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Levels or Differences in Meat Demand Specification 
 

 
Abstract 

 
We estimated a wholesale demand system for beef, pork, lamb, chicken, and turkey using 

quarterly U.S. data and a dynamic, CBS system (Keller and Van Driel).  The CBS system is a 

differential system, which means that it might be more appropriately applied in those situations 

where the data have unit roots.  If there are unit roots, differencing the data can improve the 

properties of the estimates.  If the data do not have unit roots, differencing the data might harm 

the properties of the estimates.  

 

We tested the specification of the model’s error terms using state-space techniques.  State-space 

units allow one to deal with roots on the unit circle without filtering the data (See Durbin and 

Koopman).  The demand system has only four independent error terms.  The state-space model 

we used could have decomposed these four independent error terms into four errors with unit 

roots and four with 0 roots.  Adding state-space features to the model greatly improved its 

performance as measured by the likelihood ratio statistics.  The estimates imply that the raw 

demand data have two unit roots and three 0 roots. Our mixed approach improves the properties 

of the estimates. 
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Introduction 
 
This paper is a preliminary report on our research into quarterly meat demand in the United 

States.  We estimated a wholesale demand system for beef, pork, lamb, chicken, and turkey using 

dynamic, CBS system (Keller and Van Driel).  Our raw data ran for 88 quarters, 1970 to 2000 

inclusive.  We had 86 usable observations after dealing with the lags and differences inherent in 

our specification.  We assume that the demand for these five meats is separable from the 

demands for other goods.  We selected the CBS system because it has a number of attractive 

features.  Its greatest advantage from our point of view is that it is linear in its parameters, 

although making the model dynamic introduces some non-linearities.  The equality restrictions 

of constrained optimization theory can be incorporated using linear restrictions.  

 

The endogenous and exogenous variables in the CBS system are functions of differences in the 

logarithms of quantities, prices, and expenditures.  The CBS and other differential systems might 

be more appropriately applied in those situations where the underlying price and quantity data 

have unit roots.  Differencing or filtering data will improve the statistical properties of estimates 

if the data has unit roots.  It will degrade the estimates’ properties if the raw data does not have 

unit roots, or if the wrong type of filter is used. 

 

In this paper, we deal with two types of roots on the unit circle, 1 and –1.  Differential demand 

systems will eliminate roots equal to one if the raw data have that unit root.  If the “raw” data do 

not have roots equal to 1, transforming it to the CBS specification might induce roots equal to –

1.  We deal with the unit root cases by using state-space econometrics to specify the error terms 

of the demand system.  Our application has some special features that allow us to simplify the 



more general state-space model.  The state-space approach allows us to take the two unit-root 

cases and build a model that nests both roots of 1 and –1. 

 

Econometric Models 

We focus on the state-space features of the model and briefly describe the CBS model.  More 

details about CBS can be found in Keller and Van Dreil, or in Barten and Bettendorf.  The CBS 

model relates a function of the changes in quantities demanded to changes in prices and changes 

in the scale of quantity demanded. The CBS system was designed as a consumer demand system, 

and can be made consistent with all the theoretical properties of consumer demand system.  Our 

data is wholesale data, and represents a derived demand system.  However, this derived demand 

system is conditional on the overall “scale” of meat output.  These types of conditional derived 

demand systems have the same types of economic restrictions as consumer demand systems.  

The data is quarterly U.S. disappearance of beef, pork, lamb, chicken, and turkey.  The prices for 

beef and pork are Economic Research Service estimates of wholesale values.  The lamb price is 

based on the carcass lamb price published by the Agricultural Marketing Service (AMS).  

Chicken and turkey prices are the whole-bird prices also published by AMS. 

 

The “straight” CBS model is linear in its parameters and the equality restrictions of optimization 

theory can be imposed using linear restrictions.  We allowed for dynamic adjustment, using a 

procedure developed by Anderson and Blundell.  Their structure makes it relatively easy to 

recover the long-run coefficients from a general, dynamic model.  Our CBS model is written as: 

(1)  ddY(t) = -a*dY(t-1) + ( ddX(t-1)*c + dX(t-1)*a)*B  + Z(t)*C + w(t). 



The term ddY(t) is the differenced vector of endogenous variables and dY(t-1) is the lagged 

endogenous variable.  We use “dY” instead of “Y” because the CBS endogenous variables are 

functions of the first differences of quantities.  The CBS is one of those demand systems with a 

singular covariance matrix, and is estimated by deleting an equation.  The estimates are invariant 

to the equation deleted; we deleted the beef equation.  Likewise, ddX(t) is the vector of 

differences in the CBS exogenous variables and dX(t-1) is the lagged exogenous vector.  CBS 

exogenous variables are functions of the differences in prices and scale.  The terms “a” and “c” 

are scalar adjustment coefficients and “B” is a matrix of long-run coefficients.  Note that the 

lagged endogenous and exogenous terms are multiplied by the same scalar, adjustment 

coefficient (except for sign).  This model is a special case of Anderson and Blundell’s most 

general model.  In this form, the long-run elasticities of demand are a function of the B vector.  

The short-run price and scale responses are c*B.  If “c” is equal to 1, then (1) is consistent with 

first-order autoregression. We imposed the equality restrictions implied by constrained 

optimization on the B matrix estimates.  Optimization theory also requires that the compensated 

price effects be negative semi-definite, the negativity constraint.  Keller and Van Driel showed 

that the negativity constraint held if the price terms of the CBS coefficient matrix are also 

negative, semi-definite.  We imposed these non-linear, inequality restrictions on the B estimates. 

 

The Z(t) variables include quarterly dummies and intercepts.  The intercept and full set of 

quarterly dummies are linearly related.  To eliminate colinearity, we required the quarterly 

dummies to sum to 0 across quarters for each of the species’ meat.  The singularity of the CBS 

system makes the intercepts and quarterly dummies sum to 0 across meats.  In these differential 



models, the intercept is often called “a taste-shifter.”  A non-zero intercept implies that the 

demand for a product will change even if prices and expenditures do not change.  

 

An intercept gives a constant drift in tastes or technology over time.  An intercept implies that 

the underlying shift is nothing more than a linear function of time.  We wanted to allow for a 

more flexible kind of shift.  We replaced the linear function of time with a quadratic function of 

time. We also divided the sample into four 22-quarter periods, and allowed for different 

intercept, trend, and trend-squared effects in each of the sub-periods.  We required that the 

adjoining functions imply the same values at the end periods.  The first function and the second 

function have the same value in quarters 22 and 23; the second and the third are the same in 

quarters 44 and 45, while the third and fourth match in quarters 66 and 67.  Our taste-shift is a 

discrete, quadratic spline function.  We required the spline terms to start at 1 in quarter 1 and end 

at 88 in quarter 88, just as a trend term would.  We used all these restrictions to reduce the 12 

spline terms to 5 restricted terms.  The taste-shift variable effect can be written as: 

(2)  D*[ dS(t)*F ] 

In equation (2) D is a vector of intercept-like parameters, dS(t) is a vector of changes in the 

spline terms for quarter “t”, while F is another vector that determines the pattern of the taste 

shift. 

 

The last term in equation (1) is “w(t),” the random error term of the model.  We considered two 

extreme cases for the time-series properties of w(t).  If w(t) is independently and identically 

distributed (iid) over time, we called it e(t).  Because the CBS model is based on differenced 

data, iid error terms in the CBS model imply that the stochastic parts of the raw data have unit 



roots.  The second case is where the stochastic parts of the raw data are iid.  The differencing 

underlying the CBS model will then induce moving-average autocorrelation into equation (1).  

We will write this error term as: 

(3) w(t) = u(t) – u(t-1). 

For the purposes of comparing the two extreme cases, it would be helpful to have an 

intermediate case that nests both.  This is our state-space model, where the error term can now be 

written as: 

(4) w(t) = e(t) + u(t) – u(t-1). 

In specifying equation (4) we assume that the e(t) and the u(t) are both iid over time and the e(t), 

and u(t) are independent of each other. The structure of equation (4) implies that w(t) is going to 

exhibit some autocorrelation, which implies that knowing w(t) will help one predict what w(t+1) 

is going to be.  We derived functions that give us the optimal predictor of w(t+1), given the 

information available in time “t.”  Durbin and Koopman derived formulas for very general state-

space models.  We used their solutions, and thus refer the reader to their book for the derivations. 

 

The general procedure in state-space modeling is to use the information available in time period 

t-1 to make the best, conditional forecast in time period t.  We began with the assumption that we 

know the covariance matrix for the u(t) and e(t): σu and σu, respectively.  The variance matrix for 

the prediction w(t) was called σw(t); in general, this matrix changes over time.  Along the way, 

we derived estimates of u(t) at time “t,” u(t|t).  The estimate of u(t) is likely to differ from its true 

value, and we can calculate the variance of the difference between u(t) and u(t|t).  The variance 

of the difference between our estimate of u(t) and its true value is σz(t).  Again, this matrix can 

vary over time. 



In the first time period, call it “1,” we had no information to help us predict what w(1) would be.  

Our prediction of w(1) was 0.  The variance of our prediction of w(1) is: 

(5) σw(1) = σe + 2*σu  

The variance in equation (5) is the variance of the e(1) error term and twice the variance of u().  

It is twice the variance of the u as w(1) has both u(0) and u(1) in it.  Once we actually saw w(1), 

we then used this information to get an estimate of u(1).  Using Durbin and Koopman’s general 

rules, we then estimate: 

(6) u(1|1) = σu *[σw(1)]-1 w(1), 

The variance matrix for the difference between the true u(1) and its estimate is: 

(7) σz(1) = σu  - σu *[σw(1)]-1 σu. 

Our problem has two advantages over Durbin and Koopman’s more general problems.  First, we 

have fewer problems initializing our estimates.  Our initial estimate of u(0) is a vector of zeros, 

and we know that the variance of this estimate is σu.  Durbin and Koopman spend a great deal of 

space in their book on initializing the state variable and its variance.  The second advantage we 

have is that we need to keep track of fewer variance matrices.  One of the things that wedo not 

show is the new, improved, estimate of u(0), or u(0|1).  In more general state-space models, we 

would need it and its variance to help forecast next period’s value.  In our case, u(0) is never 

seen again, so we did not calculate its updated value or variance. In theory, updating u(0) is not a 

problem.  In practice, it is another set of calculations for our estimation routine that we can 

eliminate without affecting the end result. 

 

Our forecast of w(2) given our information in time period 1 was –u(1|1).  This produced 3 

sources of error in our forecast of w(2).  Both e(2) and u(2) are unpredictable, and our estimate 



of u(1) is (possibly) inaccurate.  Our forecast variance was the variance of w(2)+u(1|1), which is 

equal to: 

(8) σw(2) = σe + σu + σz(1). 

Our estimate of u(2) and its variance are: 

(9) u(2|2) = σu *[σw(1)]-1 (w(2) + u(1|1) ) 

(10) σz(2) = σu  - σu *[σw(2)]-1 σu. 

We continued to loop through the time periods in this manner, getting new predictions for u(t|t) 

and the time-varying variance matrices.  As Durbin and Koopman noted, in problems of this 

type, the matrices σw(t) and σz(t) will approach some steady-state values. To further reduce the 

size of the estimation program, we used the steady-state values of σw and σz, rather than the time-

varying values.  In our application, these two variance matrices converge to 10 decimal places in 

3 periods, so the use of steady-state rather than time-varying variance matrices was likely to have 

small effects on the outcome. 

 

Estimation: Procedures and Results 

Implementation of the state-space model requires replacing the “real” parameters with estimates 

of the parameters.  We were interested in comparing the more general state-space specification 

with the two alternatives.  The state-space specification can be made into the alternatives by 

setting either σu or σe to a zero matrix. We ended up estimating 15 alternative models with 

different restrictions on the σu and σe matrices.  By definition, covariance matrices have to be 

positive, semi-definite.  We imposed this restriction on the estimated matrices using Cholesky 

decompositions.  Making either σu or σe a zero matrix makes their rank equal to 0.  The 

endogenous variables’ cross-product matrix has a rank of four.  Using the Cholesky 



decomposition allowed us to restrict the rank of any of the matrices to less than four.  The σw 

matrix will not have its full rank unless the sum of the ranks of σu and σe is four or greater.  We 

ran all models with all combination of the ranks of σu and σe that exceeded four. 

 

We estimated the model using maximum likelihood estimation.  We compared the various 

models using their likelihoods.  These likelihoods are reported in Table 1. 

 

Many of the likelihoods in Table 1 are the same.  Imposing equality restrictions on models 

invariably lowers the likelihood.  Reducing the rank of either the σu or σe matrices in some way 

restricts the model, except that forcing the σu and σe matrices to be positive, semi-definite is 

imposing an inequality restriction. In these cases, there is always a chance that the estimates will 

go to the boundary of the inequality restriction, which will then become binding.  It is common 

in state-space applications for the estimated covariance matrices to fail to have full rank.  When 

we ran the least-restricted model, the e()’s matrix had a rank of 2, and u()’s a rank of 3.  All the 

likelihoods where the rank of σu is three or greater and the σe two or greater are the same.  All the 

likelihoods where the rank of σu was two are the same, as are all those where the rank of σu was 

one. 

 

When testing equality restrictions, the differences in twice the likelihoods has an asymptotic chi-

square distribution.  Going from the two most restrictive alternatives to the general state-space 

model adds 10 independent covariance terms.  The difference between the likelihood of the 

general and most restrictive models is statistically significant.  One problem with using the 

likelihood ratio test in this case is that we are in part, testing inequality restrictions, and there is a 



finite probability that the difference in the likelihoods is zero.  We actually had several tests that 

worked out to 0 in this case.  It is likely that the true distributions of the difference in likelihoods 

has more of its probability at lower values than the chi square distribution.  The chi square’s 

probabilities probably underestimate the odds of rejecting the null hypothesis when it is true. 

 

We conclude, therefore, that the state-space model is a statistically significant improvement over 

the two extreme alternatives.  Neither a pure level nor a pure difference model adequately 

explains the stochastic processes driving wholesale-level meat demand.  

 

The difference in twice the likelihood of the rank-3 σu, rank-2 σe and the model where the rank of 

σu is dropped to two is only 4.30.  Dropping the rank of σu from 3 to 2 requires the elimination of 

two free terms.  The value of 4.30 is not significant for a two-degree-of-freedom chi-square.  

However, there is that finite chance that the chi-square will be 0 if the rank actually is 2, which 

makes it impossible to say anything about the true significance of this change. 

 

Table 2 shows the short-run and long-run elasticities of demand. The long-run demand is 

generally less elastic than short-run demand.   Thus, the estimated multiplier for the current CBS 

exogenous variables, the “c” parameter in equation (1), is 1.484, while the lagged multiplier is 

0.9875.  Current price and scale changes have larger short-run effects than their long-run effect.  

All five meats in the system have inelastic demands; the demand for lamb is almost perfectly 

inelastic.  

 

 



Figure 1 shows how the taste variable evolves over time.  Table 3 shows how demands for the 

meats changes in response to the taste shifter and seasonally.  The taste shift decreases demand 

for the red meats, particularly beef, while increasing poultry demand.  The taste-shift term peaks 

in 1995, then declines, implying an increasing demand for red meat starting in the mid-1990’s.  

The increase in red meat demand since 1995 does not erase the losses from 1979 to 1995.  

Turkey, as one might expect, shows the strongest seasonal demand pattern. 

 

Conclusions and Future Research 

We are confident in concluding that our state-space approach improves the performance of our 

model.  The underlying data seems to have a mix of unit and non-unit roots that cannot be 

corrected with simple difference filters.  The most obvious, unanswered question is about the test 

of dropping the rank of the u(t) covariance matrix from three to two.  Future research will 

evaluate this test using some type of empirical technique, for instance, Monte Carlo simulations. 

 

Another area for future research is to relate the errors to the structure of the model estimates. 

This involves imposing restrictions on the covariance matrix for the u(t). For example, the 

quadratic spline terms are meant to capture the change in tastes over time.  The spline terms may 

only approximate the “true” taste change.  The approximation error in the taste change may be 

one of the sources of the u(t) error terms.  Another potential source of u(t) involves the 

scale/expenditure terms.  One of the features of the CBS model is that it is consistent with non-

linear aggregation.  There is some “representative” level of scale or expenditure that is consistent 

with the market average share.  The representative scale will not generally be the average scale. 



The empirical model uses the change in the average scale.  The difference between the average 

and representative scale could be another source of u(t) in the model.   
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Table 1—Twice the likelihood under different assumptions about the rank of the 
covariance matrices 

Rank of 
covariance matrix 
of u(t) 0 1 2 3 4

0 476.02
1 536.70 536.70
2 574.96 574.96 574.96
3 -794.14 579.26 579.26 579.26
4 505.23 549.23 579.26 579.26 579.26

Rank of covariance matrix of e(t)

 
 
Table 2—Demand elasticities 

beef pork lamb chicken turkey
beef -0.595 -0.306 -0.002 -0.105 -0.017 1.026
pork -0.503 -0.340 -0.015 -0.130 -0.042 1.030
lamb 0.490 -0.209 -0.123 0.257 -0.202 -0.213
chicken -0.333 -0.256 0.005 -0.301 -0.050 0.935
turkey -0.150 -0.274 -0.046 -0.164 -0.277 0.911

beef pork lamb chicken turkey
beef -0.565 -0.307 -0.004 -0.117 -0.025 1.017
pork -0.503 -0.329 -0.013 -0.133 -0.042 1.020
lamb 0.166 -0.241 -0.086 0.128 -0.150 0.182
chicken -0.389 -0.273 0.001 -0.248 -0.047 0.956
turkey -0.265 -0.285 -0.034 -0.156 -0.200 0.940

shortrun wholesale demand elasticities at mean  shares
price terms expenditure 

or scale

longrun wholesale demand elasticities at mean  shares
price terms expenditure 

or scale

 
 
Table 3—Taste and seasonal effects on wholesale meat demand.  Percent change in demand 
per quarter. 

taste Q1 Q2 Q3 Q4
beef -0.14% 4.86% 0.99% 0.08% -6.01%
pork -0.04% -1.57% -3.66% -1.36% 6.72%
lamb -0.02% -3.48% -0.89% 3.90% 0.59%
chicken 0.30% 6.48% 2.64% -1.44% -7.36%
turkey 1.06% -64.61% 8.93% 15.23% 38.95%  



Figure 1—Taste shift variable compared to trend 
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