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Modeling the Cattle Replacement Decisions 

 

Abstract 

In this paper we evaluate the performance of a dynamic model of cattle replacement and culling 

decisions.  We derive the price of cattle when it is treated as a unit of capital and evaluate various 

rates of adjustment of the cattle herd to determine the length of the cattle cycle.  Replacement 

decision is modeled as the solution to a dynamic optimization problem where the breeding herd 

is viewed as a capital asset that is capable of producing two outputs: calves and culled cows.  

The own-price, replacement and interest rate elasticities calculated for both the short-run and 

long-run time-frames suggest fairly rapid adjustment rates.  Tests of cycle length revealed a 14-

year cattle cycle. 
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Introduction 

 

The biological constraints of cattle production ensure that there is a lag between economic 

decisions and actual production.  For example, producers often respond to price changes by 

adjusting the size of the breeding herd which, in turn, influences the number of calves or cattle 

put on the market one or more years hence.  These lags and the biological nature of the livestock 

species prevents supply responses from fitting comfortably into a stylized modeling framework.  

In introducing his model, Buhr (1993) points out that “attempts to model the livestock industry 

have been a mixture of economic theory and ad hoc techniques.”  The numerous models of the 

cattle industry convey this point quite well (see Nerlove (1958), Antonovitz and Green (1990), 

Rosen (1986), Trapp (1986), Weimer and Stillman (1990), Marsh (1994), and Nerlove and 

Fornari (1998)). 

 

This paper focuses on the crucial decision to control the size of the breeding herd.  Following 

Nerlove and Fornari (1998), Buhr (1997) and Msafiri and Coyle (2001), we portray cow-calf 

operators as profit maximizers who manage their cattle assets over time.  Thus, we present a 

dynamic optimization problem for cow-calf operators.  The empirical application in this paper 

differs from Nerlove and Fornari’s model by using a continuous time model to portray cow-calf 

operators.  It differs from Msafiri and Coyle’s model by assuming cow-calf operators have risk 

neutral preferences.  Our model differs from the typical dynamic cattle model in that we assume 

cow-calf operators have nonstatic expectations of cattle prices and allow interest rates to vary.  



We also portray both the replacement (investment) and culling equations as part of the dynamic 

decision. 

 

Our goal in this paper is to evaluate the performance of a dynamic model of the replacement and 

culling decisions.  Within this context, we investigate two issues: First, we derive the price of 

cattle when cattle are treated as a unit of capital.  We argue that the level of aggregation of the 

data determines how the price of capital should be used in the model and experiment with the 

way producers respond to this capital price.  Second, since our model does not assume that 

producers instantly adjust the size of their breeding herd, we evaluate various rates of adjustment 

of the cattle herd to determine the length of the cattle cycle.  Then, we report both short-run and 

long-run elasticities for replacement and culling with respect to price.  

 

The Long-run Replacement Decision 

The replacement decision, the decision to set aside heifers for breeding purposes, is modeled as 

the solution to a dynamic optimization problem.  In this model, the breeding herd is viewed as a 

capital asset that is capable of producing two outputs: calves and culled cows.  Producers 

maximize profits over time by using replacement heifers and culled cows to manage the size of 

their breeding herds.  Production in time period “t” is represented by the following 

transformation function: 
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where X represents feed inputs, Y1 represents calves born, Y2 represents culled cattle, L is pasture 

land, B is the capital asset and the dot over the B represents the equation of motion for B. The 

term�  represents the level of technology.  In our model, there are two outputs: calves and culled 

cows.  There are two variable inputs: hay and the breeding herd (capital input), and one quasi-

fixed factor, pastureland. 

 

The transformation function is assumed to have the properties of a typical transformation 

function with adjustment costs: It is continuous, twice differentiable, convex, and a closed set in 

Y1 Y2, X, B, and B� .  It is strictly increasing in the outputs (Y1 and Y2) and strictly decreasing and 

convex in B.  It is increasing (decreasing) in B� and convex in B� .  

 

The last assumption represents the adjustment costs.  An increase in breeding stock diverts 

resources and can temporarily reduce output.  For example, new breeding cows may compete for 

resources from existing breeding stock.  First-calf heifers, that are not yet culled, may on average 

be less productive.  A more explicit adjustment cost is the direct decline in calves sent to 

feedlots.  

 

One unique feature of our cattle model, vis-à-vis other dynamic models of cow-calf operators, is 

that we allow cow-calf operators to anticipate price changes into the future when making their 

long-run decisions.  That is, we portray cow-calf operators as having non-static price 

expectations.  To implement this assumption, we use the method of Luh and Stefanou (1996) for 

incorporating non-static price expectations into a dynamic model.  Thus, producers, who 



optimize over time, plan for prices to change into the future.  While this seems to be a reasonable 

assumption, a majority of the dynamic cattle models assume static price expectations. 

 

Under the assumptions listed above, Luh and Stefanou show that equations of motions got prices 

must be included as constraints into the profit maximization problem.  In this case, the profit 

maximization problem for cattle producers can be written as: 

where P1 is the price of feeder calves, P2 is the price of culled cattle, P3 is the opportunity cost of 

breeder cows, W is the price of hay, t is time, L represents the quasi-fixed factor land and ‘r” 

represents the rate of interest.  The dot above an equation represents an equation of motion 

describing the evolution of a variable.  The term α represents the depreciation rate of the 

breeding herd.  There is one equation of motion for the cattle herd (the state variable) as in the 

typical dynamic optimization problem.  What stands out about the above problem, is that it 

includes an equation of motions for future prices.  This uses the suggestion of Luh and Stefanou 

regarding incorporating producer price expectations into a dynamic model.  Note that each 

equation of motion is a function of the level of the variable and time. 
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The above problem represents a standard dynamic optimization problem for producers that 

maximize profits when investment in capital assets creates adjustment costs.  As in any dynamic 

profit maximization problem, it is assumed that production plans are continuously revised as new 

prices and information are observed.  The control variables are Y1, Y2, X, and I and the state 

variable, B, is the cattle herd.  The value function J(.) represents the solution to the dynamic 

profit maximization problem and is a function of output prices, input price(s), the price of the 

breeding asset, and the level of technology, t, as well as the quasi-fixed factors such as land and 

management labor.  The first constraint confines cow-calf operators to the technology as 

represented by the transformation function.  

 
One distinct aspect of the above problem (relative to the majority of cow-calf models) is that 

producer expectations regarding output prices and the price of breeding stock follow a dynamic 

process over time.  That is, equations describing the evolution of price for both outputs and the 

price of capital are included as constraints in the optimization problem.  This represents Luh and 

Stefanou’s method for modeling nonstatic price expectations in a dynamic optimization model.  

The equations of motion for price (
i

P
�

) account for future price expectations of livestock 

producers.  Hay prices, in contrast, are modeled with static expectations since hay prices often 

are a function of unpredictable weather variables.  

 

The dynamic choice model can be converted into a static equivalent called the Hamiltonian-

Jacobi equation (Kamien and Schwartz (1991)).  The Hamiltonian equivalent of Equation 2 is: 
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where the derivatives of the value function J(.) with respect to Pi, (i=1,2,3), and B are represented as 

Jpi,  and Jb, respectively.  In the above problem, the term r represents the rate of interest and rJ(.) 

equals the value of profits in one period.1  

 

The advantage of the static version of the model, (the Hamiltonian) is that the principles of 

duality can be applied to derive the properties of the value function (see Epstein, 1981).  

However, the key advantage of the static version to the dynamic problem is that the envelope 

theorem can be used to derive the output supply, input demand, and investment equations.  Luh and 

Stefanou show that when future prices are expected to change, the two outputs can be derived from 

the following derivatives of the value function:  
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1 The above problem is a standard constrained optimization problem. However, following the convention established 
by Epstein (1981) we represent the Lagrange multipliers by their economic equivalent.  For example, Jb, represents 
the shadow price of the breeding herd and is equivalent to the Lagrange multiplier.  
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In the above model, equation 4 is a calf equation, equation 5 is a cull cow equation, and equation 6 

is an equation of motion for the cattle herd.  Note that culled cattle (y2 ) are represented as an output: 

since culls are supplied to the market and slaughtered for meat.  However, culled cattle also 

influence the size of the breeding herd.  Because of the twofold role played by potentially culled 

cows, there is an additional term in the cull equation.  Therefore, the culling equation is slightly 

different from the standard supply function represented in dynamic models.  This explains the 

difference in the functional form between the first and second supply equations.  Finally, the herd 

adjustment equation ( B
�

) should be viewed no differently from a standard capital difference 

equation in a dynamic optimization model.  

 

Given a particular specification for the value function for each of the above three equations, 

(y1 ,y2, B
�

) can be derived by applying the above envelope theorem to the value function.  The 3 

equations represent a system, which can be jointly estimated.  Once estimated, the response of 

replacements (investment) to a price change can be obtained by solving the equation of motion for 

replacement. That is: 
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So that replacement (investment) can be written as: 
 

 
And the effect of prices on replacement is: 

 
 
 
 
 

A Diversion on Prices and Aggregation 
 
 
 
The model presented in this paper includes three separate cattle prices: the price of calves, the price 

of culled cows, and the replacement price (the opportunity cost of setting aside breeding cows).  The 

price of feeder calves and the price of cows (culls) were readily available from USDA.  The 

replacement price is another matter.  There are two possible ways to represent the opportunity 

cost of setting aside a heifer to be used as a breeding cow.  The correct way to represent this 

opportunity cost depends on (1) the level of development of the breeder cattle market and (2) the 

level of aggregation in a cow-calf model. 

 

If breeding cows are sold back and forth among cow-calf operators, the cost of setting aside 

heifers to be used for breeding is equivalent to the cost of purchasing one’s own asset (see 

appendix).  This represents the opportunity cost of not selling the cow to another cow-calf 

operator who would view the breeding animal as a capital asset and be willing to pay capital 

asset prices for the animal (see Mathews and Short, 2001).  If no such market exists for 
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exchanging breeding cows among cow-calf operators then the off-ranch value for a heifer, the 

feeder calf price, is the best representation of the cost of investment. 

 

However, the level of model aggregation also determines how to represent the price of a 

breeding cow in a cattle replacement model.  For example, even if an internal market exists for 

breeding cows, if the entire cow-calf sector is modeled as an aggregate, the cost of setting aside 

heifers for breeding is the opportunity cost to the entire cow-calf sector.  This would be equal to 

the feeder calf price. 

 

Anecdotal evidence concerning the cow-calf sector suggests either opportunity cost could be 

viable for a model using non-aggregate data.  However since we model the entire cow-calf sector 

in the aggregate, this suggests that the feeder calf price may represent the best proxy for the 

opportunity cost of setting aside a heifer to be used as a breed cow.  In any case, we choose to 

estimate two models, one where the opportunity cost of replacement is represented by the asset 

price of cattle and one where it is represented by the feeder calf prices. 

 

Empirical Model 

Our first step was to specify a value function.  This is specified as: 
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where p1 is the expected  price of the calf output , p2  is the expected price of cull cows, and p3 is 

the investment price or opportunity cost of breeder cows.  All prices were normalized by the hay 

price.  The stock of breeder cattle is represented by B, technology by tr, and land by ld.2  

Given this specification, the calf equation can be written as:   
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Where the term vi is the derivative of the equation of motion for pi with respect to own price : 

 

The culling equation can be written as: 
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and the asset difference equation becomes: 

                                                           
2 As noted earlier there are various possible ways to represent p3, the opportunity cost of setting 

aside a heifer to be used a breeding cow. 
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Luh and Stephanou represent the discrete version of a differential equation in prices with a first-

order differential equation in prices.  The prices evolve as:     
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Substituting I-Y2 in for B
� 3 and solving for y2 produces: 
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where˜ over the v and equation of motion terms represent the estimated values of these terms. 

Similary, substituting expectations into the herd difference equation and rearranging obtains:   
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3  At this point, we choose to ignore death loss, an assumption, which probably has little effect on our model. 



Estimation 

Following Luh and Stefanou, the price difference equations were estimated a priori and used to 

obtain expected prices as well as the vi parameters.  The three-equation system can be estimated 

through iterative seemingly unrelated regressions (SUR).  We estimated two specifications: one 

in which we used the asset price of cattle to represent the replacement price and one with the 

feeder calf price as a replacement price.  

 

Each three-equation model was nonlinear in the parameters and the parameters failed to 

converge when estimating the model.i  This left two options.  One option was to estimate a 

reduced form model, that would be linear in the parameters, but that would prevent us from 

imposing symmetry.  The second option was to impose a few parameters of the structural form 

model. We chose the latter.  That is, we set the β2b parameter close to its final value in the non-

convergent model and parametrically varied the βv1 parameter.ii  Both models reached the highest 

likelihood function at the same value of βv1 (discussed below). 

 

Having set the value of the βv1 parameter, next we proceeded to test the cattle asset price model 

against the opportunity cost model.  To do this, we applied the Davidson and Mackinnon systems 

test for non-nested models.  Our objective was to determine the correct specification: a model 

that used an asset price in the replacement equation or a model that used the opportunity cost 

(feeder price) in the replacement equation.  Similar to most non-nested tests, the Davidson and 

Mackinnon test is equivalent to setting up a compound model, which is a weighted average of 

two models, and testing the weighting parameters.  In the Davidson and Mackinnon systems test, 



a T-test is applied to a transformed variable, which is equivalent to applying a test on the 

parameter that weighs both models.  

 

The Davidson and Mackinnon test is performed twice using each model as the null.  Either 

model can be rejected in favor of the other, or both models can be rejected.  Using the capital 

price model as the null, we obtain a test statistic of 21.63, which rejects the capital price model in 

favor of the opportunity cost (feeder price) model.  However, when reversing the test and using 

the opportunity cost (feeder price) model as the null, we obtained a test statistic of 21.03.  This 

led to a rejection of the feeder price model in favor of the capital price model.  In light of this 

ambiguous result, we used informal criteria to select models.  The feeder price model was chosen 

since in the asset price model both supply curves were downward sloping while in the feeder 

price model supply curves were upward sloping.  While a dynamic model does not preclude a 

downward sloping supply curve (as do static models), we choose to report the opportunity cost 

(feeder price) model. 

 

Adjustment rate.  

The βv parameter is critical to determining the rate of herd size adjustment. When the adjustment 

rate of the breeding herd was left unrestricted, either model became so nonlinear (in the 

parameters) that they failed to converge.  This inability to nest the various adjustment rates 

within a more general model without introducing convergence problems precludes reporting a 

formal test on the rates of adjustment.  In light of this, we ran various restricted models several 

times over, imposing various adjustment rates.  This exercise can be viewed as parametrically 



varying the adjustment rate to determine which adjustment rate produced a model with the 

highest likelihood function.   

 

We first imposed an adjustment rate equal consistent with an 8-year cycle, a 10-year cycle, a 12-

year cycle, and then a 14-year cycle.  Then we allowed the cycle to change after 1987, the mid-

period of the database and a period during which some livestock analysts believe the traditional 

cattle cycle may have become longer.  Then we imposed a base cycle of 8 years (and then 10, 12, 

and 14 years) and allowed this base cycle to change to each of the other 3 cycles after 1987.  

 

Table 1 reports the likelihood function of these various restricted models.  The diagonal of table 

1 represents models that do not change.  For example, the upper left hand corner represents a 

model with an 8-year cycle throughout, the next diagonal element represents a model with a 10-

year cycle throughout, until we reach the right hand corner which reports the likelihood function 

for a model with a 14-year cycle throughout.  The best performing model is the one with a 14-

year cycle through the whole period, which is longer than the cycle length found in previous 

studies by Rosen (1986) and Trapp (1986) who found 10-12-year cycles in studies from an 

earlier time period. 

 

Finally, cattle models often assume that the calving rate is a proportion of herd size.  Our model, 

like that of Msafiri and Coyle and others, portrays calves as an output subject to economic 

factors.  We tested whether economic variables (prices and interest rates) influence the calf 

equation by setting the coefficients on price and interest rate terms equal to zero.  A system 

likelihood test was applied and produced a χ2 coefficient of 108, which was significant at the .01 



percent confidence level.  Imposing the restriction that economic factors did not influence the 

calving rate significantly reduced the fit of the model.  This indicates that these economic factors 

can influence the calving rate. 

 

Elasticities 

The short-run supply elasticities were obtained by taking the derivative of the supply equations 

with respect to price and evaluating the elasticity at the means of the data.  The short-run 

replacement elasticities were obtained by taking the derivative in Equation 8 and evaluating the 

data at the means.  This derivative involved parameters from both B
�

and cull equations. The 

long run represents the steady state or when the herd size does not change. The long-run 

elasticities are obtained by the formula: 
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where B  represents cattle herd in the steady state.  It is derived by setting B
�

to zero and solving 

for B.  

 

Table 2 reports various short-and long-run elasticities.  The price elasticities in the first output 

supply equation represent the feeder calf elasticities and are quite low as would be expected. The 

long-run elasticities are only slightly higher.  A rise in the cull-cow price increases the number of 

culls while a rise in replacement cattle price decreases the number of culls.  This should be 



expected.  However, unexpectedly, an increase in feeder calf prices also decreases the number of 

culls.  As with the calf equation, the long-run elasticities are slightly higher. 

 

The replacement elasticities were calculated using Equation (8), which required that we combine 

the derivatives of the B
�

and Y2 (cull) equations.  This explains why some of the symmetric 

elasticities do not appear to be of the same sign.  The short-run price elasticities in the 

replacement equation are fairly high relative to those of the other two equations.  Yet the own-

price and cross-price elasticities with respect to culls have the expected signs.  The price 

elasticities of the calf output were negative, which was an unexpected result. 

However, the coefficients used to calculate this elasticiticity were not signficant. 

 

Interestingly, the long-run and short-run elasticity of replacement with respect to a change in cull 

price works out to be the same.  The long-run replacement own-price elasticity is slightly higher 

in the short run, providing some indication that cow-calf operators may overshoot, in the short 

run, in their response to a change in the opportunity cost of replacement. 

 

Finally, since our model allows interest rates to vary, we are able to report interest rate 

elasticities.  Viewing cattle as an asset, with the foregone value being the interest on money 

assets, one would expect the interest rate elasticity to be negative in the replacement equation.  

Our interest rate elasticity was negative and quite elastic.  However, our cull elasticity, while 



smaller, was also negative, which is counterintuitive.4  If the rate of return on money assets rose, 

one would expect the number of culls to increase. 

 

 

Conclusion 

 

This paper evaluates how a dynamic model of the beef cow replacement decision performs.  The 

replacement decision is modeled as the solution to a dynamic optimization problem where the 

breeding herd is viewed as a capital asset that is capable of producing two outputs: calves and 

culled cows.  We represent producers as maximizing profits over time by using replacement 

heifers and culled cows to manage the size of their breeding herds.  The empirical model was 

evaluated as a value function where the output prices of feeder calves and culled cows were 

represented by expected prices, and the replacement calf price was treated as the asset price in 

one model and an opportunity cost (feeder calf price) in another model. 

 

The Davidson and Mackinnon test was used determine whether the capital price model or the 

opportunity cost model was the best representation of the transformation model.  The test was 

inconclusive.  Thus, the feeder price model was chosen since it had an upward sloping supply 

curve while the asset price model had a downward sloping supply curve.  This was considered an 

informal method of model selection since a dynamic model does not preclude a downward 

sloping supply curve. 

 

                                                           
4  Numerous parameters were used to calculate the interest rate elasticity and it was not possible to establish a 
significance level.   



The length of the cattle cycle was also determined.  By parametrically varying the adjustment 

rate over an 8 to 14 year time-period, we observed that the 14-year cycle performed best by 

producing a model with the highest likelihood function.  The 14-year cycle is consistent with the 

views of many analysts.  The own-price, replacement and interest rate elasticities were calculated 

for both the short-run and long-run time-frames. 

 

The feeder calves price elasticities are quite low as would be expected, and long-run elasticities 

are only slightly higher, suggesting fairly rapid adjustment.  As expected, the increase in the cull-

cow price increases the number of culls, while an increase in the replacement cattle price 

decrease the number of culls.  This latter result was counterintuitive. 

 

The short-run price elasticities in the replacement equation were fairly high relative to that of the 

other two equations with expected signs for own price and cross price elasticities with respect to 

culls.  The price elasticities of the calf output was negative which was an unexpected result. 

 

The interest rates elasticities were also calculated.  Viewing cattle as an asset with the forgone 

value being the interest on money assets, one would expect the interest rate elasticity to be 

negative in the replacement equation.  Our interest rate elasticity was negative and quite elastic.  

However, our cull elasticity, while smaller, was also negative, which is also counterintuitive. 

 

Several items remain to be explored.  First, alternative functional forms should be tried to deal 

with convergence problems.  Second, alternative forms of more sophisticated or perhaps, even 

more workable price expectations should be explored.  Finally, there may be some gains to 



modeling the decisions of cow-calf operators with downstream operators such as feedlot 

operators. 

 

 



Table 1 Likelihood function at Different Adjustment rates:  

Years to Adjust__________________________________
 Eight Ten Twelve Fourteen 

Eight -1962.64 -1958.94 -1968.94 -1957.60
  
Ten -1963.30 -1895.82 -1935.96 -1902.51
  
Twelve -1933.42 -1890.90 -1888.50 -1893.65
  
Fourteen -1931.60 -1893.32 -1883.34 -1882.89

    
________________________________________________________ 
1/ The diagonals represent the likelihood function when there is  
no change. The off diagonals represent the likelihood function when there is  
a change after 1987.  For example the number –1962.64 is the likelihood function when  
an eight year cycle was imposed.  The number –1958.94 is the likelihood function when a eight 
cycle was imposed until 1987 and then a ten year cycle is imposed afterwards. 
 

Table 2:  Elasticities 

  
     
 Y1-calves Y2-cull Y3-replacement  

P1-(calves) 
Short run 

.391 
 
 

-.183 -.88

P1-calves 
Long Run 

.417 -.22 -1.06

P2-cull 
Short run 

-0.014 
 
 

.43 2.15

P2-cull 
Long run 

-.03 .46 2.15

P3-Rplacement .063 
 

-0.54 -2.68

P3-Rplacement .107 -.62 -2.30
Interest rates .25 -.524 -2.77
1/ The  replacement elasticities are derived from equations 2 and 3 Hence 
cross price elasticities need not be same or opposite sign. 



 

Table 3 --The estimated equations 
________________________________________________________________________________ 

       
 Calves Born    Cull Cows    
  Parameter T-stat Parameter T-stat 

B1 R -5144 -0.19 B2 R -66031 -3.52 
B11 P1(r-v) -1435.8 -1.28 B21 P1(r-v-1) 842.54 0.99 
B12 P2(r-v-1) 842.54 0.99 B22 P2(r-v-1) -1435.1 -2.20 
B13 P3(r-v-1 -202.19 -0.99 B23 P3(r-v-1) 2166.8 4.29 
B1b R*B-dB 2.47 1.45 B2b R*B-dB  -4.1 Na 
 . Past .0035 0.035  -B2b Past  -.036 -2.81 

γit T*(r-v-1) -4.94 -0.20 γit     T*(r-v-1) 71.54 9.53 
Bt11 Dm -7210.1 -8.10 Bt21 Dm 472.62 5.22 
Bt12 D2 -4770.2 -4.60 Bt22 D2 584.22 6.37 
Bt13 D3 3896.5 7.71   Bt23 D3 66.436 0.76 

     
 Herd Differences       
        
  Parameter T-stat     

B1 RRC -55224 -1.79      
B31 P1(r-v-1) -202.19 -0.99      
B32 P1(r-v-1) 2166.8 4.29     
B33 P1(r-v-1) -298.51 -2.86     
Bb3

-1 Hds 1.19 NA     
 Past 0.0235 1.62   
γit  RTRB -12.96 -7.25   
Bt31 Dm -450.11 -4.81     
Bt32 D2 -552.50 -5.79     
Bt33 D3 -41.12 -0.45     
_________________________________________________________________ 
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 Appendix 

 

Pricing Cattle as an Asset 

Since a classic paper written by Jarvis (1982) economists often have viewed cattle as a capital asset. 

Yet cattle models do not always use asset-pricing formulas to derive the representative price of 

cattle.  Even if asset prices are available it is not immediately clear how these prices should be 

incorporated into a dynamic herd management model.  This will be discussed below. 

 

First, to derive the cattle asset price the standard capital asset pricing formula can be used 

(Jorgenson, Mathews and Short (2001)). This is: 

 

Where Pe  is the expected price of a feeder calf price in year “t”, we the expected hay price in year t, 

and � is the amount hay consumer per calf, and r equals the rate of interest. 

 

In order to calculate asset prices we needed to derive market expectations of future calf prices.  

This would be distinct from the expectations of a representative cow-calf operator who may not 

use, for example, information relevant to feedlot operators.  Expectations of the t+i step ahead 

feeder calf price were derived by a setting stockyard demand equation for feeder calves equal to 

a  supply equation for feeder calves and then, solving for the feeder calf price, p. 5 Thus to 

present future expected feeder prices we modeled the following equation: 

                                                           
 

( ) ( ) /(1 ) (1 )11

N e e e t et P w Q r P aPk t t st
�� � � ��

�



 

 
 
The letter d in front of a variable represents first differences.  The t-l represents a one period lag. 

For example pcrnt-l represents a corn prices lagged one period.  The term dpcrnt-l represents the 

difference between the corn price in year t and t-l. 

 

In the above equation each explanatory variable is represented in both levels and in differences 

and a lag value of the endogenous variable is included.  This specification is consistent with an 

error correction model. Thus, we allow for the possibility that markets correct for past 

forecasting errors which assumes some form of rationality on part of markets6 Since prediction 

occurs over time, a polynomial in trend representing the influence of technology on prices was 

included in the specification. 

 

Once expectations of future feeder prices were derived, the series Pk  (the price of capital) was 

calculated. T hen the Pk series was treated as any other price.  That is the capital price variable 

could be transformed, forecasted “x” periods ahead, or lagged “x” periods.  

 

Output prices 

                                                           
6 . The price of corn (prcn), soybeans (psy), and slaughter prices (plst) come from the feedlot demand equation. The 
hay price and B dot equation come out of the producer supply term. 
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In our model the price of the output, a calf, is represented by a weighted probability of the value 

of its uses and is:  

 

P1=ηu1*Pfl+ηu2*Pfl +ηu3 *Pk+                                                                                                                          (3a) 

where Pfl is the expected feeder calf prices 6 quarters ahead, Pk is the price of cattle when viewed 

as a capital asset.  The term ηu1 represents the expected probability that the calf will be sent to a 

feedlot, ηu2 represents the expected probability that the calf will be sold to another rancher who 

will background it and then sell it to a feedlot, and ηu3 represents the probability the calf will be 

set aside for breeding purposes.  Combining terms the price becomes: 

 

                                                           

P1=(1- ηu3*)Pfl+  ηu3*Pk+                                                                                                                              (4a)                        

 

Since approximately half of the calves born are heifers, a priori we know that ηu3 is at least 

smaller than 0.5. 

 

Finally, naïve expectations were used to predict hay prices, which often is a proxy for pasture 

conditions.  Hay prices would be difficult to predict with a model, since weather plays a major 

role in determining pasture conditions.i 

 
 
 
 
 
 


