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Summarizing Curvature Conditions for Flexible Functional Forms 

 

Introduction 

Curvature conditions of nonlinear function form usually vary across individual 

observations and may not be readily obtainable. In the practice of production function 

estimation, the marginal products and/or elasticities are calculated based on the parameter 

estimates of the flexible function form. In order to compare the curvature conditions, we 

need to summarize the information into readable dimensions. Even in a very restrictive 

case, where we compare estimates of different function forms using the same dataset, it is 

nearly impossible to compare the curvature conditions at all sample points if there are 

significant number of observations. To compare curvature conditions for function forms 

estimated with different datasets is more complicated. Ben-Akiva and Lerman (1985) 

discussed how the curvature conditions at different sample points should be summarized 

and presented in the context of discrete choice analysis. However, in the production 

economics literature, this topic has received inadequate attention. 

Literature provided two approaches to summarize marginal effects for production 

flexible function forms (Greene, 2003). The first is to calculate the marginal effects for 

individual and then present the summary statistics. The intuition underlying this approach 

is that these statistics will provide a picture of how the aggregated dependent variable 

will response to marginal aggregated changes of the explanatory variables. However, we 



 3

argue that this may not be true. The second approach is to evaluate the marginal effects/ 

marginal productions/ elasticities) at a sample point, e.g. mean/median/ geometric mean 

of explanatory variables. This approach has been widely used. Diewert and Wales (1987) 

compared three flexible functional forms by evaluating curvature conditions at the first 

and last sample points. Anderson & Newell (2003) proposed a method to simplify the 

calculation of marginal effects at a certain data point for discrete choice models. 

Meanwhile, it is noted that this approach hinges on strong distribution assumptions of 

explanatory variables. 

This article proposes two methods to address the issue of summarizing curvature 

conditions for flexible functional forms in the practice of production function estimation. 

The first approach is to improve the averaging approach by incorporating a weighting 

scheme according to the contribution of an individual observation. The second is to 

strengthen the representativeness of central points. We can either use central points that is 

more robust to outliers and non-normal distribution in providing a typical individual 

firm/household/person or to group the data points and summarize the curvature 

conditions for each group. The two new methods are more intuitive and robust to outliers 

and abnormal explanatory variable distribution. 

The rest of this article is organized as following. Section 2 critiques the usual 

practice of summarizing the curvature conditions in the context of production study. We 

propose our methods in Section 3. Section 4 concludes. 
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Critiques on the Common Practices 

Greene (2000) stated that: “For computing marginal effects, one can evaluate the 

expressions at the sample means of the data or evaluate the marginal effects at every 

observation and use the sample average of the individual marginal effects. The functions 

are continuous, so Slutsky theorem applies; in large sample they will give the same 

answer. But that is not so in small or moderate sized samples. Current practice favors 

averaging the individual marginal effects when it is possible to do so.” This statement is 

likely to be true when evaluating the marginal effects for discrete choice problems, where 

the exogenous variables are less correlated to each other and can be approximated as 

normal in large samples. We argue, however, that when we are evaluating the curvature 

conditions of flexible functional forms in the context of production, this result may not 

hold. There are two reasons underlie our argument: irregularity of the input quantities 

distribution; and possible correlation pattern between input usage. We describe them in 

the following subsections. 

 

Averaging Approach 

In the production economics context, it is not necessary that input quantities in large 

sample be normally distributed. U.S. Congress, Office of Technology Assessment (1984) 

claimed American farm size is distributed as a bi-model. In United States, there is an 

increasing trend that while average farm size is enlarged, the number of small farms (of 

which the purpose is for entertainment rather than income-generating) is increasing at the 
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same time. In developing countries, such trend exists as well due to the limitation of 

resource and restriction on farm size, i.e., the Household Responsibility System in China 

and Land to the Tillers Program in south Asia. The land ownership are consisted of large 

number of existing small farms and an increasing trend of land consolidation due to size 

economies and the labor migration from agriculture sector to manufacture and service 

sectors. Therefore large sample theory may not apply in the agricultural production 

context. 

Since the literature usually apply the averaging approach for marginal effects but not 

for elasticity, we focus our discussion on marginal effects henceforth in this subsection. 

One may argue that the purpose of averaging approach is to provide the sample mean, as 

well as standard deviation, of individual marginal effects. However, the mean values of 

marginal effects are not necessarily representative. Neither does the sample mean 

converge to the true value in large samples since the overall population may be 

non-normally distributed, e.g., bi-model. The average of individual marginal effects is not 

equal to the change of the aggregate dependent variable with respect to marginal change 

of an explanatory variable either. In fact, it is only a specific realization of the change of 

the aggregate dependent variable (e.g., the output in agricultural production function 

estimation) when the marginal changes of inputs of all observations in the sample are 

equally weighted. In the case of production function estimation, it measures the change of 

aggregate output when all individual observations have equal extent of change in inputs 

usage. However, in finite sample, small firms and large firms are likely to have different 
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levels of change of their inputs. The averaging approach fails to summarize the marginal 

effects of aggregate dependent variable as illustrated in the following. 

Denote output as y, input vector as x, while xji indicates the jth input of observation i. 

Thus we may define the averaging approach as: 1
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However, since there are n independent control variables in the denominator, we 

cannot claim that: 
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Meanwhile, we can assign a weight wi to the input change of a single observation as 

its contribution to the aggregate changes such that 
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= ∑x , we know that when there is a change of t∆ , then the 
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amount of change of xi is iw t∆ , take first order Taylor series approximation of ( )f x , the 

approximate change of 
1
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We can summarize this as Theorem 1. 

 

Theorem 1: Assume a weight wi denoting as the contribution of input change of 

observation i to the aggregate changes such that 
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Lemma: Assuming the contributions to input change are the same across individuals, 

we have that 1
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Greene (2002) argued that by applying large sample theory the averaged marginal 

effect converges to the marginal effects at a representative central points. However, this 

hinges on the assumption of normality in large samples. With the irregularity of input 
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distribution in the context of production function estimation, the result does not hold 

generally. Furthermore, as we have seen from above, the averaging algorithm is a special 

case of our method with equal weight for each individual observation. 

 

Representative Individual Approach 

The representative individual approach relies heavily on the multivariate normal 

distribution of inputs. It is facing two problems. First, if input distributions deviate from 

normal distribution, neither mean, geometric mean nor median is a good representative 

reference point. Median and geometric mean are more robust to the outliers but cannot 

handle the bi-model case. Second, many built-in functions in econometric computation 

packages ignore the potential correlation between the exogenous variables and evaluate 

the mean/median of the inputs respectively. The quantities of different inputs are possibly 

correlated to each other. The centroid calculated by averaging different input quantities 

(as calculated by many software packages) may not represent the whole sample well 

since it ignored the covariance structure. It is common that inputs are constrained or 

exhibit certain pattern of correlation between each other, especially when there are strong 

substitution effects. In the practicing of agricultural production function estimation, 

taking mean/median of inputs, i.e., land, labor, fertilizer, and capital, does not guarante to 

result a good representative farm. We argue that the usual representative individual may 

not be a realistic approach. We provide a simple example to illustrate the failure of 

representative point approach. 
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Suppose we have two inputs: labor L and capital K, without random disturbance, the 

production function is characterized as: 

2 2
1 2 3 4 5( , ) exp( ln ln (ln ) (ln ) (ln )(ln ))y f L K a L a K a L a K a L K= = + + + +  

therefore we have the output-labor elasticity as: 

1 3 5
ln 2 ln ln
ln

y a a L a K
L

∂
= + +

∂
, 

assume a correlation pattern between L and K is that: 

3 52 ln lna L a K C+ = , C is a constant. 

Then we have the elasticity is a constant for all observations, but obviously when we 

evaluate at the respective means of the input; we will get a totally different result. In this 

case, geometric mean can be used and obtain the correct value. However, generally, since 

we do not have sufficient information during estimation, we cannot decide which central 

point to use. Furthermore, the non-linearity itself can be a source of the severe bias of the 

marginal effect estimates. Ben Akiva and Lerman (1985) discussed such bias in details in 

the context of discrete choice models. 

In summary, the representative individual approach may not produce appropriate 

results. 

 

New Ways to Summarize Curvature Conditions 

In this section we propose two new methods to summarize curvature conditions of 

flexible functional forms in the practice of production function estimation. 
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Method 1: 

We propose a simple solution to improve over the averaging approach. We can use a 

predetermined weight to adjust the contribution of curvature conditions. Either the ratio 

of individual input usage to the aggregate sample input usage or ratio of individual output 

to the aggregate output is potential good candidate. Yet no theory suggests a “best” 

weighting scheme exists. These firms with small input usage may have a marginal effect 

large in magnitude, however, giving the market imperfection in real world, their 

contribution to input change may be relatively small. Which force finally dominates the 

curvature condition change depends on which one is greater in magnitude. Assuming the 

individual contributes to the aggregation with a weight equal to the ratio of its own output 

to the aggregate output, then multiply the weight to the individual marginal effects and 

obtain the marginal effects of weighted aggregated mean. This is more intuitive and 

realistic than the approach of assigning equal weight for all individuals. This approach 

can be extended to the case of elasticities easily. Since the elasticites are unit-free, output 

percentage as a weight might be a good choice of the weighting scheme. 

 

Method 2: 

To improve the representative individual method, we need to consider how to reduce the 

dimension of the inputs thus to find an appropriate representative point. One way is to 

calculate the distance of individual observations to a reference point, i.e., the origin or the 

centroid, then locate the representative individual(s) using the usual mean, median, or 
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geometric mean. When the sample is severely clustered, the curvature conditions should 

be evaluated at multiple representative individuals for the existing clusters, respectively. 

The distance can be defined in various ways. Two commonly used distance 

measures are Euclid distance and Markov distance. 

Euclid distance is defined as:  

0 0 0( , ) ( ) '( )d = − −x x x x x x  

Markov distance is defined as:  

0 0 0( , ) ( ) ' ( )d = − Λ −x x x x x x , where 1S −Λ = . 

Markov distance is more frequently used since it is invariant to the unit of the 

variables under study. 

 

A recipe of locating representative individual(s) can be described as: 

Step 1: Calculate the distance of individual points to a reference point (e.g., 

centroid); 

Step 2: Graph the histogram of the distance for the whole sample and decide 

whether there are clusters according to the graph (or clustering can be applied directly, 

then make the corresponding judgment whether the sample appears to be clustered or 

not); 

Step 3.1: If it appears to be a uni-model, then simple statistic procedure can be 

applied to locate the representative individual; 

Step 3.2: If it appears to be a clustered sample, then apply clustering algorithm, e.g., 
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Hierarchical Clustering Methods, to group the observations into G groups, and compute 

the representative points within each group. The overall summary statistics can be a 

weighted average of these points or they can be presented directly since researchers may 

be interested in the marginal effects of different clusters. 

 

Note that we propose to use clustering rather than the classification procedure used 

in Ben-Akiva & Lerman (1986). The difference of classification and clustering is that 

classification “pertain to a known number of groups, and the operational objective is to 

assign new observations to one of these groups” while clustering is “a more primitive 

technique in that no assumptions are made concerning the number of groups or the group 

structure” (Johnson & Wichern, 2001). In most production studies, we do not have a 

predetermined G, therefore clustering is more applicable in these studies. Though we 

need to set a cut-off distance for the dendrogram (tree diagram) to decide how many 

clusters we keep, the number of clusters is ex post rather than ex ante pre-set in 

classification problem. 

Another clustering method may be used is non-hierarchical clustering method, e.g., 

K-means algorithm. It is computationally convenient but need a predetermined number of 

clusters, which is usually obtained from preliminary clustering, graphical observation, or 

simply intuition. 
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Conclusion 

In this article, we critiqued the usual practices of summarizing the curvature conditions of 

flexible functional forms. We also proposed two new methods to accomplish that goal. 

Theoretically, the new methods produce more robust and more accurate estimates for the 

curvature conditions of aggregated variables, as well as the curvature conditions of these 

variables at the representative points. Both methods provide policy makers a better 

picture of how the dependent variable may response to the marginal change of 

explanatory variables. 

Meanwhile, when applying the first approach, alternative weighting-schemes are 

possible with different interpretation. In clustering algorithm, not only we need to select a 

distance measure, but also need to choose which point the distance may refer to. With the 

importance of marginal effects in inferring policy implications, these works obviously 

deserve further exploration. 
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