this primi-
tive model, it is assumed that the marginal cost of harvest is constant (perhaps 0),
independent of population size. The goal in the introductory model is to maximize
the present value of profit (II):

Π = e−ρt

0

∞

∫ P1h1 + P2h2[ ]dt,

where ρ  = the discount rate and Pi = the unit profit of harvested fish, i = 1(perch),
2(dagaa).

It is understood that harvest cannot exceed a certain maximum:

0 ≤ h1 ≤ h1max

0 ≤ h2 ≤ h2max,

at any moment, an assumption made for mathematical convenience.
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Forming the current value Hamiltonian for the simple maximization problem:

H = P1h1 + P2h2 + λ1 f (R) − h1 + αRD[ ] + λ2 g(D) − h2 − βDR[ ], (3)

with λ1 and λ2 the adjoint variables for equations (1.1) and (2.1).
For a maximum of H, either we use the following bang bang controls:

h1 = 0 if λ1 > P1, (3.1)

h1 = h1max if λ1 < P1 ,

h2 = 0 if λ 2 > P2 , (3.2)

h2 = h2max if λ2 < P1 ,

or singular controls when:

λ1 = P1 , (3.3)

λ 2 = P2 . (3.4)

The adjoint equations are:

˙ λ 1 − ρλ1 = −λ1 ′ f (R) + αD[ ] + λ2βD, (4.1)

˙ λ 2 − ρλ 2 = −λ 2 ′ g (D) − βR[ ] − λ1αR. (4.2)

In a steady-state interior equilibrium, from equations (4.1), (4.2), (3.3), and
(3.4):

ρ = ′ f (R) + αD −
P2

P1

βD , (5.1)

ρ = ′ g (D) − βR +
P1

P2

αR. (5.2)

In equilibrium, according to the right-hand side of equations (5.1) and (5.2), the real
marginal rate of return on each species has to earn the market rate of return (ρ).

It will be useful in subsequent analysis to rewrite equations (5.1) and (5.2) as:

ρ = ′ f (R) + (αP1 − βP2 )
D

P1

, (5.1g′)

ρ = ′ g (D) + (αP1 − βP2 )
R

P2

. (5.2g′)

The terms to the right of f′(R) and g′(D) arise from the predator-prey relation and
can be thought of as a biological technical externality. These additional terms vanish
when the species’ interaction coefficients are equal to zero. Just as the traditional
stock externality (unit harvest cost falls as stock increases) has economic param-
eters, so too does the technical externality with the common terms, αP1 – βP2, in
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each equation. When αP1 – βP2 > 0, the technical externality is positive, meaning
that both optimal steady- state perch and dagaa stocks are larger than for a model
with independent stocks (α = β = 0).

To further understand the biological technical externality, rewrite the inequality
as P1(α/β) = P1κ > P2. The left-hand side is the value of the marginal product of
dagaa converted into perch. The right-hand side is the marginal cost of dagaa. When
the biological technical externality is an equality, we then have the equilibrium con-
dition for efficient factor use. When the inequality holds, the positive technical
externality drives up both stocks. Moreover, it can be seen that the more ineffi-
ciently dagaa are converted into perch, the more valuable perch must be relative to
dagaa for the inequality condition to hold.

Note that the technical externality is increasing in P1 and decreasing as P2 in-
creases. For future reference, when:

 
αP1 − βP2

P2

> 0,

an increase in the price of dagaa (P2) makes αP1 – βP2 smaller and contributes to
reducing the optimal dagaa stock as a result of an increase in the price of dagaa.

Rewrite equation (4.1) for ˙ λ 1 = 0  as:

λ1 =
λ1 ′ f (R) + αD[ ] − λ 2βD

ρ
. (6)

If the figurative owner of perch sells a unit for harvest, the rental rate of λ1 is
earned. The owner bears two future changes in perpetuity so they are capitalized by
ρ. First is the marginal contribution of that fish to the fishery whose unit economic
value is λ1. Second, reducing the perch stock by one unit increases the marginal pro-
ductivity of dagaa by βD, which is valued at its shadow value of λ2 each period to
the owner of the prey. Thus the owner of perch, in this case society in general,
would gain (λ2βD)/ρ by the dimunition of perch by one unit. A parallel interpreta-
tion is obtained by rewriting the equilibrium condition for dagaa (equation 4.2).

Using the specific functional forms for the population dynamics in equations
(1.2) and (2.2) in combination with equations (4.1) and (4.2) in steady state yields:

R =
R 

2
1 −

ρ
r1

 
 
 

 
 
 +

R D

2r1

αP1 − βP2

P1

 
 
 

 
 
 , (7.1)

D =
D 

2
1 −

ρ
r2

 
 
 

 
 
 +

D R

2r2

αP1 − βP2

P2

 
 
 

 
 
 . (7.2)

Equations (7.1) and (7.2) illustrate that the perch steady-state population (R) is a lin-
ear and positive function of dagaa (D), and the steady-state population of dagaa is a
linear and positive function of perch, for αP1 – βP2 > 0.

Solving the two equations yields:

D* =
D 2(r2 − ρ)r1P2 + R (αP1 − βP2 )(r1 − ρ)[ ]

4r1r2P2 − D R (αP1 − βP2 )2 P1
−1

, (8.1)
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R* =
R 2(r1 − ρ)r2P1 + D (αP1 − βP2 )(r2 − ρ)[ ]

4r1r2P1 − D R (αP1 − βP2 )2P2
−1

. (8.2)

A sufficient condition for D* and R* to be optimal is for the denominators in equa-
tions (8.1) and (8.2) to be positive.

It will be useful to determine maximum sustained yield (MSY) for perch and
dagaa.3 This is not a trivial determination since Rmsy and Dmsy are not independent.
Rmsy is not a single value but is a function of D. Dmsy is a function of R and the ana-
lyst must choose weights which identify the importance of one species relative to
the other in the maximization procedure in order to obtain a unique solution for Rmsy

and Dmsy (Appendix 1). The solutions are based on maximizing total revenue, hold-
ing prices of the two species constant. This is in contrast to studies by Beddington
and May (1980) and Flaaten (1991), who maximized the steady-state harvest of one
species subject to the constraint that the harvest of the other stock equals its growth.
The solutions from these early studies yield a production transformation function,
which hides the quandary biologists, ecologists, and others are put in when a truly
dependent multi-species fishery is considered. Now, to paraphrase Silvert (1982), bi-
ologists studying multispecies fisheries must recognize that there is a tradeoff
between species. In this study, assuming that the harvest of each stock is weighted
by its price, then:

Rmsy =
R 2r1r2P1 + D r 2 (αP1 − βP2 )[ ]

4r1r2P1 − D R (αP1 − βP2 )2P2
−1

, (9.1)

Dmsy =
D 2r2r1P2 + R r1 (αP1 − βP2 )[ ]

4r1r2P2 − D R (αP1 − βP2 )2P1
−1

. (9.2)

The solutions to the MSY problems are just the equilibrium levels for r = 0. That is,
Rmsy = R* and Dmsy = D* when the discount rate is zero. Moreover, the optimal levels
of perch and dagaa are below MSY levels whenever (i) αP1 – βP2 > 0 and (ii) r1, r2 >
ρ. It is reasonable to assume that r1 > ρ,r2 > ρ; the intrinsic rate of growth for each
species is greater than the discount rate for the general case. If this is not true, then
in the traditional “lumped parameter” model, with no stock externalities, when the
predator-prey interaction term explicitly has been omitted, it would pay to extin-
guish the species because they are relatively unproductive capital. At no population
level is the real rate of return greater than the return on other forms of capital. How-
ever, note from equation (5.1) or (5.2) that a positive R* and a D* is feasible with r2

< ρ > r1 as long as αP1 – βP2 > 0. Then:

Rmsy − R* = ρ
R 2r2P1 + D (αP1 − βP2 )[ ]

4r1r2P1 − D R (αP1 − βP2 )2 P2
−1

> 0, (10.1)

Dmsy − D* = ρ
D 2r1P2 + R (αP1 − βP2 )[ ]

4r1r2P2 − D R (αP1 − βP2 )2 P1
−1

> 0. (10.2)

3 MSY is a traditional goal in fisheries management advocated by fisheries biologists. For example,
MSY is the benchmark for deciding whether a stock is overfished in the United States (Magnuson
Stevens Act 1996). Management plans for every US fishery must include an assessment of MSY.
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When conditions (i) and (ii) hold, positive D* and R* require positive denominators
in equations (8.1) and (8.2), a result to be used in subsequent analysis.

Just as MSY for one species is a function, not a point, in this multispecies fish-
ery, so, too, is carrying capacity. For example, the carrying capacity for perch is,
from equation (1.2), R = R  + (αD R )/r1 and not the traditional R  when its growth
rate of perch is zero.

Policy Analysis through Comparative Statics

New insights emerge from characterizing changes in steady-state predator-prey
equilibrium due to parameter changes and, thus, are presented below. First, how
does the optimal stock and harvest of dagaa or perch vary with changes in the price
of each species? Such an exercise in comparative statics can be a pragmatic tool for
policy analysis. Since foreign exchange is positively related to the price of perch,
improving foreign exchange earnings is connected through population dynamics to
changes in the optimal harvest of dagaa and, for example, its impact on nutrition
levels.

The comparative statics equilibrium results for a change in the price of perch
and dagaa are derived in Appendix 2 and shown in equations (11.1a), (11.1b), (11.2),
and (11.3).

dR

dP1

> 0,
dD

dP1

> 0, (11.1a)

dD

dP2

< 0,
dR

dP2

< 0. (11.1b)

The comparative statics results here are not robust with respect to the structure of
the multiple species population dynamics model. For example, see Flaaten (1991)
where the species are competitive, an own harvest price increase decreases the re-
source stock, and an increase in the harvest price of one species increases the stock
of the other.

Earlier we identified the predator-prey technical biological externality in the
steady-state equations (5.1′) and (5.2 ′), where the common factor is αP1 – βP2. We
noted that when αP1 – βP2 > 0, this pushed the optimal solution for R and D to the
right of ρ = f′(R) = g′(D) (see figure 1). Thus when P1 increases, it increases the
positive technical biological externality which increases optimal R. The reasoning is
the same for the positive effect of P1 on optimal D in (5.2′). The population of both
perch and dagaa decrease when P2 increases because this exogenous change de-
creases the positive technical biological externality. Additionally, if R* < (1/2) R ,

dh1

dP1

> 0,
dh1

dP2

< 0, (11.2)

and if D* >
1

2
D ,  then:

dh2

dP2

> 0,
dh2

dP1

< 0. (11.3)
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For all other cases, the signs are indeterminate. It is not surprising that (∂hi/∂Pi) > 0,
but we have no appealing motivation for the negative sign on ∂hi/∂Pj.4 We know, for
example, that R* < Rmsy from equation (10.1), and if R* increased due to an increase
in P1 in a single-species model of this type, h1 would increase. Here the condition
for (dh1/dP1) > 0 is that R* < 1/2 R  and in this model Rmsy ≠ 1/2 R  as is the case in
the single-species model (see Appendix 2). Perhaps it should be emphasized that the
comparative static results here depend on the assumption of no stock externality.
When αP1 – βP2 > 0, an increase in the discount rate decreases the stocks of both
species (see Appendix 2). When αP1 – βP2 < 0, the sign is ambiguous (Hannesson
1983). These results are transparent by observing equations (8.1) and (8.2). Extinc-
tion is possible when the intrinsic rates ( r1 or r2) are small and there are no
enhancing positive externalities. Dagaa stocks could rise, for example, if perch
stocks were fished down in response to an increase in the discount rate. The fall in R

Figure 1.  Optimal Solution for Perch (αP1 – βP2 > 0)

4 If P2 increases, an increase in h2 is achieved by decreasing R and decreasing D, the latter because G(D)
is concave and the interaction term is linear in D. See equation (2.1). A decrease in R and D decreases h1.
However, this explanation does not turn on the necessary condition, R* < 1/2 R , for signing (∂h1/∂P2) < 0 in
(11.2). Similarly, if P1 increases, an increase in h1 can be achieved by increasing both R and D (equation
1.1), which then causes a decrease in h2 (equation 2.1).
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in (5.2′) might require an increase in D to bring about equilibrium with an increased P.
That a price increase in one fishery leads to a steady-state decrease in the har-

vest of the other species is an important qualitative result. For the multispecies
fishery examined in this paper, policy makers and social scientists with a keen inter-
est in Lake Victoria fisheries regard the resource as a tool for furthering
socioeconomic goals, such as increasing foreign exchange earnings, increasing
women’s employment, and improving nutritional levels.

Perch is a major source of foreign exchange. More than one-half the tonnage of
Kenya’s fish harvest is attributable to perch in recent years and in some years, more
than 60% of the perch catch has been processed for export, mostly by foreign-owned
firms financed by the World Bank and non-governmental organizations (Ikiara
1999). Any formal analysis or policy intervention which results in increased foreign
exchange earnings through increased harvest of perch will cause a decrease in the
steady-state harvest of dagaa, because an increased steady-state perch harvest and an
increase in the price of perch have the same impact on dagaa harvest.5

Dagaa is a relatively cheap source of protein. Declining harvest of dagaa consti-
tutes a public health concern because nearly 50% of the rural population contiguous
to Lake Victoria consume less than WHO’s recommended minimum of 2,250 calo-
ries per adult equivalent day (Ikiara 1999). The greatest percentage of urban people
suffering food deficiency in Kenya live in Kisumu, the center of the fishing indus-
try. More generally, protein deficiency is ubiquitous among the people living around
the lake, especially children (Ikiara 1999). Shortfalls in calorie intake have public
consequences, such as increased morbidity and its associated public health costs, as
well as lowered mental capabilities when caloric loss is incident on children. In gen-
eral, one expects that an inverse price response to a diminished harvest of dagaa
(due to increased perch harvest) will cause a diminution in nutrition levels.

There will be fisheries where the inverse relationship between the harvest of
two species is not easy to calculate. When d(hj/hi)/d(Pi/Pj) cannot be signed qualita-
tively for the parameters in any particular setting, then clearly a quantitative
analysis must be undertaken to reach any practical conclusions.

Summarized in table 1 are the comparative statics analysis for the biological pa-
rameters when αP1 – βP2 > 0 (Appendix 2).

Because the parameter estimates in this model do not make αP1 – βP2 very sig-
nificantly greater than zero and α/β is uncertain, the comparative static results and
the discussion above should be interpreted not as iron clad prescriptive statements,
but as tentative or cautionary guidelines. The problem of uncertainty is examined in
greater detail in the following section.

Illustrative Solutions

The parameters for the predator-prey model were specified using data that vary from
highly credible to speculative, but are the best available information. They are used
to estimate the desired harvest and stock levels for perch and dagaa for Kenya. Ra-
tional management of these two fisheries should be guided by some empirical

5 Reviewers of an earlier draft point to several formal approaches for treating concerns about welfare
weights, foreign exchange, and other outputs or inputs. Two involve alternative constructions of shadow
prices to account for market imperfections. See for example, Little and Mirrlees (1974, 1991); Squire
and van der Tak (1975); UNIDO (1972); or Boardman et al . (1996) and Layard and Glaister (1994).
Policy makers in the countries riparian to Lake Victoria speak as though increasing employment of
women is a matter of social justice, without revealing welfare weights (UNIDO 1972). On the moral di-
mension of favoring one or more groups, see Sen (1970) and Vatn and Bromley (1994).
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understanding of the biological interactions between them and the underlying eco-
nomics governing them. Policy makers can differ about the management goals for
the two fisheries. Fishery biologists can disagree with the biological structure and
parameter estimates of the model, as can economists disagree with the economic
anatomy. However, this model identifies the minimum basic data set required for ap-
plied bioeconomic analysis of the two most important fisheries in Lake Victoria.

P1 = $268.13 = the ex-vessel price per metric ton for perch (based on Kshs 80/$);
P2 = $73.75 = the ex-vessel price per ton for dagaa.

The prices are based on recent unpublished data developed by Ikiara and an ex-
change rate of 80 Kshs/$. We assume:

ρ  = 0.03 = the discount rate;
r1 = 0.15 = the intrinsic rate of growth for perch;6

r2 = 0.8 = the intrinsic rate of growth for dagaa.7

The species interaction coefficients are:

α = 0.0000002,  β = 0.0000006.

While fishery biologists agree that there is a predator-prey relationship between
these two most important fisheries in Lake Victoria, no research on the interaction
coefficients is available. The order of magnitude of the interaction coefficients is
governed by the fact that if the interaction term is larger than 1/ D  for perch or 1/ R 
for dagaa, the predator-prey component in the dynamic population equations induces
changes in the stock larger than the size of the stock. The particular values selected
are based on relative values provided by fishery biologists in Lake Victoria and
scaled to meet required order of magnitude values just mentioned. The conversion rate
of dagaa into perch, α/β = κ = 1/3, is not much larger than the price ratio, P2/P1 = 0.28,

Table 1
Comparative Statics for the Biological Parameters

dD dR

α + +

β – –

r1    
R > R 2

R < R 2
+ +

r2    
D > D 2

D < D 2
– –

D + +

R + +

6 Personal communication with Daniel Schindler, Fisheries Sciences, University of Washington.
7 Personal communication with Julius Manyala, Moi University.
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so the condition α/β > P2/P1 is met, but not by a great margin. An alternative esti-
mate of k for all prey that perch consume, not just dagaa, varies between 0.2 and 0.3
depending on the age of the perch (Moreau and Villanueva 2002).

There are no estimates for the carrying capacity parameters, but they can be es-
timated indirectly if there are estimates of MSY. Fishery biologists have made
informed estimates of MSY, and they are presented in table 2. 8 We will consider
three cases initially.

To derive the R  and D  using the MSYs, it is necessary to assign relative
weights to the species. In the first two cases, 1 and 2 in table 2, the estimated market
price of each species denotes their relative importance. Case 1 assumes the high es-
timate of MSY for perch and Case 2 assumes the low estimate.

In Case 3 the weights for each species are equal. It may be regarded as a bio-
logical  case,  since many biologists  are reluctant to give one species more
importance than another. Also, steady-state values were derived using equations
(8.1), (8.2), (1.2), and (2.2) when ˙ D = ˙ R = 0. The calculated R ,D ,  MSYs, and opti-
mal steady-state values are presented in table 2.

The magnitudes below, of course, are driven by the model assumed. A reviewer
has pointed out that introducing stock externalities for perch would increase the op-
timal stock perhaps beyond MSY levels.

8 Personal communication with Daniel Schindler, Fisheries Sciences, University of Washington and dis-
cussion with participants at a fisheries and forestry workshop in east Africa (Kulindwa, Ikiara, and
Kazoora 2001).

Table 2
Optimal and Calculated Fishery Values (Metric Tons)

Economic Cases Biological Case

Case 1  Case 2 Case 3

R = 620,329

D = 882,810

Rmsy = 343, 824

Dmsy = 465, 523

h1msy = 55, 000

h2msy = 8 0 , 0 0 0

R* = 280,272

D* = 444, 512

h1
* = 47, 963

h
2
* = 101,803

R = 391, 800

D = 593,900

Rmsy = 209, 914

Dmsy = 306, 856

h1msy = 27, 500

h2msy = 8 0 , 0 0 0

R* = 170,139

D* = 293,843

h1
* = 2 4 , 4 3 7

h
2
* = 88, 770

R = 886,685

D = 518,847

Rmsy = 161, 389

Dmsy = 238, 489

h1msy = 27, 500

h2msy = 8 0 , 0 0 0

R* = 382,109

D* = 265,448

h1
* = 52, 902

h
2
* = 42, 855



A Predator-Prey Fisheries Model 233

Steady-state Economic Optimum and Optimum Path to the Steady State

Harvest levels were 98,280 tonnes of perch and 65,520 tonnes of dagaa in 1995, the
perch harvest substantially in excess of optimal values in the above table. Using
Case 2 (market price weights), which we regard as more likely than Case 3 (equal
price weights) as examples (Case 3 values will be in parentheses), if we were at the
economic optimum, total revenue equals $13.1 (17.3) (tables 3 and 4) million per
year or a present value in perpetuity of about $436.6 ($578.2) million. If we were at
Rmsy and Dmsy, the total revenue is $0.17 million more per year ($4.1 million less per
year). However, at Rmsy and Dmsy, it makes economic good sense to harvest down the
stocks to R* and D*, earning a lump sum of $11.6 million and put it in the bank at
3% rate of interest to capture an annual stream in perpetuity of about $0.35 million.
This strategy is a superior choice by about $180,000 in additional revenue per year,
a gain of about 1.3%. It may strike some as a little surprising that the economic opti-
mum and the MSY solution are so close. That is because the discount rate of 3% is
close to zero, which is the implied discount rate of the MSY solution, together with
the fact that harvest levels are fairly unresponsive to changes in the stocks in the
neighborhood of Rmsy and Dmsy. This result is specific to population dynamics charac-
terized by logistic growth for typical values of the intrinsic rate (r).

Table 4
Case 3:  Present Value of Revenue Streams Given Initial and Terminal Points

Annual Revenue NPV
Path ($ Million) ($ Million)

Start and stay at (Rmsy, Dmsy) 13.3 442
From (Rmsy, Dmsy) to (R*, D*) Varies 512

Start and stay at (R*, D*) 17.3 577
Start and stay at 1/2 (Rmsy, Dmsy) 8.5 282
Start and stay at 1/4 (Rmsy, Dmsy) 4.7 156
From (0.5 · Rmsy, 0.5 · Dmsy) to (R*, D*) Varies 469
From (0.25 · Rmsy, 0.25 · Dmsy) to (R*, D*) Varies 435

Table 3
Case 2:  Present Value of Revenue Streams Given Initial and Terminal Points

Annual Revenue NPV
Path ($ Million) ($ Million)

Start and stay at (Rmsy, Dmsy) 13.3 442
From (Rmsy, Dmsy) to (R*, D*) Varies 448

Start and stay at (R*, D*) 13.1 437
Start and stay at 1/2 (Rmsy, Dmsy) 9.9 330
Start and stay at 1/4 (Rmsy, Dmsy) 5.8 194
From (0.5 · Rmsy, 0.5 · Dmsy) to (R*, D*) Varies 407
From (0.25 · Rmsy, 0.25 · Dmsy) to (R*, D*) Varies 380
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Figures 2 and 3 illustrate the separatrices where:

dR

dt
= 0  or  

dD

dt
= 0







and equilibrium levels of perch and dagaa stocks for Cases 2 and 3, respectively.
Unfortunately, the two fisheries are neither at the economic optimum nor at MSY
stock levels because this is a free-entry fishery. The approximate location of the two
fisheries is not known. Since recent harvest levels in Kenya exceed our estimated
optimum and there is widespread concern about overfishing, there is no reason to
believe that the fishery is in a free-entry equilibrium at these levels. There are no
stock estimates, so there is no way to know confidently where to begin the path to
the steady state. Parenthetically, there is no current research agenda that would en-
able researchers to reliably estimate the population levels of perch and dagaa.

Suppose we start at one-half or one-fourth of MSY levels for perch and dagaa.
How long does it take to reach the optimum steady-state values, and what is the
present value of this policy? Starting at one-fourth MSY, it takes about 7.3 years
(see figure 5) or 13.1 years for Case 3 (not illustrated) to reach the optimum which
yields a present value of about $380 ($435) million (tables 3 and 4). Starting at one-
half MSY stock levels, it takes about 3.2 (figure 4) or 9.3 years for Case 3 (not

Figure 2.  Case 2: Separatrices and Equilibrium
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Figure 4.  Case 2:  Path from 1/2 MSY to Equilibrium

Figure 3.  Case 3:  Separatrices and Equilibrium
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illustrated) to reach the optimum, which has a present value of about $407 ($469)
million (tables 3 and 4). An interesting aspect of the solution path for this problem
is that some portion of it follows the separatrix for dagaa.

A useful way to understand the impact of uncertainty in this model is to do
some sensitivity analyses. We suppose the fishery starts at one-fourth MSY (Case 2)
and calculate the elasticity of optimal net present value for the economic optimum
case for an upward 1, 5, or 10% change in each of the parameters. The results are
summarized in table 5.9 Fortunately, net present value (NPV) is inelastically respon-
sive to all changes in the parameters except for the discount rate. More than one-half
have an elasticity less than one-half in absolute terms.

Self-financing an Optimal Fishery

The World Bank, other governmental institutions, and non-governmental organiza-
tions, are in the business of making productive investments. Investing in the
build-up of fish capital is an attractive option. Unfortunately, fish harvesters
throughout the world are demonstrably unwilling to sit idly by while one or more

9 The results are computed for upward changes. The downward changes are greater than 0.03 in the elas-
ticity estimate in only two out of 54 cases.

Figure 5.  Case 2:  Path from 1/4 MSY to Equilibrium
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overfished marine resources are allowed to recover. Harvester pressure not to reduce
fishing is one reason why 28% of the world’s fish stocks have been depleted or
nearly so (United Nations 2002). Although a handful of harvesters mainly comprise
each fishery management council in the United States, the body which effectively
determines fishery management policy for all harvested species, it has not been po-
litically feasible to rationalize most fisheries. Thus, taking political feasibility into
account as a necessary condition for improving the Lake Victoria fishery, probably
necessitates a payment scheme to induce harvesters to temporarily leave the perch
and dagaa fisheries.

Harvesters would be willing to exit if paid the loss of producers’ surplus. Con-
sumers, in general, will be made worse off by increased prices during the interim
period. However, in the absence of estimates of the demand function for dagaa, we
have assumed a constant price, hence no loss of consumers’ surplus. This same as-
sumption for perch is relatively innocuous because there are many close substitutes
on the world market. Without estimates of the private supply function, g was intro-
duced as the fraction of foregone revenues to obtain a proxy measure for lost
producers’ surplus.

Without knowledge available about current stocks, suppose we start at one-half
MSY levels. It takes about three years in Case 2 (figure 4) and nine years for the
biological Case 3 to get to steady state and assume, for illustration, that there is no
harvest during this period. Annual revenue at MSY is $9.9 ($8.5) million. So the op-
portunity cost three (nine) years from now, is:

γ 9.9e−0.03tdt. ≈ γ$28.4 million γ 8.5e−0.03tdt. ≈ γ$67 million
0

9

∫
 

 
 
 

 

 
 
 

0

3

∫  .

When both fisheries reopen, there is potential annual rental income in the
amount of Σ λihi that can be used to pay the investors, assuming they are not com-
pletely altruistic. No fishery to our knowledge has charged the full rental rate to
harvesters in a managed fishery where there are tradable quotas, and it is a rare fish-
ery for which there is any charge for the right to fish. Nevertheless, what is the
annual charge (v) as a percent of revenue that would pay off the original investment?

Table 5
Elasticity of Net Present Value

10% 5% 1%

ρ –1.03 –1.08 –1.12
r1 0.33 0.33 0.33
r2 0.77 0.77 0.77
α 0.23 0.22 0.23
β –0.18 –0.18 –0.18
P1 0.47 0.47 0.47
P2 0.54 0.54 0.53

0.23 0.23 0.23

K 0.72 0.72 0.71

R 
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In steady state, revenues are $13.1 ($17.3) million annually. So the tax revenues in
present value three (nine) years from now are:

v 13.1e−0.03( t+3) dt = v$400 v 17.3e−0.03( t+9) dt = v$442
0

∞

∫
 

 
 
 

 

 
 
 

0

∞

∫ million.

Solving for v, v = 0.07γ or 0.15γ depending on the case.
Disregarding political feasibility and transaction costs, the estimated maximum

charge necessary to compensate the losers in order to achieve an optimal fishery is
7% (15%) when all revenues are opportunity cost, a very unlikely case. Put another
way, the maximum charge necessary to pay off the investment to recover fish capital
is 7 or 15% of the rental rate, depending on the case. If canoes, nets, and labor in the
fisheries have alternative employment opportunities, the tax rate would be less.

Conclusion

Introducing species interdependence through a predator-prey relationship is equiva-
lent to creating a stock externality with a biological origin. When the externality
shows up in the Euler equation positively, the optimal stock of a species is greater
than the case where the marginal rate of growth equals the discount rate. The exter-
nality is positive when the value of marginal product of dagaa in the production of
perch exceeds the opportunity cost of dagaa. When this condition holds, (αP1 – βP2) > 0,
then the comparative statics for price changes produce unambiguous results in this
particular predator-prey model.

There may be many instances where no great harm arises when two or more in-
terdependent species are treated as though they were independent. This occurs when
a and b in this model are small. However, perch and dagaa cannot be treated sepa-
rately in the Lake Victoria ecosystem because they are biologically interdependent.
Moreover, each species in the political arena serves very different socioeconomic
objectives unrelated to efficiency (Kulindwa, Ikiara, and Kazoora 2001). Perch har-
vest provides foreign exchange, while dagaa harvest provides employment for
women and nutrition for the undernourished population contiguous to Lake Victoria.
We have provided a model illustrating when these objectives are in conflict and
have to be mediated, in part, through a biological population dynamics model.

There is an interesting interdisciplinary insight that emerges from this model.
The moment species’ interdependence is acknowledged, the analyst must choose a
rate of exchange of one species for another if there is to be a determinate solution.
Economists naturally choose price weights. The choice, however made, then makes
specific the otherwise ambiguous measure of MSY or carrying capacity. These con-
cepts are functions, not points, when species are interdependent.
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Appendix 1.  Calculation of Maximum Sustainable Yield

The MSY is defined as the maximum of a weighted sum, where the weights are P1

and P2 (in this context P1 and P2 are two weights and not necessarily the prices). If
the weights are each set to 1, then the problem is one of maximizing sustainable har-
vest in tons. Alternatively, adopting an economic perspective and weighting the
harvests by prices, the problem becomes one of maximizing sustainable instanta-
neous revenue flow.

Maximize P1h1 + P2h2

over h1 , h2 , R, D

subject to  ˙ R = ˙ D = 0  in  (1.2 and 2.1).

(A.1)

Figures A.1, A.2, A.3, and A.4 illustrate that the MSY for a given stock is a function,
not a single value. For the above problem, r1, r2, α, β, R , and D  are taken as given.
The solutions to this problem are:

Dmsy =
D 2r2r1P2 + R r1 (αP1 − βP2 )[ ]

4r1r2P2 − D R (αP1 − βP2 )2P1
−1

, (A.2)
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Rmsy =
R 2rr2P1 + D r 2 (αP1 − βP2 )[ ]

4r1r2P1 − D R (αP1 − βP2 )2P2
−1

. (A.3)

Substituting equations (A.2) and (A.3) for D and R, respectively, in the harvest func-
tions gives h1 and h2 in terms of the parameters values. It is therefore possible, given
the MSY harvest levels, to implicitly solve for two parameter values. This method
was used to solve for R  and D  given maximum sustainable harvest levels.

Appendix 2.  Derivation of Comparative Statics Results

How do the optimal stocks and harvest of perch and dagaa respond to changes in the
price of each species? Differentiate equations (7.1) and (7.2) with respect to P1:

∂D

∂P1

=
D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂P1

+
D R

2r2

α
P2

 
 
 

 
 
 , (11)

∂R

∂P1

=
R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂P1

+
RDβP2

2r1P1
2

. (12)

Substituting equation (12) into (11):

∂D

∂P1

=
D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂P1

+
R D βP2

2r1P1
2

 

 
 

 

 
 +

D R α
2r2P2

,

and rearranging:

∂D

∂P1

=

R D D βP2 (αP1 − βP2 )

4r1r2P1
2P2

+
D R α
2r2P2

1 −
R D (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 

. (13)

Assume (αP1 – βP2) ≥ 0, which makes the numerator > 0. Since [4r1r2P1 – D R  (αP1

– βP2)2 P2
–1] > 0 for R* > 0, the denominator is positive. Therefore, ∂D/∂P1 > 0.

Then, from equation (7.1):

∂R

∂P1

=
R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂P1

+
R D βP2

2r1P1
2

> 0.

Recall:

h1 = r1R −
r1

R 
R2 + αRD, (14.1)

h2 = r2D −
r2

D 
D2 − βRD. (14.2)
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Differentiating equation (14.1) with respect to P1 and rearranging terms:

∂h1

∂P1

= r1
∂R

∂P1

− 2
r1R

R

∂R

∂P1

+ αD
∂R

∂P1

+ αR
∂D

∂P1

,

∂h1

∂P1

= r1 1 − 2
R

R 

 
 
 

 
 
 + αD

 

 
 

 

 
 

∂R

∂P1

+ αR
∂D

∂P1

. (15.1)

Thus, ∂h1/∂P1 > 0 if R/ R  < 1/2, and undetermined otherwise.
Differentiating equation (14.2) with respect to P2 and rearranging terms:

∂h2

∂P1

= r2 1 − 2
D

D 

 
 
 

 
 
 − βR

 

 
 

 

 
 

∂D

∂P1

− βD
∂R

∂P1

. (15.2)

Thus, ∂h2/∂P1 < 0 if D/ D  < 1/2, and undetermined otherwise.
In order to sign ∂R/∂P2, ∂D/∂P2, ∂h1/∂P2, and ∂h2/∂P2, begin by differentiating

equations (7.1) and (7.2):

∂R

∂P2

=
R 

2r1

αP1 − βP2

P1

 
 
 

 
 
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∂D

∂P2
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R D

2r1

−β
P1

 
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 , (16)

∂D

∂P2
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2r2

αP1 − βP2

P2
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∂R

∂P2

+
D R αP1

2r2P2
2

. (17)

Substituting equation (17) into (16):
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∂P2
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αP1 − βP2
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R D β
2r1P1

,

∂R

∂P2

1 −
R D (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 = −

R D R αP1(αP1 − βP2 )

4r1r2P1P2
2

−
R D β
2r1P1

,

∂R

∂P2

=
−

R D R αP1 (αP1 − βP2 )

4r1r2P1P2
2

−
R D β
2r1P1

1 −
R D (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 

. (18)

Again assume (αP1 – βP2) ≥ 0 which makes the numerator negative. Since [4r1r2P1 –
D R (αP1 – βP2) P2

–1]  > 0 for D* > 0, the denominator is positive. Therefore, ∂R/∂P2 < 0.
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Then, from equation (17):

∂D

∂P2

=
D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂P2

−
D R αP1

2r2P2
2

< 0.

Recall:

h1 = r1R −
r1

R 
R2 + αRD, (19.1)

h2 = r2D −
r2

D 
D2 − βRD. (19.2)

Differentiating equation (19.1) with respect to P2 and rearranging terms:

∂h1

∂P2

= r1
∂R

∂P2

− 2
r1R

R

∂R

∂P2

+ αD
∂R

∂P2

+ αR
∂D

∂P2

,

∂h1

∂P2

= r1 1 − 2
R

R 

 
 
 

 
 
 + αD

 

 
 

 

 
 

∂R

∂P2

+ αR
∂D

∂P2

. (20.1)

Thus, ∂h1/∂P2 < 0 if R/ R  < 1/2, and undetermined otherwise.
Differentiating equation (2.2) with respect to P2 and rearranging terms:

∂h2

∂P2

= r2 1 − 2
D

D 

 
 
 

 
 
 − βR

 

 
 

 

 
 

∂D

∂P2

− βD
∂R

∂P2

. (20.2)

Thus, ∂h2/∂P2 < 0 if D/ D  < 1/2, and is undetermined otherwise.
All the results, below, are derived from equations 7.1 and 7.2, and the condition

for positive R* is given in the text.

Comparative Statics wrt. 

∂R

∂ρ
= −

R 

2r1
+

αP1 − βP2

P1

 
 
 

 
 
 

R 

2r1

∂D

∂ρ
,

∂D

∂ρ
= −

D 

2r2

+
αP1 − βP2

P2

 
 
 

 
 
 

D 

2r2

∂R

∂ρ
,

∂R

∂ρ
= −

R 

2r1
+

αP1 − βP2

P1

 
 
 

 
 
 

R 

2r1
−

D 

2r2

+
αP1 − βP2

P2

 
 
 

 
 
 

D 

2r2

∂R

∂ρ
 

 
 

 

 
 ,
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∂R

∂ρ
1 −

D R (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 

>0
1 2 4 4 4 4 3 4 4 4 4 

= −
R 

2r1

−
D R 

4r1r2

αP1 − βP2

P1

 
 
 

 
 
 < 0,

∴
∂D

∂ρ
= −

D 

2r2

+
αP1 − βP2

P2

 
 
 

 
 
 

D 

2r2

∂R

∂ρ
< 0.

Comparative Statics wrt. D 

∂R

∂D 
=

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂D 
,

∂D

∂D 
=

1

2
1 −

ρ
r2

 
 
 

 
 
 +

R

2r2

αP1 − βP2

P2

 
 
 

 
 
 +

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂D 
,

∂D

∂D 
=

1

2
1 −

ρ
r2

 
 
 

 
 
 +

R

2r2

αP1 − βP2

P2

 
 
 

 
 
 +

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂D 
,

  

∂D

∂D 
1 −

D R (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 

>0
1 2 4 4 4 4 3 4 4 4 4 

=
1

2
1 −

ρ
r2

 
 
 

 
 
 +

R

2r2

αP1 − βP2

P2

 
 
 

 
 
 > 0,

∴
∂R

∂D 
=

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂D 
> 0.

Comparative Statics wrt. R 

∂D

∂R 
=

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂R 
,

∂R

∂R 
=

1

2
1 −

ρ
r1

 
 
 

 
 
 +

D

2r1

αP1 − βP2

P1

 
 
 

 
 
 +

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂R 
,

∂R

∂R 
=

1

2
1 −

ρ
r1

 
 
 

 
 
 +

D

2r1

αP1 − βP2

P1

 
 
 

 
 
 +

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂R 
,
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∂R

∂R 
1 −

D R (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 

>0
1 2 4 4 4 4 3 4 4 4 4 

=
1

2
1 −

ρ
r1

 
 
 

 
 
 +

D

2r1

αP1 − βP2

P1

 
 
 

 
 
 > 0,

∴
∂D

∂R 
=

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂R 
> 0.

Comparative Statics wrt. 

∂R

∂α
=

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂α
+

R D

2r1
,

∂D

∂α
=

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂α
+

P1

P2

D R

2r2

 
 
 

 
 
 ,

∂D

∂α
=

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂α
+

R D

2r1

 

 
 

 

 
 +

P1

P2

D R

2r2

 
 
 

 
 
 ,

  

∂D

∂α
1 −

D R (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 

>0
1 2 4 4 4 4 3 4 4 4 4 

=
D R D

4r1r2

αP1 − βP2

P2

 
 
 

 
 
 +

P1

P2

D R

2r2

 
 
 

 
 
 > 0,

∴
∂R

∂α
=

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂α
+

R D

2r1
> 0.

Comparative Statics wrt. 

∂R

∂β
=

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂β
−

P2

P1

R D

2r1

,

∂D

∂β
=

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂β
−

D R

2r2

,

∂R

∂β
=

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂β
−

D R

2r2

 

 
 

 

 
 −

P2

P1

R D

2r1
,
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∂R

∂β
1 −

D R (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 

>0
1 2 4 4 4 4 3 4 4 4 4 

= −
R D R

4r1r2

αP1 − βP2

P1

 
 
 

 
 
 −

P2

P1

R D

2r1
< 0,

∴
∂D

∂β
=

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂β
−

D R

2r2

< 0.

Comparative Statics wrt. r1

∂R

∂r1

=
R ρ
2r1

2
−

R D

2r1
2

αP1 − βP2

P1

 
 
 

 
 
 +

R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂r1
,

∂D

∂r1
=

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂r1
,  therefore 

∂D

∂r1
  and  

∂R

∂r1
 are the same sign.

  

∂R

∂r1

1 −
D R (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 

>0
1 2 4 4 4 4 3 4 4 4 4 

=
R 

2r12
ρ − D

αP1 − βP2

P1

 
 
 

 
 
 

= f '( R ) from 5.1' and 5.2'
1 2 4 4 4 3 4 4 4 

,

′ f (R) < 0 if R >
R 

2

′ f (R) > 0 if R <
R 

2

∴
∂R

∂r1

,
∂D

∂r1

< 0       if      R >
R 

2

∂R

∂r1

,
∂D

∂r1

> 0     if      R <
R 

2

Comparative Statics wrt. r2

R =
R 

2
1 −

ρ
r1

 
 
 

 
 
 +

R D

2r1

αP1 − βP2

P1

 
 
 

 
 
 ,

D =
D 

2
1 −

ρ
r2

 
 
 

 
 
 +

D R

2r2

αP1 − βP2

P2

 
 
 

 
 
 ,



∂D

∂r2

=
D ρ
2r2

2
−

D R

2r2
2

αP1 − βP2

P2

 
 
 

 
 
 +

D 

2r2

αP1 − βP2

P2

 
 
 

 
 
 

∂R

∂r2

,

∂R

∂r2

=
R 

2r1

αP1 − βP2

P1

 
 
 

 
 
 

∂D

∂r2
  therefore  

∂R

∂r2

  and  
∂D

∂r2
 are the same sign.

  

∂R

∂r1

1 −
D R (αP1 − βP2 )2

4r1r2P1P2

 
 
 

 
 
 

>0
1 2 4 4 4 4 3 4 4 4 4 

=
D 

2r2
2

ρ − R
αP1 − βP2

P2

 
 
 

 
 
 

=g '( D ) from 5.1' and 5.2'
1 2 4 4 4 3 4 4 4 

,

′ g (D) < 0 if D >
D 

2

′ g (D) > 0 if D <
D 

2

∴
∂R

∂r2

,
∂D

∂r2

< 0       if      D >
D 

2

∂R

∂r2

,
∂D

∂r2

> 0       if      D <
D 

2


