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Abstract: A uniform bid design from a predetermined uniform distribution is proposed 
as a practical and robust alternative to existing optimal or naïve bid designs.  Analytics 
and simulations show that the uniform design provides efficiency better than naïve 
designs under ideal conditions and outperforms optimal designs with poor initial 
information. 
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I. INTRODUCTION 

Statistical properties of willingness to pay (WTP) estimate due to the bid design in 

the dichotomous choice contingent valuation (CV) have received much attention as CV 

studies have become the predominant technique for valuing nonmarket goods and 

services.  Since the dichotomous choice question in CV results in binary observations of 

whether individual willingness to pay for a good or service exceeds some randomly 

assigned, exogenous bid value (Is willingness to pay for G greater than $b?), the pressing 

question becomes, what is the optimal set of bids offered to subjects so as to get the most 

information about the population WTP for the good or service of interest?1  Unfortunately, 

a simple logic of the optimal design in the linear regression model cannot be applied to 

the dichotomous choice CV studies because the binary response function in the CV is 

usually nonlinear and the variance of parameter estimates depends on both of bid points 

and unknown true parameters.  

To solve the difficulty of designing the referendum points in the binary data, 

numerous optimal criteria have been proposed in a series of literatures in the statistical 

and experimental studies.  Among others, for examples, are A-optimality (Sitter and Wu 

1993a, Mathew and Sinha 2001), C-optimality (Wu 1988, Ford et al. 1992), D-optimality 

(Abdelbasit and Plackett 1983, Minkin 1987, Ford et al. 1992, Nyquist 1992), Fiducial 

interval (Finney 1971, Abdelbisit and Plackett 1983, Sitter and Wu 1993a b, Alberini 

1995), and Mean Squared Error (MSE, Cooper 1993).  Each optimal criterion aims to 

minimize or maximize the criterion function which is related to the variance of estimator 

                                                 
1 In the contingent valuation, exact values of willingness to pay are not available due to incentive problems 
with asking question of the type “How much would you be willing to pay?”  The binary observation of the 
response is common in other experimental studies like biological assay.  It is typically impossible to 
continuously observe the exact level or time of a change in health status of each subject in the experiment.  
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since the concern is usually on the consistent estimator such as maximum likelihood 

estimate (MLE).  Resulting designs except the MSE-based design usually suggest one, 

two or three experimental points based on the assumption of the distribution and true 

parameters of response function and pre-specified statistical criterion. 

However, ALL optimal designs have a fundamental problem that acquiring the 

optimality depends on the quality of information of the true parameter in the model, 

distributional assumption of the response function.  It is a contradiction, as noted in Haab 

and McConnell (2002), to estimate a model with the information of true parameters and 

distribution in researcher’s hand.  In other words, all existing optimal designs are not 

practicable in the sense that the true information is not available but to be estimated.  In 

addition, the optimal design has been known to lose rapidly the efficiency of estimates 

when it is applied to a specific research with poor information about true parameters and 

underlying distribution (Abdelbasit and Plackett 1983, Sitter 1992). 

In this paper, we propose a practical and viable alternative bid design.  The 

primary goal of the new design is to overcome the serious dependence of optimal designs 

on the true parameters.  The new bid design named a uniform bid design assigns a bid 

value drawn from a predetermined continuous uniform distribution to a subject randomly.  

We draw upon the work of Lewbel et al. (2003) which assumes a continuous bid design 

to solve an identification problem in nonparametric estimation of WTP.  When the 

underlying true distribution and parameters are known, the optimal bid design is expected 

to outperform the others.  But when the optimal or other general designs are constructed 

upon the poor initial information of true parameters, we expect the uniform bid design to 

perform favorably.  
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Both analytically and through Monte Carlo simulations, we compare the 

performance of the uniform design with existing optimal and robust designs in terms of 

efficiency and relative efficiency.  D-optimality is selected for the optimal criterion since 

it is the most widely used criterion among optimal designs.  In addition to efficiencies, 

the bias of parameter estimate is empirically compared for the simple case.  Even though 

it is impossible to have a design independent of the poor initial information, we show that 

the uniform bid design provides higher efficiency than naïve designs does under ideal 

conditions, and outperforms the optimal design with poor initial information.  Based on 

the result, we conclude that the uniform bid design offers a practical, viable and better 

alternative of existing bid designs to researchers facing strict budget constraints, or 

performing a pre-survey to gather better information for the next stage.  In addition, and 

in contrast to the existing bid designs, the uniform design provides a binary data 

continuously sorted by bid magnitude, enabling the researcher to apply more flexible 

non- and semi-parametric estimation techniques.  

II. OVERVIEW OF BID DESIGNS 

Suppose that we want to estimate the population parameters of WTP for a 

nonmarket good or service (G) through a dichotomous choice contingent valuation study.  

For tractability, individual willingness to pay ( iWTP ) for G is assumed to have a constant 

mean (µ) and an additive i.i.d. error component iε  with mean zero and constant variance 

( 2σ ): i iWTP µ ε= + .  Let ( )F ⋅  be the cumulative distribution function of the error term ε.  

Information about WTP is revealed to the researcher through a dichotomous choice 

question of the stylized form: Would you be willing to pay $ ib  for G?  
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A dichotomous choice CV study requires the researcher to choose the total 

number (J) and value ( ib ) of bid points and the number of observations at each point 

( in )2.  The bid ( ib ) is randomly assigned to a subject to ensure independence from the 

idiosyncratic error.  The subject then indicates whether ib  is acceptable: i.e., whether her 

WTP is greater than the offered bid.  The binary response variable for the dichotomous 

choice question is an indicator variable equal to one if iWTP  is greater than ib , and zero 

otherwise.  The parametric estimation of WTP assumes an underlying error distribution 

and runs the maximum likelihood method using the probability of binary response; 

( ) [ ] ( ) [ ]Pr Pri i i i i iyes b F b F bµ ε β µ α β⎡ ⎤= + > = − = −⎣ ⎦  where α and β or µ and β are 

parameters of our interest3.  While the MLE is consistent when the model is correct, the 

efficiency of estimates depends on the selected bid set and true value of parameters.  

Thus the main concern in designing bid is to choose optimally bid set {J, ib , in } in order 

to get the more efficient estimate under some statistical criteria.  

A number of strategies have emerged for designing bid set, from very simple, 

naïve bid assignments based on limited information about the underlying distribution of 

WTP, to very complex approaches which often require complete knowledge of the 

underlying distribution of WTP.  The naïve (but most popular in practice) approach is to 

simply choose an arbitrary set of J bids and assign each bid to J/N subjects.  Often these 

bids are equi-spaced over a pre-determined range.  Despite its simplicity and lack of 

                                                 
2 The final observation at each bid, in , can not be decided by the researcher when the study utilize a mail 
survey format.  Instead, the researcher can decide how many survey letters will be distributed at each bid.  
In other survey formats such as phone interview, it is possible for us to decide in . 
3 Parameterization of the model by either (µ, β) or (α, β) does not change the properties of the estimates, so 
we focus on the parameterization of the model with (µ, β). 
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informational requirements, the naïve approach has been shown to be inefficient and the 

estimate of mean WTP is sensitive to an arbitrary design.  At the opposite end of the 

design spectrum are a group of designs referred to as optimal bid designs.  Each of the 

optimal bid designs are derived from the goal of achieving some optimality criterion 

related with the efficiency of estimates or of a function of estimates.   

A-optimal design minimizes the summation of the variances of all parameter 

estimates by minimizing the trace of the inverse of information matrix, i.e., trace of 

variance-covariance matrix.  The trace of the variance-covariance matrix is the sum of its 

diagonal entries and the diagonal entries of the variance-covariance matrix are individual 

variance of corresponding parameter estimates.  Thus, minimizing the trace of the inverse 

of the information matrix implies minimizing the summation of lower bound variances of 

estimates.  Sitter and Wu (1993a) and Mathew and Sinha (2001) show that A-optimality 

results in a two-point design in the class of symmetric designs; two bids ( *
1,2b µ= ± ∆ ) 

are placed around the true mean ( *µ ) at symmetric interval (∆ ) defined by the objective 

function for minimizing the sum of the variances.  

C-optimal and Fiducial designs minimize the variance or the asymptotic variance 

around the summary statistic of interest, such as mean or median.  The mean or median of 

WTP is a nonlinear function of parameter estimates; recall that they are estimated as a 

ratio of parameter estimates when α and β are parameters of response function.  C-

optimality suggests single design point equal to the true population statistics (Wu 1988, 

Ford et al. 1992).  While C-optimality allows for potential non-linearity in the function of 

parameters, the C-optimal design cannot identify individual parameters if WTP function 

includes a constant.  Instead of the asymptotic confidence interval, Fiducial design 
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minimizes the length of the fiducial interval proposed by Finney (1971) using Fieller’s 

theorem.  Fieller’s theorem shows the exact confidence set (parabola) of a ratio of normal 

random variables given desired confidence level and the roots of the parabola are the 

endpoints of the confidence set.  Sitter and Wu (1993b) show that the fiducial interval is 

generally superior to the asymptotic confidence interval.  Fiducial design consists of two 

or three points depending on the sample size and confidence level (Abdelbasit and 

Plackett 1983, Alberini 1995). 

When multiple parameters are of interest in the estimation, D-optimality has been 

the most widely used criterion.  D-optimality aims to minimize the volume of the 

confidence ellipsoid of parameter estimates.  Remind that the determinant of a matrix 

represents the volume of the matrix in k-dimensional space.  Therefore, D-optimality 

reduces to maximizing the determinant of the Fisher’s information matrix because the 

covariance matrix is the inverse of the information matrix.  In contrast to A-optimality 

focusing on the sum of variances of individual parameter estimates, D-optimality 

considers the entire volume of the confidence ellipsoid which includes the covariance 

between the estimated parameters.  Similar to A-optimality, the D-optimality results in a 

symmetric 2-point design around the true mean (Rosenberger and Kalish 1978 Technical 

Report 33 Department of Statistics in Pennsylvania State University, Abdelbasit and 

Plackett 1983, Minkin 1987, Ford et al. 1992, Nyquist 1992, Mathew and Sinha 2001). 

Usually optimal design points consist of symmetric two or three bid points which 

are determined by unknown true parameter values and assumed model specification.  

Thus, if we have poor information about the true parameter values, optimally designed 

bid points won’t generate the optimum targeted.  One obvious solution for preventing 
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efficiency loss is to implement a sequential design using the consistency of MLE 

(Abdelbasit and Plackett 1983, Minkin 1987, Nyquist 1992).  Sitter (1992) also 

introduces a robust design using the minimax procedure to solve the problem due to the 

uncertain poorness of initial parameter values.  Despite their intuitive appeal, however, 

the practicality of a sequential method in CV studies is still open to the question, and 

Sitter’s robust design is seriously reliant on the researcher’s confidence level about her 

information.   

Moreover, all optimal designs assume implicitly or explicitly an unbounded 

symmetric error distribution for the population.  The properties of optimal designs based 

on asymmetric error distributions are not well known; exceptions are Ford et al. (1992), 

Cooper (1993), Alberini (1995) and Crooker and Herriges (2004).  While the goal of the 

optimal design is usually to achieve the optimal efficiency of estimate, the bias of the 

estimate in the small sample has also received a lot of interest from researchers.  In 

specific application to CV studies, Cooper and Loomis (1992) demonstrate that the 

estimate of mean WTP is sensitive to the arbitrary sample design.  Their simulation also 

shows that an incorrect assumption about the underlying distribution exacerbates the 

sensitivity of WTP to bid design in small samples.  Kanninen (1995) suggests a general 

rule-of-thumb that places bids within 15th and 85th percentiles of true WTP to avoid 

obviously excessive bids.  

III. UNIFORM DESIGN AND ANALYTICAL RESULTS 

To alleviate the requirement of assumptions about the true distribution of WTP 

prior to assigning bid values to subjects, and to alleviate the potential efficiency loss due 

to poor initial information in the optimal design, we propose the use of a simple uniform 
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bid design.  The implementation of the uniform bid design is straightforward.  The 

researcher determines a closed support for the distribution of willingness to pay [ ]UL,  

utilizing the prior information.  Bids are then represented by draws from the uniform 

distribution with the predetermined support.  Each subject in the sample receives a bid 

based on an independent draw from the uniform distribution.   

The uniform bid design draws upon the work of Lewbel et al. (2003) which 

assumes a continuous bid design to solve an identification problem in the nonparametric 

estimation of WTP.  A continuous design is also suggested in Boyle et al. (1988), which 

is known as the method of complementary random numbers.  They use prior information 

to construct an empirical cumulative distribution function (c.d.f.) and select probabilities 

and their complementary probabilities in the empirical c.d.f. using random number from 

uniform distribution.  Our uniform design, however, selects bid points from a uniform 

distribution thereby alleviating the need for pre-estimating the empirical distribution.  

The only task of a researcher in the uniform design is to decide the support of the uniform 

distribution under the prior information.   

Kim and Haab (2004, unpublished manuscript, Department of AED Economics, 

The Ohio State University) investigate the analytical properties of the D-optimal, robust 

and uniform bid designs4.  Under ideal circumstances (known distributional form and 

correct parameter values), the D-optimal design provides the most efficient parameter 

estimates of WTP function in the sense of the smallest confidence ellipsoid of estimates.  

                                                 
4 A robust design introduced by Sitter (1992) guarantees the maximum efficiency given the range of 
uncertainty of the information.  The robust design consists of equi-spaced J design points being wider 
spread out with more design points than optimal designs.  Roughly, the robust design represents the most 
efficient naïve design.  Although Sitter’s design is robust to poor initial parameter estimates and the 
implementation for a specific application is straightforward, the robust design is still reliant on the initial 
estimate of the parameters and more importantly on the researcher’s confidence about his information as 
initial estimates. 
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This is not surprising at all since the D-optimal design is proposed to maximize the 

determinant of information matrix given true parameters.  The maximum determinant of 

the D-optimal design is used as the benchmark for comparison of the efficiency of a 

design.  In addition to the efficiency of a design, the relative efficiency of a design is 

defined as the ratio of determinant of a design to the determinant of D-optimal design 

evaluated at the same poor initial estimates.   

Selecting one example of the robust design with four bid points and length of 2.23 

from Sitter (1992), Kim and Haab (2004) show the efficiency loss of the robust design 

against D-optimum and the relative efficiency gain compared with D-optimal design.  

When the efficiency is calculated as the ratio of the determinant of the robust design to 

D-optimum, it represents the efficiency loss by employing more bid points.  The 

efficiency loss due to more bid points is not much serious.  More importantly, the relative 

efficiency, i.e. the ratio of determinants evaluated at the same poor initial estimates, 

shows that the robust design generally has enormous relative efficiency gain.  

Kim and Haab (2004) provide the asymptotic determinant, efficiency and relative 

efficiency of a uniform design as a function of true parameters and initial estimates.  The 

asymptotic determinant is ( ){ } ( ){ } ( ){ }2
2

2

1 U U U

L L L
w t dt w t t dt w t tdt

β
⎡ ⎤

−⎢ ⎥
⎣ ⎦
∫ ∫ ∫  where ( )w t  is 

the weight function, [ ] [ ]{ }2
exp / 1 expt t+ , of the logit model and the normalized point t is 

( )ibβ µ − .  They find analytically and through simulation that the optimal bid range of 

the uniform distribution is [ ]2.72,  2.72−  corresponding 6.2th and 93.8th percentile in the 

normalized logistic distribution and the maximum efficiency of the uniform design is 84 

percent of D-optimum under the ideal situation.  In fact, the uniform bid design suggests 
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a wider range than optimal designs and the Kanninen’s general rule-of-thumb.  The poor 

initial information of parameters disturbs the optimal upper and lower bound to be 

( )* * *
0 02.72 /U β µ µ β β= − +  and ( )* * *

0 02.72 /L β µ µ β β= − −  where *µ  and *β  

represent true parameters, and 0µ  and 0β  are the initial information about the parameter.  

By substituting the disturbed support into the asymptotic determinant of the uniform 

design, the efficiency loss due to poor information can be expressed in terms of *
0/β β  

and ( )* *
0β µ µ− .   

Figure (1) shows the efficiency of D-optimal design.  The poor initial information 

about parameters leads to rapid efficiency losses for the D-optimal design even when the 

distribution form is correctly specified.  Figure (2) shows the asymptotic efficiency of the 

uniform design with the support of [ ]2.72,  2.72− .  As can be seen in figure (1) and (2), 

the asymptotic efficiency of the optimal uniform design has relatively flatter space than 

D-optimal design.  Thus, the effect of poor initial estimates is not so much serious in the 

uniform design as in the D-optimal design.  Comparing figure (1) and (2) at the same 

poor initial estimates yields the asymptotic relative efficiency loss of the uniform design 

in figure (3).  The minimum efficiency of uniform design is 84 percent at the point of 

*
0µ µ=  and *

0β β=  where D-optimal design has the maximum determinant.  To any 

direction from the point of 84 percent, the uniform design has relative efficiency gain.  

However, we cannot gain much advantage from the uniform design when 0µ is not so 

much different from *µ or β is small enough to make ( )* *
0β µ µ−  close to zero or 

approximately less than one.  Note also that poor initial estimate of µ has a symmetric 

effect on the efficiency while the effect of poor β is asymmetric. 



 

11 

IV. SIMULATIONS RESULTS 

While the analytical results of Kim and Haab (2004) provide insight into the 

potential usefulness of the uniform design, tractability requires assuming a known 

distributional form and investigating simple parameter misspecification.  In this section, 

we use a series of Monte Carlo simulations to investigate the relative performance of the 

D-optimal, robust and uniform bid designs with poor parameter information and 

distributional misspecification.  The simulation scenarios cover the asymptotic properties, 

poor initial estimates and flexible error distributions like beta distribution.  The basic 

model is a constant willingness to pay; i iWTP µ ε= + , where 100µ =  and iε  is 

logistically distributed with mean of zero and standard deviation (σ) of 30.  The 

parameters in the estimation model are µ and β (= 1/σ) in simple probability equation; 

( ) ( )Pri iyes F bβ µ⎡ ⎤= −⎣ ⎦ .  The D-optimal design consists of two bids as 0 01.54µ σ± ⋅ .  

The robust design allocates four bid points at 0 03.345µ σ±  and 0 01.115µ σ± .  Finally, 

the optimal uniform design draws the bid from the uniform distribution of 

[ ]0 0 0 02.72 ,  2.72µ σ µ σ− + .  The simulation is conducted using Gauss 5.0 of Aptech 

Systems Inc. with CML Version 1.0.35. 

Table 1 shows the result of basic model with 1000 observations.  The true 

parameters are assumed to be known as 0 100µ =  and 0 30σ = .  The second column of 

“Actual” reports the actual mean and the inverse of standard error (β) in the sample.  

Parentheses show the standard error of estimates reported in the Gauss program.  As can 

be expected, every parameter estimates are statistically significant.  In this ideal situation 

with large number of observations, the uniform design has the best result followed by D-

optimal and robust designs in terms of standard error and RMSE (root mean squared 
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error) of µ.  Note that only standard error of β in the uniform design is worst even though 

the difference is very small.  Eff represents the efficiency calculated as the ratio of the 

determinant of each design to the determinant of D-optimum.  As shown in analytical 

comparison, D-optimal design has the maximum determinant under the correct initial 

estimates, followed by the uniform and robust designs.  The efficiencies of uniform and 

robust design are 83.23 and 62.86 percent of D-optimal design, respectively, which are 

close to the analytical results of 84 percent for the uniform design and 65.43 percent for 

the robust design.  

Table 2 reports the 100 iteration results of the simple model with various sample 

sizes.  The sample size includes 80, 160, 320 and 640 to cover from the small sample to 

large sample.  Hereafter, the parenthesis reports the standard error of point estimates in 

100 iterations.  As can be expected, the simulated standard error of estimates decreases in 

all designs when the sample size increases.  For the estimate of µ, the uniform design 

usually is the best in the sense of small standard error and lowest RMSE.  On the contrary, 

the robust design has the smallest standard error in estimating σ.  The sum of standard 

errors for µ and σ is smallest in the uniform design except N = 640, which intuitively 

suggests that the uniform design performs well too under the A-optimal criterion.  The 

efficiency is calculated using the average of the determinant in iterations.  Analytically, 

the efficiency of the robust design does not depend on the sample size and the maximum 

efficiency is 65.43 percent.  The efficiency of the uniform design is 83.38 ~ 86.28 percent 

which is around the asymptotic efficiency of 84 percent. 

The estimation results of D-optimal, robust and uniform designs in table 1 and 2 

are conducted assuming that the true parameters are known.  Interestingly, the uniform 
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design performs well in terms of RMSE: in fact, both of bias and variance of estimate for 

the mean in this simulation.  In contrast with C-optimal design suggesting one bid points, 

the result supports more bid points is better in estimating the mean of WTP even when the 

true parameters are known.   

The next scenario of simulation is to investigate the performance of three bid 

designs with poor initial estimates.  Table 3 and 4 show the estimation results with poor 

initial estimates and sample size of 320.  The true value of µ is 100, and poor initial 

estimate of µ varies from 55 to 145 corresponding -1.5 to 1.5 of ( )* *
0β µ µ− .  Likewise, 

the poor initial estimate of σ varies from 10 to 60 corresponding 0.3 to 2 of *
0/β β  with 

true value of 30.  REff represents the relative efficiency calculated as the ratio of the 

determinants of robust and uniform designs to the determinant of D-optimal design at the 

same poor initial estimates. 

The effect of poor initial estimate of µ is reported in Table 3, assuming that the 

true standard error is known.  Actual value of µ in simulation is 100.0989 and σ is 

29.9176.  Among 100 iterations, 1 iteration step is reported to fail in calculating function 

of D-optimal design with 0µ =  145.  Both directions of deviation of µ have symmetric 

effect on the relative efficiency of the robust and uniform designs, which is consistent 

with the analytical comparison.  RMSE also shows that the uniform design performs well 

at poor initial estimate of µ except 0µ = 55.  Table 4 shows the effect of poor initial 

estimate of σ with assumption of the correct µ.  Actual µ in the simulation is 100.2090 

and actual σ is 30.0047.  As can be seen in the figure 2, poor initial estimate of σ affects 

the relative efficiency asymmetrically.  For the robust design, the relative efficiency is 

less as 0/β β  is higher, i.e. 0σ  is larger.  The uniform design has the lowest relative 
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efficiency at the correct initial estimate of 0σ  and the relative efficiency increases as the 

poorness increases.  Furthermore, the uniform design outperforms D-optimal and robust 

designs in terms of RMSE, as 0σ  is larger than the true. 

One of interesting question about the previous designs is how they perform when 

the true distribution is unknown and asymmetric.  Optimal designs can be optimal only 

when the prior assumptions are correct.  The optimal bid point should be changed when 

the assumption is different, but so far the optimal point with asymmetric error distribution 

is hardly known yet.  The reliance on the prior assumption is also serious in the robust 

design.  For comparing the performance of bid designs in the case of unknown 

asymmetric error distribution, the true error distribution is assumed to be a beta 

distribution with various shape parameters.  When the shape parameters a and b are not 

same each other, the distribution is either right- or left-skewed.  The estimation model is 

specified as logit, thus this simulation includes the misspecification problem of the error 

distribution.  The true mean and standard error are assumed to be known for initial 

estimates.   

Table 5 shows the simulation result of shape parameter (2, 3), (2.5, 2.5) and (3, 2).  

In this simple simulation, D-optimal design has the largest determinant far from our 

expectation.  The efficiency of the uniform design shows almost 87 percent of the D-

optimal design and the efficiency of the robust design is slightly higher than 72 percent.  

D-optimal and uniform designs show that when the distribution is left- (right-) skewed, 

they under- (over-) estimate the mean, while the robust design performs in the opposite 

way.  The properties of estimation result with asymmetric error distribution are analyzed 

more in the next section with actual survey data. 
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V. AN APPLICATION TO ALBEMARLE AND PAMLICO SOUNDS DATA  

This section compares D-optimal, robust and uniform designs as well as the 

original design in the study by simulating true WTP from the original data.  The focus of 

comparison is on the performance of different designs when we have covariates of 

nonnegative WTP function and the error distribution is asymmetric.  Huang, Haab and 

Whitehead (1997) studied the WTP for the water quality improvement in the Albemarle 

and Pamlico Sounds in eastern North Carolina.  The original data consisted of double 

bounded dichotomous questions.  However, in this section, only responses to the first 

question were considered for design comparison.  The first two observations were also 

dropped to be able to conduct the robust design of J = 4 in this simulation since the 

original data includes 726 observations. 

First, under the assumption of nonnegative WTP (i.e., the exponential WTP 

function) and log normal error distribution, a probit model was implemented to estimate 

parameters of WTP.  WTP for the water quality improvement in Albemarle and Pamlico 

Sound was estimated as ( )exp 3.8623 0.1034 0.3580WTP INC D ε= + ⋅ − ⋅ +  and 

( )2~ 0,0.3047Normalε −  where INC is income level and D is a dummy variable for 

Pamlico only.  The expected WTP, ( ) ( )2exp .5E WTP x β σ′= + , was estimated 

$12340.51 in the sample.  Note that the median of WTP was $56.60 and the mean of the 

expected log WTP, ( )E x β′ , was $3.99.  Next, the true individual WTP was simulated by 

multiplying an unexpected error from log normal distribution to the deterministic WTP, 

assuming that the estimation result in the first step is true parameters.  The sample 

average of WTP, ( )Average WTP , was $4682.27.  The simulated true WTP was used to 
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generate the sample dichotomous response for each bid design.  The response is one if 

( ) ( )ln lnWTP bid> , and zero, otherwise.   

Bid values of D-optimal, robust and uniform designs were derived assuming that 

the true parameters were known.  Initial estimates used in designs were mean and 

standard error of log WTP; the mean of the expected log WTP is 3.9941 and the standard 

error is 10.3047− .  Also, optimal points or range for designs except D-optimal design 

were adjusted for normal distribution by multiplying 3 /π  to those of logit model.  

Thus, the robust design with J = 4 had bid points of 0.61µ σ±  and 1.84µ σ± , and the 

support of the optima uniform design was [ ]1.50 ,  1.50µ σ µ σ− + , where µ is 3.9941 and 

1σ −  is 0.3047.  The D-optimal bid point consisted of 1.14µ σ±  for the normal 

distribution following previous literatures.  Those optimal points and range of uniform 

design can be transformed to nonnegative dollar amount by taking exponential to the bid 

point.  Finally, the dollar value of bids in the D-optimal design was $1.29 and $2288.12.  

For the robust design, bids are randomly selected from {$0.13, $7.22, $408.14, 

$23077.07}, and the uniform design had a uniform distribution of [$0.40, $7448.07].  

The original design in the Huang, Haab and Whitehead (1992) consists of {$100, $200, 

$300, $400}, which corresponds from 4.6052 to 5.9915 of the expected log WTP.  Note 

that log value of bids in the original design is higher than the mean of the expected log 

WTP. 

Table 6 shows the estimation results of simulation with Albemarle and Pamlico 

Sounds data.  Criteria for comparison are the determinant of information matrix, bias of 

mean and median of expected WTP and RMSE.  First, surprisingly, the uniform design 

has the largest determinant of information matrix, followed by D-optimal, the original 
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and robust designs.  It is interesting that the determinant of the uniform design is larger 

than that of D-optimal design, because true parameters were assumed to be known in 

designing the bid set.  The original design has also higher determinant than the robust 

design even though the original design is a one-sided design (i.e., all bids are greater than 

the mean of expected log WTP).  The result strongly supports that the uniform design 

outperforms other designs in D-optimal criterion when the error distribution is 

asymmetric. 

Uniform design outperforms in this simulation not only in terms of the efficiency 

but also in terms of median WTP and RMSE.  For the bias of mean of the expected WTP, 

the robust design has the closest result to the true value.  However, the mean of the 

expected WTP of uniform design is closest to the sample average of WTP.  Other 

interesting features in simulation result are that only estimates of constant and bid are 

statistically significant in all designs.  D-optimal and uniform designs have a negative 

sign for parameter estimates of INC even though the estimate is insignificant. 

Consequently, the uniform design generates the best results under three criteria (the size 

of the determinant, median and RMSE) and performs well in all other criteria.  

VI. CONCLUSIONS 

Bid design has been known to affect seriously the bias and efficiency of WTP in 

CV studies.  However, unknown true parameter values and uncontrollable response rate 

of survey make it difficult to apply optimal designs in the actual survey.  Other practical 

bid designs like a naïve approach are unknown about the efficiency loss and bias due to 

poorly designed bids.  Based on previous accomplishments and problems, this paper 

introduces a new bid design using a predetermined continuous uniform distribution.  The 
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new design assumes continuity and randomness of bid points.  Analytically, the uniform 

design provides efficiency no less than other practical design in the ideal situation and 

optimal designs in the realistic poor information.  Practically, the uniform design is easy 

for researcher to implement for any specific application. 

We contend that the uniform bid design represents a practical and viable middle 

ground between the naïve bid designs and the optimal bid designs.  By significantly 

reducing the dependence of the estimation result on specific bid points, the uniform 

design reduces the potential biases and efficiency losses from basing optimal bid designs 

on poor information.  In addition, the uniform design reduces the likelihood of biases and 

efficiency losses from the naïve design.  While it is inevitable that the optimal bid designs 

will outperform the uniform bid design when the optimal design is based on the true 

distribution of willingness to pay, the uniform design performs favorably when faced 

with poor information about the true distribution. 
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FIGURE 1: The Efficiency of D-optimal Design with Poor Initial Estimates 

 

FIGURE 2: The Asymptotic Efficiency of the Optimal Uniform 
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Figure 3: The Asymptotic Relative Efficiency of the Optimal Uniform 
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TABLE 1: D-optimal, Robust and Uniform Designs with N = 1000 

 Actual D-optimal Robust Uniform 

µ 99.3460 97.9300 (2.5669) 97.2631 (2.8061) 98.9095 (2.3491) 

β 0.0333 0.0314 (0.0017) 0.0348 (0.0020) 0.0331 (0.0021) 

Eff  100 62.8604 83.2300 

RMSE  54.4952 54.5166 54.4786 

 
 
 
 
 
 
TABLE 2: 100 Iterations of Simple model with N = 80, 160, 320 and 640 
 Actual D-optimal Robust Uniform 

 N = 80 
µ 99.4097 99.1955 (9.1829) 99.2402 (10.8442) 98.6798 (8.5866) 

σ 30.2086 31.2072 (6.4858) 29.3343 (5.9843) 20.2926 (6.2882) 

Eff  100 66.9077 83.3844 

RMSE  55.1554 55.3460 55.0535 

 N = 160 
µ 99.7602 99.9925 (5.9714) 99.1349 (7.0857) 99.5768 (5.8555) 

σ 30.1389 30.3131 (4.9260) 29.5214 (4.0622) 29.6650 (4.3637) 

Eff  100 66.1130 85.6703 

 N = 320 
µ 99.9744 99.9537 (4.7597) 99.8970 (4.8828) 100.1410 (4.7288) 

σ 29.9883 30.6379 (3.3750) 29.5047 (2.9103) 29.9610 (3.0482) 

Eff  100 65.2646 86.2760 

RMSE  54.4653 54.4988 54.4770 

 N = 640 
µ 100.0564 100.0261 (3.1681) 100.2129 (3.3033) 100.1940 (3.0738) 

σ 29.8866 29.9448 (1.9328) 29.8000 (1.8732) 29.9058 (2.3439) 

Eff  100 65.3181 85.0355 

RMSE  54.2470 54.2615 54.2374 
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TABLE 3: 100 Iterations with Poor Initial Estimates of µ 
 D-optimal Robust Uniform 
 0µ = 55 

µ 100.3421 (4.3694) 100.3697 (5.8708) 100.2821 (5.2056) 

σ 29.2950 (4.0077) 30.1820 (3.0038) 29.9249 (4.0637) 

REff 100 113.7679 110.5209 

RMSE 54.3777 54.4384 54.4259 

 0µ = 75 

µ 100.5234 (4.2747) 100.0102 (5.3408) 100.1249 (4.2405) 

σ 29.7526 (2.9618) 29.9169 (3.4280) 30.1654 (3.1692) 

REff 100 76.6577 92.2807 

RMSE 54.3500 54.4036 54.3387 

 0µ = 100 

µ 100.0832 (4.3723) 99.8898 (4.9126) 99.9065 (4.3130) 

σ 29.7660 (2.5358) 30.0528 (3.3509) 30.2802 (3.2124) 

REff 100 65.9432 83.9492 

RMSE 54.3474 54.3878 54.3360 

 0µ = 125 

µ 100.4928 (4.6248) 100.2123 (4.4947) 98.9705 (4.8026) 

σ 29.9357 (2.9464) 30.2059 (3.5096) 30.2015 (3.6458) 

REff 100 76.2574 89.3220 

RMSE 54.3433 54.3787 54.3811 

 0µ = 145 

µ 98.4429 (10.9916) 99.6627 (5.0660) 100.1229 (5.2359) 

σ 30.9991 (15.0630) 30.0419 (3.5605) 29.8914 (3.3762) 

REff 100 113.6570 113.0370 

RMSE 55.2745 54.4147 54.4067 
1 function calculations failed  
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TABLE 4: 100 Iterations with Poor Initial Estimates of σ 
 D-optimal Robust Uniform 
 0σ =10 

µ 99.9413 (3.5821) 100.1924 (3.2139) 100.2011 (3.3338) 

σ 31.0174 (7.4705) 30.2099 (4.6208) 29.9297 (7.7508) 

Eff 100 188.2141 102.9199 

RMSE 54.4542 54.4497 54.4528 

 0σ =20 

µ 100.2520 (3.7448) 100.0511 (3.9763) 100.2147 (3.8841) 

σ 30.0553 (3.6172) 29.7537 (2.9083) 30.1323 (4.5760) 

Eff 100 106.0529 88.1675 

RMSE 54.4621 54.4779 54.4660 

 0σ =30 

µ 100.4169 (4.1858) 99.8175 (5.3151) 100.0356 (3.4741) 

σ 29.9782 (2.9953) 29.6584 (3.0420) 29.9387 (3.4376) 

Eff 100 65.2806 84.1582 

RMSE 54.5028 54.5577 54.4695 

 0σ =40  

µ 100.5465 (4.9207) 99.6000 (6.4361) 99.7180 (3.9807) 

σ 30.0485 (2.6084) 29.4623 (3.3248) 29.9082 (3.0037) 

Eff 100 51.8393 89.4349 

RMSE 54.5438 54.6527 54.5005 

 0σ =50  

µ 100.5412 (5.8683) 99.3532 (7.4830) 100.5217 (5.3780) 

σ 30.0761 (2.5784) 29.1542 (3.3584) 29.8827 (3.0294) 

Eff 100 51.4139 106.9764 

RMSE 54.6406 54.7920 54.5640 

 0σ =60 

µ 99.9107 (8.0184) 99.2053 (8.2823) 99.7317 (5.1448) 

σ 29.6054 (2.7518) 29.2356 (3.7721) 30.0000 (3.4945) 

Eff 100 63.6623 150.8424 

RMSE 54.8710 54.9194 54.6104 
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TABLE 5: Flexible Beta for Error Distribution 
 Actual D-optimal Robust Uniform 
 *(2, 3)  (120, 33.0797**) 
µ 120.3063 119.0280 (5.1557) 121.1151 (5.4924) 118.6580 (5.0230) 

σ 33.1084 41.3910 (4.4445) 33.6435 (3.0979) 39.4347 (4.5767) 

REff  100 72.2039 87.1280 

RMSE  60.1123 60.1492 60.1171 

 *(2.5, 2.5)  (150, 33.7618**) 
µ 150.1951 150.3924 (5.4428) 150.8241 (6.0330) 150.1364 (5.2994) 

σ 33.6002 41.7015 (4.8726) 34.6713 (3.0551) 39.3621 (5.0721) 

REff  100 72.4775 87.2118 

RMSE  60.9814 60.0449 60.9943 

 *(3, 2)  (180, 33.0797**) 
µ 179.8880 180.2808 (5.2549) 179.6522 (5.0183) 182.1175 (5.1080) 

σ 33.1867 40.2857 (4.0691) 34.4068 (3.0565) 38.8170 (4.4010) 

REff  100 72.8120 86.3334 

RMSE  60.2527 60.2417 60.2774 
* The first parenthesis represents the shape parameter (a, b) of beta distribution and the second shows the 
true mean and standard error.  ** The standard error is normalized as that of logistic distribution by 
multiplying 3 /π  to the standard error of beta distribution. 
 
 
 
TABLE 6: Albemarle and Pamlico Sounds Data 

 True D-optimal Robust Original Uniform 

Constant 3.8623 4.1112 
(10.405)* 

3.4456 
(7.332)* 

4.0511 
(11.070)* 

4.1953 
(12.045)* 

INC 0.1034 -0.0458 
(0.513) 

0.0511 
(0.497) 

0.0877 
(1.516) 

-0.0266 
(0.336) 

D -0.3580 -0.2909 
(0.785) 

-0.1640 
(0.398) 

-0.1708 
(0.723) 

-0.4584 
(1.381) 

ln(Bid) 0.3047 0.3424 
(19.632)* 

0.2968 
(16.311)* 

0.4179 
(4.666)* 

0.3249 
(14.936)* 

det(I)  9.1766e+7 4.2038e+7 5.4386e+7 11.2556e+7 

Mean 12340.508 
(4682.269)** 3256.792 9943.707 1235.814 5576.139 

Median 56.603 45.802 34.027 70.588 48.944 

RMSE  46946.280 47209.224 47040.178 46943.929 

* t-statistics is statistically significant with 95% confidence level.  ** the sample average of WTP 


