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Abstract  It is pervasively argued that the equilibrium outcome for an open-ac-
cess fishery in which harvesting cost is inversely related to fish stock is
inefficient, with complete dissipation of within-season rents. However, some ar-
gue instead that within-season rents are maximised. Conditions under which
either outcome can be justified are considered. Competitive open-access out-
comes are presented for different versions of continuous-time and discrete-time
models of within-season fishing. The general conclusion is that in many cases
rent maximisation is the more plausible outcome. The issue is important for de-
termining the benefits of different types of regulation under uncertainty, the
optimal settings of instruments such as quotas and landing fees, and the way in
which open-access outcomes should be modelled in applied work.
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Introduction

There are two factors often cited as contributing to rent dissipation in unregulated
open-access fisheries. One is the stock effect implicit in instantaneous harvest func-
tions, such as the Schaefer function with unitary stock and effort exponents. As
stocks are fished down, the cost of catching another fish increases. The other factor
is the fishers’ inability to claim property rights of the fish, and with them the ben-
efits of foregoing current harvest in return for greater future benefits of harvesting
from a stock of greater biomass. Koenig (1984) refers to this as an inter-seasonal
stock externality.

One approach to modelling fishers’ harvesting over a long or infinite-time hori-
zon is to model harvesting in successive seasons, often of one year, dependent on
the immediately preceding stock level. The reason is that recruitment can best be
treated as an event at the start of each season, rather than as a continuous process.
Fishing and natural mortality and growth in fish weight may be treated as either dis-
crete events or as continuous processes depending on modelling goals.
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In some dynamic multi-season models, as a simplification, or in the interests of
obtaining general results, the within-season harvesting is not explicitly modelled.
Instead, an assumption is made on whether, in the absence of regulations, within-
season rents are dissipated or maximised. Policy results will depend on which
assumption is made.

Cases in point are Weitzman’s (2002) stochastic dynamic programming analysis
of the superior efficiency of landing fees over quotas as the regulatory instrument if
the regulator is uncertain about the stock level when the quotas or fees have to be
announced at the start of each season. Weitzman assumes within-season rents are
maximised in the absence of regulations for the usual case of unit fishing cost inversely
related to stock level. This is key to the result that the imposition of landing fees can be
guaranteed to maximise the expected present value of rents across seasons, whereas quo-
tas cannot. Thus, landing fees are the better instrument to overcome inefficiency due to
the inter-seasonal stock externality, assuming that no intra-seasonal inefficiency arises
from marginal fishing cost rising with falling stock. Hannesson and Kennedy (2005)
make the same assumption in extending the analysis to other types of uncertainty us-
ing simulation. Another case is the determination of landing fees or quotas in a
deterministic setting. Less restrictive fees or quotas would be recommended if
within-season rents were assumed to be maximised in the absence of regulations.

The alternative assumption of within-season rent dissipation has been based on
diminishing returns to fishing effort (e.g., Gordon 1954; Cheung 1970, Gravelle and
Rees 2004), and also on adverse stock effects on the cost per fish caught. An adverse
stock effect (or intra-seasonal stock externality) occurs if a fisher, in expending an
additional unit of fishing effort, reduces stock. This not only increases their cost per
fish caught but the cost per fish caught of all other fishers. An adverse stock effect is
implicit in a Schaefer harvest function with a positive stock exponent. It is often
used to model fishery effort at the level that average benefit equates with average
cost, or the level at which rents are dissipated, for expository purposes (e.g., Munro
and Scott 1985; Hartwick and Olewiler 1986; Clark 1990).

If the modelled rent outcome from within-season harvesting is assumed, rather
than the product of explicit modelling, a choice has to be made between assuming
rent dissipation, rent maximisation, or an outcome in between. In the next section, a
heuristic explanation is introduced for within-season rent dissipation (termed ‘ratio-
nal expectations’) and another (termed ‘adaptive expectations’) for within-season
rent maximisation. The relative plausibility of the explanations is subsequently con-
sidered in the context of alternative continuous-time and discrete-time dynamic
models of within-season fishing. Analysis is conducted for four models, differing by
decision variables: Model 1 — the optimal constant rate of fishing mortality applied
over a fixed harvesting period; Model 2 — the optimal harvest or end-of–period
stock; Model 3 — the optimal combination of constant rate of fishing mortality and
harvesting period; and Model 4 — a capped rate of fishing mortality applied over
the optimal harvesting period. Fishers are treated as myopic, making decisions at the
beginning of a season to maximise their net return over that season only. Model 1
does not support aggregate rent maximisation under open-access conditions,
whereas Models 2 to 4 do under most circumstances. Model results are derived in
subsequent sections and summarised in table 4 in the final section.

The number of fishers or boats, n, over the harvesting season is an indicator of
the degree of competition in the fishery. To keep the analysis simple, n is taken as
fixed and not a function of rent generated over the season. Numerical results are ob-
tained for n parameterised from 1 to 100. However, if it is assumed that fishers
continue to enter the fishery whilst rent is positive, and that there is a fixed cost of
entry, then the relevant n in the results tables is given by modelled aggregate rent
before charging for the fixed costs, divided by the fixed cost. Some studies of un-
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regulated open-access behaviour (e.g., Androkovich and Stollery 1991) have effort
per boat set to maximise aggregate seasonal rent for a given number of boats, but
also allow free entry and exit of boats so as to drive rent to zero. In the context of
the present analysis, such an approach is an example of maximisation of within-sea-
son rents with respect to effort.

Whilst fixed costs can be accommodated as explained, the basic analysis is con-
ducted without fixed costs and without modelling the determination of n to avoid
unnecessary pre-commitment on the following issues:

(i) How large are the fixed costs of entry for each fisher? The results should
apply for all possible fixed costs, high or low, so nothing is lost by making
them zero or close to zero.

(ii) Modelling n explicitly as positively related to rent after charging for fixed
costs requires a position on whether this is a behavioural assumption, a
condition for efficiency, or both.

(iii) In dynamic models, the question arises as to whether it is reasonable to
assume that n adjusts fast enough to drive rent, after fixed costs, to zero
within each season (e.g., Kennedy 1999), or whether there are lags in the
adjustment process over seasons (e.g., Bjørndal and Conrad 1987; Brasao,
Duarte and Cunha-e-Sa 2000).

These issues are left open. This keeps the focus on the aggregate rent and its ef-
ficiency before charging for fixed costs, and away from the aggregate rent after
charging for fixed costs, an outcome driven by the assumption of attaining the equi-
librium number of fishers within the season. The approach enables Weitzman’s
(2002) assumptions of all costs being variable and industry within-season rent
maximisation under open access, with Homans and Wilen’s (1997) assumption of
complete dissipation of industry rent, even if all costs are variable.

The open-access problem is treated as a non-cooperative game, following early
sentiments expressed by Wilen (1985, p. 162),

What I believe is crucial about this approach is the setting of individual de-
cision-making in a gaming structure. This has not been done in other mod-
els of fisheries. It is partly a philosophical and partly an empirical issue
whether we should model fishermen as parametric decision-makers à la
standard competitive model or as actively strategic decision-makers who
consider rivals’ decisions in making their own.

For the analysis here, a fishery is an open-access fishery if it consists of at least two
homogeneous competing fishers (i.e., n > 1).

Rationale for Rent Dissipation and Rent Maximisation

Rent Dissipation

Let instantaneous harvest, hi, for the i-th fisher be a positive function of instanta-
neous fishing effort applied, ei, and the fish stock, x. Also let fish stock be a
negative function of the fishing effort applied by each of the n fishers. Making p the
price of fish, and c the cost per unit of fishing effort, instantaneous rent for the i-th
fisher can be defined as:
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The first-order conditions for individual-fisher rent maximisation with respect
to fishing effort (ignoring the consequences of the resulting changes in stock from
any other decisions to be made) are:
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Except in the case of a sole harvester of the stock (n = 1), these are not the condi-
tions for the efficient level of individual effort for all fishers which maximises
aggregate fishery rent. The efficiency problem is to find optimal settings of all ei to:
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The first-order conditions for efficiency are:
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Comparing equation (2) with equation (4), the second term in braces in equation (4)
is more negative by:
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than that in equation (2). This is the negative external effect on all other fishers of
the marginal increment of effort applied by the i-th fisher. It follows that for effi-
cient application of effort by the i-th fisher, marginal harvest from effort must be
larger, and effort lower, than the effort which appears to be optimal applied in isola-
tion.

If ∂hj/∂x = 0, there is no stock effect, and the optimal individual level of effort
coincides with the efficient level: the return in fish from a marginal unit of effort
should equal c/p. The presence of the negative stock effect or externality results in
the individually optimal effort level being greater than the efficient level, and thus
in reduced aggregate rent. Effort by the i-th fisher reduces stock, which means that
not only must more effort be applied and more cost expended by the i-th fisher to
catch a fish, but also by all other fishers.

The larger the number of fishers, n, the greater is the external effect and the
lower the aggregate rent from the unregulated fishery. Could aggregate rent be com-
pletely dissipated if n were large enough? If entry by fishers were costless, this
would be the case. If fishers incur a fixed cost on entry, the lower limit to aggregate
rent after charging fixed costs would be zero, but rent before charging fixed costs
would be positive.

Although this is standard analysis of the inefficiency of an externality, it is not
often presented in the fisheries economics literature. It is set in a timeless frame-
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work. Cheung (1970, p. 104) refers to the analysis as ‘instantaneous and timeless.’
The analysis is rarely used to explain how dissipation of rents might occur in prac-
tice, perhaps because time matters in practice.

The following heuristic is a candidate explanation. Because there are no explicit
dynamics or references to a fishing season, the time period over which effort is ap-
plied is unspecified. The explanation could apply to rent depletion occurring
instantaneously, within a season, or across seasons. Suppose for simplicity that each
additional unit of fishing effort applied is provided by a new entrant at constant unit
cost. A potential new entrant considers (irreversible) entry based on an ex ante esti-
mate of a positive return for them, given the current level of total effort already
committed. The existing effort commitment is clear from counting the number of en-
trants (vessels) ready to fish. The adverse impact of their entry on the returns of all
other committed entrants is ignored. Additional entrants are attracted on this basis.
The last entrant is attracted into the fishery anticipating (based on ‘rational’ calcula-
tion) that they will just break even. Then all entrants start fishing over the
prescribed period, all are in exactly the same situation, and all discover they are
only breaking even on their unit of effort. Fishery rent is zero. It is a moot point
whether the cost of each unit that enters is a fixed cost or a variable cost, because
entry and unit effort provision costs are combined. This heuristic is described as se-
quential individual entry based on ex ante rational expectations followed by
simultaneous application of committed effort by all entrants, or ‘rational expecta-
tions’ for short.

Rent Maximisation

A candidate heuristic explanation of how aggregate rent could be maximised within
a fishing season, still subject to the negative stock externality, is as follows. There is
a given number of fishers ready to fish at the start of the season, say 100. In this
account, there is no restriction on the number of units of effort each fisher can apply
over the season. They all simultaneously apply one unit of fishing effort at the start
of the season and discover that this has been profitable. All 100 boats continue to
simultaneously apply additional units, if ex post they have found the previous unit to
be profitable. They all decide not to apply another unit once they all find the last
unit was unprofitable. The outcome is that rent (before any fixed costs are charged)
is maximised at a positive level. The fishery has been able to capture rent for each
unit of effort expended. This heuristic is described as a process of stepwise-simulta-
neous fishing, with an additional unit of effort expended at each step if the rent from
the previous unit was positive, or ‘adaptive expectations’ for short.

The key to dissipation of aggregate rent under rational expectations is that the
ex ante unit-rent calculations of each potential entrant are not realised, because they
ignore the costs of their entry for all other committed entrants. The key to aggregate
rent maximisation under adaptive expectations is that all fishers capture rent as each
decision to apply another unit of effort is implemented by all fishers. Adaptive ex-
pectations are employed in the sense that the return from the next unit of effort is
expected to be the same as that from the previous unit. Due to the stock effect, the
return is always lower, but harvesting only continues until all fishers’ returns from
an additional unit of effort have reached zero.

The obvious question is, which of these heuristic explanations of effort applica-
tion is more plausible? Neither could be claimed to reflect reality closely, suggesting
that a choice might be best made on empirical grounds, based on the nature oe?·he
fishery. However, a strong a priori case can be made for the adaptive expectations
heuristic on the grounds that returns from fishing are uncertain. This may be due to
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the start-of-season stock being uncertain. Under uncertainty, a feedback rather than
an open-loop policy is generally optimal (Jacobs 1967, p. 99), and is therefore more
likely to be adopted. Another choice criterion is the consistency of the heuristic ex-
planation with dynamic modelling of the within-season harvesting, assuming a
positive correlation between modelling results and reality.

In dynamic modelling of fisheries, fishing mortality, natural mortality, recruit-
ment, and increase in fish weight may be treated either as processes in continuous
time or as ordered events occurring at points within time intervals. Because the
open-access outcome may depend on which approach is taken, the outcomes for
both are investigated with Models 1 to 4 in the following sections. Models 1, 3, and
4 are primarily continuous-time models, with constant rates of fishing and natural
mortality over the harvest season. If the per-unit cost of fishing effort is constant,
rent per unit of fishing effort declines as stock declines, thus incorporating the equa-
tion (2) stock effect. In Model 2, harvest and natural mortality are events. By using
the instantaneous Schaefer harvest function (equation (14) below) the stock effect is
included. The structure of all four models means that they would be incorporated in
an inter-seasonal model by treating recruitment and increase in fish weight as events
at the beginning or end of each season.

A case is made for the rational expectations heuristic being more plausible for
Model 1, and the adaptive expectations heuristic for Models 2 and 4.

Model 1: Optimal Competitive Fishing Mortality over Fixed Period T

Each of n fishers decides to set their rate of fishing mortality at a constant rate over
a season of length, T, so as to maximise their rent over the season, knowing the rate
of fishing mortality set by all other fishers. Each fisher predicts their rent based on
rational expectations. The total rate of uncontrollable fishing mortality that the i-th
fisher faces is:

g m fi j

j i

n

= +
≠

∑ , (5)

where m is the rate of natural mortality, and fj is the rate of fishing mortality set by
all j-th other fishers.

In Model 1 the fishing period, T, is taken as fixed, the same for all fishers. By
setting fishing mortality at the constant rate, fi, throughout T, the catch of the i-th
fisher is:
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where m is the start-of-period stock of fish.
The rent accruing to the i-th fisher is:

π i i i i i i ipf x f g T f g cf T= − − −( ) + −0 1 exp( ) ( ) , (7)
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where p is the price of fish and c is the unit cost of fishing mortality.
The first-order condition (FOC) for maximum rent with respect to fi for the i-th

fisher is:
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If, for simplicity, all fishers are taken to face identical fishing conditions, then by
symmetry fi is the same for all n fishers. Equation (5) becomes:

g m n fi i= + −( ) .1 (9)

By substituting for gi from equation (9) in (8), the FOC becomes:
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where A = [px0/(m + nfi)2].

Denoting the fi satisfying condition (10) as fi
*, the total harvest for fixed T is:

H x nf m nf T m nfi i i= − − −( ) +0 1* * *exp( ) ( ), (11)

and rent for the fishery is:

π = − − −( ) + −px nf m nf T m nf cnf Ti i i i0 1* * * *exp( ) ( ) . (12)

The end-of-period stock is:

x x m nf TT i= − −( )0 exp ( ) .* (13)

The first question to be investigated is how optimal fi varies with n, for T = 1.
The more complex Model 3 question of how the optimal combination of fi and T to-
gether vary with n is addressed in a later section.

Simulation of Competitive Fishing Mortality Set by n Fishers over One
Year, T = 1

The same parameter values are used in the numerical simulation of open-access out-
comes for all Models 1 to 4. They are shown in table 1.1 To obtain Model 1 results,
because of the difficulty in obtaining an analytical solution for fi in FOC equation
(10), the individual fishing mortality was determined numerically for values of n
from 1 to 2,000, together with corresponding values of end stock, industry harvest,
and rent. Results are shown for selected n in table 2 and figure 1 for m = 0.

1 Qualitative model outcomes are not sensitive to the values, although x0 > c/p is required to ensure that some
fishing is optimal and that opening stock is greater than the efficient stock at the end of the season.
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Table 2
Aggregate Competitive Fishing Mortality by

Number of Fishers for Natural Mortality = 0 (Model 1)

Aggregate Length of
No. of Fishing Aggregate Aggregate End Fishing
Fishers Mortality Harvest Rent Stock Season
n f* = nfi

* H = nhi π x1 T

1 2.30 450.00 334.87 50.00 1.00
2 5.12 497.02 240.88 2.98 1.00
5 8.00 499.83 99.70 0.17 1.00

10 9.00 499.94 49.94 0.06 1.00
20 9.50 499.96 24.98 0.04 1.00
50 9.80 499.97 9.99 0.03 1.00

100 9.90 499.97 5.00 0.03 1.00
2,000 9.99 499.98 0.25 0.02 1.00

Figure 1.  Aggregate Competitive Fishing Mortality and Aggregate Rent
By Number of Fishers for Natural Mortality = 0 (Model 1)

Table 1
Parameter Values

Opening stock x0 500
Natural rate of mortality m 0.0, 0.2
Price of fish p 1
Per unit cost of fishing mortality c 50
Fixed length of fishing season T 1
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The sole fisher result for n = 1 is the rent maximising solution, with rent equal
to 334.9. The open-access solutions for n = 2 to 20 show aggregate fishing mortality
increases markedly from 5.1 to 9.5, industry rent declines from 241 to 25, and end-
of-period stock falls from 3 to 0.04. As n increases further to 100, rent falls to 5, and
end-of-period stock falls to 0.03. This suggests that, under competitive setting of in-
dividual rates of fishing mortality over a fixed period, T, depletion of aggregate
within-season rent increases as n increases.

However, the plausibility of these solutions as Cournot-Nash equilibria can be
questioned. Table 2 shows the end stock for the rent-maximising sole-fisher case to
be 50. The instantaneous rent from effort applied to the end stock (pxTf* – cf*) should
fall to zero, consistent with fishing effort returning positive rent over the time inter-
val T = 1. This implies xT = c/p = 50. However, for open-access cases with n ≥ 5, end
stock is less than 0.2. Why would all fishers continue fishing beyond the time inter-
val less than T = 1 that stock falls to 50 if they realise each additional unit of effort
incurs a loss? If they all did stop once, xT = 50, the aggregate rent would be
maximised. This would be the outcome of the adaptive expectations heuristic. It
could also be an outcome under the rational expectations heuristic if T, as well as f,
were treated as decision variables. It all depends on how reasonable it is to treat T as
fixed on grounds of either observed behaviour or an approximation for modelling
convenience.

A similar problem arises in the sole-fisher case facing uncontrollable mortality,
not from competitors, but from positive natural mortality.2 Rent is lower than the
maximum rent for m = 0. The maximum rent for m = 0.2 and T = T  = 1 is 307.3
with f* = 2.35. The highest rent for fixed f  = 2.35 is achieved at 308.6 for T* = 0.90.
The f* for any positive T  gives a rent which always can be increased by reducing T .
To achieve the maximum rent of 334.9 for the case where m = 0.2 necessitates T ap-
proaching zero and f approaching infinity. Of course this is not a practical outcome.
It results from the assumption that the unit cost of effort is constant whatever the
effort level. The impact on aggregate open-access rent when T is a decision variable
is considered later with Models 3 and 4.

Homans and Wilen (1997, Appendix A) point out in modelling open-access
behaviour with constant variable costs that the fishing industry may recognise a
maximum season length, Tmax, beyond which additional application of effort would
attract losses, “The industry would always choose not to incur such losses by trun-
cating fishing at Tmax.” They, however, accept that capacity enters in each season
until within-season rents are fully dissipated, which applies even if fixed capital
costs are zero.

Model 2: Optimal Simultaneous Harvesting

Consider a discrete-time, within-season model with a Schaefer harvest function used
to express instantaneous catch as:

y = Ex, (14)

2 If growth in individual fish weight were modelled as a continuous–time process over the season, the
net effect of natural mortality and weight increase could be a positive growth rate. In this case, marginal
rent with respect to time would be positive rather than negative at the end of the season of length T = 1.
However, as n increases beyond 1, any positive growth rate facing the i-th fisher due to weight increase
is more than offset by the increased fishing mortality induced by the other fishers.
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where E is instantaneous fishing effort (equivalent to fishing mortality f) and x is
stock level. If the price of fish is p, and the cost per unit of effort is c, then for any
stock level x, the cost per unit of fish caught is c/x, and rent per unit of fish caught is
p – c/x. The rent obtained by fishing stock down from stock x0 at the beginning of
the fishing season to x0 – H by the end of the fishing season is:
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= − − −( )
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Again, suppose there are n fishers. Let hi be the harvest of the i-th fisher that
maximises their rent, taking as given the harvests of any other fishers, indexed by j ≠ i.
Rent from harvesting hi is:
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If all fishers face identical fishing conditions, then by symmetry hi is the same for
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The end-of-period stock is:

x x nh c pT = − =0
* . (19)

For the sole-fisher problem (n = 1), h* is the rent maximising harvest. Total
competitive harvest = nh* is also the rent maximising harvest for n > 1. Conse-
quently, the fishery is characterised as within-season rent maximising, whether there
is just one fisher or many.

Natural mortality can be treated as a loss of fish stock, xm, an event occurring either
before or after the fishing period, without altering the rent-maximising conditions.
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The result is consistent with other discrete-time analyses. For example,
McKelvey (1997, pp. 133–4) refers to what he terms the simplest idealised model of
a seasonal fishery. He cites the unit-profit (or marginal-profit) function π(x) = p –
c(x), where c(x) is the unit cost of harvest inversely related to current within-season
stock-level, x, as typical. He notes that for a marginal break-even stock level, S0,
such that marginal profit with respect to stock equals π(S0) = p – c(S0) = 0, under
competitive conditions, open access to the fishery stock will be driven down to S0 by
the most rapid approach.

Comparing Model 1 and Model 2 Outcomes for m = 0

There is one Model 1 case which gives the same outcome as Model 2. This is the
case of the sole fisher (n = 1) harvesting over any predetermined period, T, facing
zero natural fish-mortality (m = 0). Rent, catch, and end stock for any start stock are
the same for both models. In equation (10), the FOC for the competitive fi approach
gives x0 exp(–fT) = c/p. This states that the end-of-period stock is c/p, which means
that the harvest is x0 – c/p, the same as given by equation (18) for the competitive hi

approach. Table 2 shows the Model 1 end-of-period stock is c/p = 50/1 for n = 1.
Although Model 1 and 2 results are the same for n = 1 and m = 0, they are quite

different for open access (n > 1). For Model 2, aggregate rent is still maximised,
whereas for Model 1 total harvest climbs and aggregate rent falls with increasing n.
The adaptive expectations heuristic is a plausible expository description of the pro-
cess underlying the Model 2 outcome. It is not plausible for describing the process
for the Model 1 outcome, because Model 1 does not incorporate an optimal stopping
rule. The rational expectations heuristic may be applicable to Model 1, but only to a
limited extent. It describes a process of individual fishers committing to fishing ef-
fort which will maximise their returns, but under the artificial constraint of a
mandated predetermined length of fishing season.

In the next section, the impact on fishery rent as n increases from one is studied
when fishers can set the length of the harvesting period as well as fishing mortality.

Model 3: Optimal Competitive Fishing Mortality and Harvesting Period T

In treating Ti as an individual choice variable, each fisher supposes that whatever Ti

they select, all other fishers will be harvesting for at least as long as Ti. This is justi-
fied if each fisher calculates that they would be disadvantaged if they harvested for
a longer period than all other fishers because they would face thinner stocks. Ac-
cordingly, each fisher assumes their uncontrollable fishing mortality throughout Ti is
at the rate gi, defined in equation (5). Substituting Ti for T in rent equation (7), and
partially differentiating with respect to Ti, gives the FOC for optimal Ti :

∂ ∂ = − −( ) − =

⇒ − −( ) =

⇒ = +

π i i i i i i i

i i i

i i i

T pf x f g T cf

x f g T c p

T x p c f g

0

0

0

0exp ( )

exp ( )

ln( ) ( ) .

*

*

           

           

(20)

The second derivative is negative, a necessary condition for maximum rent.
Substituting the right-hand side (RHS) of equation (9) for gi in equation (20) (on

symmetry grounds, as before) gives the optimality conditions:
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T x p c m nfi i
* ln( ) ( ) ,= +0 (21)

and by the Envelope theorem:

T x p c m nfi i
* *ln( ) ( ) .= +0 (22)

Considering the solution for the cases where n > 1 and m > 0, substituting the RHS
of equation (21) for optimal T in the rent equation (10) and setting the full deriva-
tive of rent with respect to fishing mortality equal to zero gives nfi

* = ∞. Equation
(21) for nfi

* = ∞ gives Ti
* = 0.

The individual fisher is caught up in a race to harvest. For a constant rate of ef-
fort application, any delay means an uncontrollable reduction in stock from fixed
rates of natural fish mortality and/or fishing mortality from the effort of competing
fishers, and a consequent increase in the cost of catching an additional fish. If the
cost of a unit of effort does not increase with the rate of effort applied, it is optimal
to extract the total harvest instantaneously at the start of the season.

The forces behind this outcome can also be seen in figure 2 for the case of n =
10 and m = 0. Two schedules are shown in f – T space, ‘nfi

* for given Ti’ (determined
numerically), and ‘Ti

* for given nfi’ (equation [21]). Suppose nfi
* is determined for Ti

= 1. The nfi
* is only a Nash equilibrium if the season length Ti = 1 is mandated. The

‘Ti
* for given nfi’ schedule shows that if Ti can be chosen, it is optimal to stop fish-

ing earlier and thereby avoid accumulating losses. The nfi
* recomputed for Ti

* will
be higher. Again a new, lower Ti

* will be found. The eventual outcome is nfi
* → ∞,

Ti
* → 0 and from equation (21), T*nfi

* = ln(x0p/c). Any finite m can be treated as
equal to zero. The outcome appears in figure 2 as the north-west point towards
which the two schedules approach intersection.

Figure 2.  Optimal Aggregate Fishing Mortality for T Given, and Optimal T
for Aggregate Fishing Mortality Given, for n = 10 and m = 0
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For the sole fisher case (n = 1) and m = 0, there is no rush to harvest. In this
case the two schedules in figure 2 coincide, plotting f* for any T, and T* for any f.
This can be argued as follows. The optimality condition for f in equation (10) is:

∂
∂

= − − =

⇒ − =

⇒ =

π i

f

px

f
fT f T cT

f T c px

f px c T

0

2
2

0

0

0exp( )

exp( ) ( )

ln( ) ,

*

*

      

      

(23)

and the optimality condition for T in equation (21) is:

T x p c f* ln( ) .= 0 (24)

Both conditions map out the same rectangular hyperbola. For the parameters
used in the simulation runs, ln(px0/c) is equal to 2.30. Thus, the Model 1 solution for
T = 1 shown in table 2 is readily determined as f* = 2.30, with end-of-season stock
xT = c/p = 50, and rent π = px0 – c[1 + ln(x0 p/c)] = 335. Writing Π as aggregate rent,
a function of optimal aggregate fishing mortality, the relationship between the ag-
gregate rents associated with the schedules ‘nfi

* for given Ti’ (π) and ‘Ti
* for given

nfi’ (Π–1) in figure 2 is summarised by:

Π
Π

Π
− ′{ }{ }

= ′ ∀ ′ = =

′ ∀ ′ >
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⎨
⎪
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1

0 1

0
T nf T

nf T T m n

nf T T
i

i

i
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*
{ }

{ { }}

{ { }}

  for  and 

>   otherwise.
 

(25)

In all other cases where there is a rush to fish, (n > 1 and/or m > 0), the solution
nfi

* = ∞, Ti
* = 0 must also satisfy equation (22). This imposes the same conditions on

aggregate fishing mortality and season length as for the sole fisher, zero natural
mortality case, so the same maximum rent, harvest, and end stock values apply.

Thus, rent is maximised not only for the sole-fisher case, but also the competi-
tive fishery with n > 1. A practical problem is that the solution values nfi

* → ∞ and
Ti

* → 0 are unrealistic. Assuming that the unit effort cost, c, would be unchanged as
fi

* → ∞ is clearly untenable. One solution would be to assume effort cost functions
with unit effort cost rising with effort, of which there are many. Another solution is
to retain season length as a decision variable, but to cap the rate of fishing mortality
(see Koenig 1984). This is considered in the next section.

Model 4: Optimal Harvesting Period T with Fishing Effort Capped

In Model 4 an upper limit is imposed on fi equal to fi ,  reflecting the maximum ca-
pacity of each fisher, allowing the n fishers to decide Ti only. The optimality
condition for Ti is given by equation (21) after substituting fi  for fi:

T x p c m nfi i
* ln( / ) ( ) .= +0 (26)

If natural mortality m = 0, aggregate mortality is nfi ,  and condition (26) is the same as
condition (24) for optimal aggregate rent for the sole fisher. For n > 1, Ti

* is an n-th of
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Ti
* for n = 1, but the aggregate rent still equals that of the sole fisher.

If natural mortality is positive and finite, n fishers fishing at rate fi  over har-
vesting period Ti

* given by equation (26) results in less than maximum possible
aggregate rent. However, aggregate rent approaches maximum aggregate rent as n
increases. The reason is that as n increases, m becomes smaller relative to nfi ,  and
condition (26) approaches condition (24). The effect of increasing n for the param-
eters in table 1 with m = 0.2 is shown in table 3.

Aggregate rent for n = 1 is 308.11. Once n reaches 10, aggregate rent is within
1% of the maximum rent of 334.87 for the sole fisher case with m = 0, shown in the
first row of table 2. Optimal end-stock = 50 is reached for all n.

Discussion and Conclusion

The issue of whether within-season rent is maximised under open-access conditions
is important for the applicability of the result obtained by Weitzman (2002) that fees
dominate quotas in regulating fisheries if regulators must set the fees or quotas be-
fore uncertainty about the start-of-season stock has been resolved. He sees the result
as significant enough to “warrant a serious reconsideration of the entire set of issues
in fisheries economics” (p. 328). However, the result relies on an assumption of in-
dustry maximisation of within-season rent. He incorporates what he terms the
‘free-access zero-profit condition’ (p. 333), but is more accurately a zero marginal
profit condition, and hence a condition for profit maximisation. Use of the condition
is not questioned.

The issue is important in determining the efficient setting of fees, quotas, and
other regulatory instruments in a deterministic framework. Tighter regulations will
be required if open-access rents are dissipated. It also affects the outcome of model-
ling dynamic competitive harvesting, with or without a competitive open-access
fringe.

At least three approaches can be taken to resolve the issue: (i) investigate the
outcome when open-access fishers are modelled as private, within-season rent
maximisers, taking the decisions of the rest of the industry as beyond their control
for a range of commonly used fisher decisions; (ii) consider the plausibility of

Table 3
Competitive Harvesting Period, Ti, by Number of Fishers for Individual

Ceiling Fishing Mortality fi  = 2.30 and Natural Mortality = 0.2 (Model 3)

Aggregate Length of
No. of Fishing Aggregate Aggregate End Fishing
Fishers Mortality Harvest Rent Stock Season
n f nfi= H = nhi π xT Ti

1 2.30 414.00 308.11 50.00 0.9210
2 4.60 431.25 320.92 50.00 0.4797
5 11.50 442.31 329.15 50.00 0.1968

10 23.00 446.12 331.99 50.00 0.0992
20 46.00 448.05 333.42 50.00 0.0498
50 115.00 449.22 334.29 50.00 0.0200

100 230.00 449.61 334.58 50.00 0.0100
2,000 4,600.00 449.98 334.86 50.00 0.0005
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behavioural and information assumptions underlying rent dissipation and rent
maximisation; and (iii) empirically evaluate which hypothesis better matches real-
world behaviour. The first two have been considered above.

Results of the first approach applied to the four models are summarised in table
4, with reference to supporting equations and tables. All four models incorporate a
stock effect for the multi-fisher case, which results in the cost of harvesting an addi-
tional fish increasing for all fishers following a fall in stock. For all models, the
same maximum rent, π*, is obtained for the case of the sole-owner facing zero natu-
ral mortality. However, different results are obtained for competitive fishers (n > 1)
facing natural mortality m ≥ 0. Only Model 1 (f*, T = 1) has rent dissipation as an
outcome, with dissipation a positive function of n. However, the assumption of fixed

Table 4
Summary of Within-Season Rent Outcomes by Model,

Natural Mortality (m), and Number of Fishers (n)

Model Decision Variables and Constraints

Model 1 Model 2 Model 3 Model 4

f h f,T T
Parameters Subject to (m + nfi

*)T* Subject to
T = 1 = ln(px0/c) f f=

Rate of No. of
Natural Fishers
Mortality

m = 0 n = 1 π = π* π = π* π = π* π = π*

Eq. 23, Table 2 Eq. 18 Eqs. 23, 24 Eq. 26

n > 1 π < π* π = π* π = π* π = π*

π → 0 as n → ∞ Eq. 18 Eq. 22 Eq. 26
Eq.10, Table 2

m > 0 n = 1 π < π* π = π* π = π* π < π*

Eq. 10 Eq. 18 Eq. 22 Eq. 26, Table 3

n > 1 π < π* π = π* π = π* π < π*

π → 0 as n → ∞ Eq. 18 Eq. 22 π → π* as n → ∞
Eq. 10 Eq. 26, Table 3

Key: Eq. for equation reference to FOC.

Notes:

π* is the maximum aggregate rent across all models for natural mortality m = 0.

For Model 2:
Results for m > 0 assume natural mortality is an event, either before or after fishing.

For Model 3:
In the case of m > 0 and n > 1, nf Ti i

* *,  → ∞ → 0  must hold.
In the case of m = 0 and n = 1, the only requirement is:

nf Ti i
* *, ,> 0  and nf T x p ci i

* * ln( )= 0  (Eqs. 23, 24).

In the case of n = 1, and m > 0 is insignificant compared to nfi
* ,  and can therefore be treated as

m = 0 in Eq. 21.
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T may be considered unsatisfactory for n >1 and m > 0, because for these cases for
any constant f applied over fixed T, a higher rent can always be obtained over a
lower T. It seems unreasonable to assume fishers would be bound by a minimum
fishing period.

Model 3 (f*, T*) has rent maximisation as the outcome for all n and m. However,
except in the case of n = 1 and m = 0, the solutions are unique with fi

* → ∞ and
Ti

* → 0. These solutions may appear unreasonable on the grounds that the per unit
cost of fishing effort would no longer remain constant as fishing effort increased
sharply. On the other hand, Homans and Wilen (1997, p. 17) refer to many fisheries
in which the fishing season has been reduced to “a few weeks, days or even hours.”
Model 2 (h*) can accommodate π = π* for all m and n, and Model 4 ( T f*, ) also for
all n for m = 0 and for m > 0 for large n. Thus many game-theoretic models favour a
rent maximisation outcome.

The second approach tests the plausibility of explanations of rent dissipation
and rent maximisation when fishing is subject to a stock externality. A plausible case
can be presented for a congestion externality leading to usage of a facility, such as a
highway, to the point that marginal private net benefit is zero, and hence average
and total social net benefit are zero. Whilst marginal private net benefit is positive,
more users are attracted to the facility, and marginal private net benefit continues to
decline. What makes this plausible is the absence of any adverse carryover from the
stage of previous facility use. However, in the fishery, the private net returns from
entry at any point in the season depend not only on the number fishing at that time,
but on the number fishing at all previous stages from the start of the season. The ad-
verse effect of the stock externality is cumulative through time in a way that the
congestion externality is not. This forces a contrived two-stage scenario in the ratio-
nal expectations heuristic for explaining rent dissipation. In the first stage, decisions
are made on entry, but no fishing occurs. In the next stage, all entrants start fishing
simultaneously and earn zero rent. If any entrants could start fishing before others
entered, the initial entrants would have captured some of the season’s rent.

The adaptive expectations heuristic underlying rent maximisation is more per-
suasive. All fishers are making step-by-step effort decisions based on their marginal
net return information, rather than on estimated total net returns (which must take
account of what decisions all other fishers will make) before the start of fishing.
Stopping fishing when marginal net return reaches zero ensures rent is maximised.
This is the basis of the rent maximisation outcomes of Models 2 and 4. The explana-
tion is plausible in a deterministic framework, and also in a stochastic framework
where stocks and returns are uncertain. A feedback policy is likely to dominate an ex
ante open-loop policy.

Economics gains much mileage from a priori reasoning, but when, as in this in-
stance, reasoning can lead to quite different predicted outcomes, there is a strong
case for taking up the third approach of empirical testing of the two hypotheses.
However, suppose relevant empirical information on open-access behaviour is lack-
ing for a study of the merits of alternative regulations. It may be desirable to
conduct simple analysis under both hypotheses and report the difference in results.
But a good case can be made for placing more weight on the results from assuming
within-season rent maximisation.
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