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How Much Do Starting Values Really Matter? An Empirical 

Comparison of Genetic Algorithm and Traditional Approaches 
 

Abstract  

This research evaluates the impact of using different starting conditions in 

estimating meat demand systems.  Results suggest that as the econometric task becomes 

increasingly nonlinear, specification of starting conditions becomes increasingly 

important.  This work demonstrates implications of failing to use the best available starting 

value conditions and how these implications vary with the complexity of the underlying 

econometric model of interest.  Furthermore, this piece proposes a universal approach to be used 

by all applied econometric practioners to developing appropriate starting values for use in 

subsequent model estimation.     
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Introduction  

It is often said that applied empirical research is “as much an art as a science.”  Such 

statements arrive due to the fact that empirical results are frequently very sensitive to the 

selection of data sets, model specification, and econometric techniques used in the empirical 

exercise.  While a whole career could be made in analyzing each of these factors (and the 

numerous sub-factors impacting them), this research seeks to shed light on the extent to which 

different starting values of parameters to be estimated impact empirical findings.   

Most applied empirical work fails to disclose the procedures used in establishing starting 

conditions for their estimated models.  In fact, the vast majority of authors don’t even bother to 

acknowledge starting conditions in their discussion.  This raises two questions: 1) “Do authors 

even consider the impact of start values on their models?” and 2) “Just how sensitive are 

subsequent model results and implications to the actual starting conditions employed in the model 

estimation process?”  Furthermore, this issue is becoming of increasing importance as 

econometric models continue to become more sophisticated and highly non-linear as allowed by 

constantly increasing computer power.  These increasingly complex models are inherently more 

likely to be estimated with algorithms converging to local rather than global solutions as the 

number of local solutions tends to increase quickly with the level of complexity inherent in the 

underlying model. 

There are two primary objectives of this research: 1) to examine the magnitude of 

differences and economic implications of these differences in applying various starting condition 

rules to recently published applied empirical exercises; 2) to develop a practical approach to 

recommend for use in deriving appropriate starting conditions that can be used by future applied 

econometricians. 
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Genetic Algorithm Introduction 

Economic modeling has benefited significantly from relatively recent 

developments in empirical research methodologies and enhancements in computing 

power enabling more sophisticated modeling techniques to be evaluated.  These 

advancements have, at least in theory, led to overall improvements in the quality and 

reliability of model results; therefore improving the ability of economists to provide 

decision makers with appropriate advice and valuable information.   

 An enhancement of high interest in this research is the increasing use of genetic 

algorithm techniques.  While not originating from economists, economists are 

increasingly using these tools to improve their empirical modeling methodologies.  

Genetic algorithms are utilized by econometricians to increase confidence in finding 

globally optimum solutions rather than local optima.  Researchers are never fully assured 

that their empirical search techniques have revealed global optimums.  The more 

nonlinear the optimization functions are, the more likely traditional algorithms are to stop 

iterating and propose results that in actuality are local optimums.  By design, all gradient-

type algorithms take a starting point (or vector of starting values) and search from that 

point to another, gravitating towards the local optimum nearest to the starting point.  This 

is why a truly exhaustive search, including multiple starting points, is needed to gain 

confidence in finding global optima solutions.  

Dorsey and Mayer often are credited with being the first to analyze the ability of 

genetic algorithms to solve optimization problems plagued by the problems just 

discussed.  They provide a nice introductory and application discussion of how genetic 
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algorithms work.1  Genetic algorithms (GA) iterate towards a solution through a process 

very similar to that of natural evolution (Goldberg).  The GA takes an initial population 

of values (similar to the starting values used by traditional algorithm approaches) and 

randomly selects a subset of this initial population to utilize in generating “offspring” 

which are the next set of candidate values.  The success of such an approach hinges on 

the “proper selection” to use in generating the next set of candidate values.  As iterations 

continue, the traits yielding the most preferred objective value continue to persist while 

less desirable traits die out.  This part of the GA is what is similar to evolutionary process 

and the theory of “survival of the fittest.”   

This GA process is different from traditional algorithms in the sense that it does 

not move “from point to point” along a function being evaluated, but rather it randomly 

(where this random process incorporates an evaluation of the desirability of each 

candidate value) chooses a set of values to evaluate in the next iteration.  This 

randomness is what characterizes GA processes to be less susceptible to “getting stuck” 

on local solutions or excessively struggling with non-differentiable issues.  The “random 

selection” process is similar to having the search algorithm “jump” along the objective 

function as opposed to the traditional gradient-based approach of “moving along” or 

“walking along” the objective function.      

 

 

 

 

                                                 
1 Our discussion on genetic algorithms is not intended to be exhaustive, but rather a “sufficient 
introduction.”  Those interested in a more in-depth discussion are advised to consult the Dorsey and Mayer 
article. 
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Methods 

The methodology employed in this paper includes estimating a series of recently 

used applied meat demand models under different sets of starting conditions.  Meat 

demand models are considered as they are frequently used in the development and 

presentation of new, usually more sophisticated demand models as well as the fact that a 

whole wealth of meat demand models exist with little explicit consideration of starting 

value condition impacts on subsequent model results.  The demand models considered 

are of varying degrees of nonlinearity further allowing us to gauge the relative 

importance of employing different starting conditions for various levels of model 

complexity.  These models include variations of recently used AIDS (Almost Ideal 

Demand System) models.  The starting conditions considered can be broken down into 

two sets: 1) default starting values of the statistical package (e.g., 0.01 in SAS) and 2) 

starting values implied by using a genetic algorithm search technique.   

 To evaluate the economic impact of starting conditions we estimate each of the 

considered demand models (e.g., variations of the AIDS models) using each of these 

starting conditions.  The resulting parameters, elasticities, etc. are then statistically 

compared in both in-sample and out-of-sample exercises to assess the implications of 

employing the different starting conditions.  From these exercises, a generalized approach 

is developed with the intention of being used by future researchers as an accepted 

standardized approach to generating appropriate starting conditions prior to actual 

estimation of the final model used in drawing the economic implications of actual focus 

in the research at hand.  This generalized approach includes the employment of a genetic 

algorithm in improving starting conditions.   
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Data  

Data used in this analysis consists of quarterly per capita disappearance and price 

series for beef, pork, poultry, and fish for the US domestic market.  This data was 

collected over the 1976(1) -2001(4) period yielding 104 total observations.  Quarterly 

price and disappearance data ranging from 1976(1) through the 1993(4) were obtained 

from Dr. Henry Kinnucan and are identical to that used by Kinnucan et al.  Subsequent 

beef, pork, and poultry per capita disappearance data from 1994(1) to 2001(4) were 

obtained from the United States Department of Agriculture (USDA), Economic Research 

Service (ERS) supply and utilization tables published in the Red Meat Yearbook.  Beef, 

pork, and poultry price data are average retail prices obtained from ERS.2  Corresponding 

fish per capita disappearance data were obtained following the same procedure used by 

Kinnucan et al. and discussed in more detail by Schmitz and Capps.  Using a fish 

consumer price index obtained from ERS and a base price from 1983(1), quarterly fish 

price data spanning from 1994(1) to 2001(4) were derived for this analysis.3      

 Table 1 provides summary statistics of the entire dataset and the estimated 

expenditure share allocated to beef, pork, poultry, and fish consumption for US 

consumers.  Upon inspection of the budget share estimates, it is apparent that the 

representative US household allocates a high percentage of its animal protein 

                                                 
2 More specifically, the beef and pork prices used have variable names BFVRCCUS and PKVRCCUS, 
respectively.  Furthermore, the poultry price is calculated as the sum of expenditures on whole fryers and 
turkey divided by the sum of per capita disappearance of chicken and turkey.  For additional details on 
these prices, readers are referred to USDA, 2006. 
 
3 More specifically, observed fish consumption (obtained from Kinnucan et al.) was regressed against 
quarterly dummy and annual trend variables.  Corresponding regression coefficients (which were all 
significant in a model with an R-squared of 0.82) were then used to quarterize annual consumption over the 
1994(1) to 2001(4) period.  Any error associated with this allocation was then evenly distributed across all 
four quarters.  As noted by previous authors (Kinnucan et. al.; Dameus et. al.), US fish data is poor and 
procedures undertaken in this study are necessary to analyze quarterly US fish demand.  This data and 
additional details are available upon request.    
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expenditures (with nearly 50% being distributed to beef) to beef, pork, and poultry and a 

lower percentage to fish.   

 

Initial Results  

In estimating each combination of starting value approach and the different AIDS 

demand systems; beef, pork, poultry, and fish are treated as a weakly separable group.  

With homogeneity, Engle aggregation, and symmetry imposed, iterated seemingly 

unrelated regression estimates were calculated while dropping one equation to avoid 

singularity of the error covariance matrix.  The parameters of this omitted equation are 

obtained by utilizing the imposed theoretical restrictions noted above.  More details on 

each of the three AIDS model specifications can be found in Appendix I. 

 As shown in Tables 2-4, estimation of the traditional AIDS model is not impacted 

by the method used in determining starting values.  This is observed by the fact that all 

three starting value specifications result in models converging to a solution, yielding the 

same coefficient estimates, and hence the same model fit statistics.   

 Conversely, the second demand model specification considered (Basic GAIDS in 

the tables), converged to a solution using either SAS default starting values or starting 

values implied by use of a Genetic Algorithm.  However, Tables 3 & 4 reveal that using 

the Genetic Algorithm to develop starting conditions yields different coefficient estimates 

that in turn describe a model with a better in-sample fit than using the default SAS 

starting values.   

 The third, and most complex model specification, never converged when using 

the default SAS starting values but did converge using the Genetic Algorithm approach.  
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By extension, the coefficient estimates and model fit statistics are “different” across the 

approaches.  

 In summary across the three model specifications, we have initially found that as 

the underlying model becoming increasingly complex and more nonlinear, the 

specification of starting values becomes increasingly important.  Furthermore, in some 

cases, using a Genetic Algorithm to develop starting conditions can alleviate issues of 

non-convergence.  Applying this information; our current proposal to applied 

econometricians is to utilize a genetic algorithm approach to first develop a set of starting 

conditions to subsequently be used in solving the actual econometric model of interest. 

 

Conclusions  

There are a number of contributions and implications of this research.  First, actual 

acknowledgement is provided of the fact that starting values are not given proper discussion and 

consideration in applied econometric exercises.  Secondly, we demonstrate the implications of 

failing to use proper starting value conditions and how these implications vary with the 

complexity of the underlying econometric model of interest.  Furthermore, this work suggests a 

universal approach to be used by all applied econometric practioners to developing appropriate 

starting values for use in subsequent model estimation.  Current extensions being implemented 

include evaluations of the effect of these different starting value approaches on out-of-sample 

predictive accuracy and economic implications stemming from different elasticity estimates.      
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Table 1. Summary Statistics of Quarterly US Data (1976-2001) 
 Mean Std. Dev. 
Beef Consumption (lbs per capita) 18.40 2.09
Pork Consumption (lbs per capita) 12.72 0.91
Poultry Consumption (lbs per capita) 19.87 4.83
Fish Consumption (lbs per capita) 3.62 0.66
Beef Retail Price ($/lb) 2.52 0.45
Pork Retail Price ($/lb) 1.91 0.40
Poultry Retail Price ($/lb) 0.87 0.13
Fish Retail Price ($/lb) 2.51 0.77
Meat and Fish Expenditure ($/capita) 96.93 18.80
Beef Expenditure Share 0.48 0.06
Pork Expenditure Share 0.25 0.01
Poultry Expenditure Share 0.18 0.04
Fish Expenditure Share 0.09 0.02

 
 
Table 2. Do each the model and starting value combinations result in model 
convergence? 
 Traditional AIDS Basic GAIDS Enhanced GAIDS 
SAS Default 0.01 YES YES NO 
OLS Implied YES NA NA 
Genetic Algorithm YES YES YES 

 
 
Table 3. Do coefficients differ from using SAS default starting values? 
 Traditional AIDS Basic GAIDS Enhanced GAIDS 
SAS Default 0.01 - - - 
OLS Implied NO NA NA 
Genetic Algorithm NO YES YES 

 
  
Table 4. Are the in-sample model fit statistics better than using SAS default 
starting values? 
 Traditional AIDS Basic GAIDS Enhanced GAIDS 
SAS Default 0.01 - - - 
OLS Implied NO NA NA 
Genetic Algorithm NO YES - 
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Appendix I. 

 

This analysis estimates three different demand models.  The models, as listed here and 

discussed in the text, are noted in order of increasing complexity.   

Model Specification #1: The first estimated model is the linear approximation to 

the traditional AIDS (Almost Ideal Demand System) Model (see Deaton and Muellbauer 

for details).  The employed specification contains 12 parameters to be estimated.  This 

model is estimated under three different starting conditions: 1) using the default starting 

values implied by SAS of 0.01 for all parameters, 2) using the estimated coefficients 

found by OLS estimation of each individual equation, and 3) using the coefficients 

suggested by a Genetic Algorithm technique the iterates 50,000 times attempting to 

minimize the sum of squared errors in the system.  

Model Specification #2: The second estimated model is the most basic 

specification of a Generalized Almost Ideal Demand System (GAIDS) (see Piggott and 

Marsh or Bollino for details).  As noted by Piggott and Marsh, this demand system 

specification allows for pre-committed quantities, time effects, food safety issues, etc. to 

be evaluated in a manner that is consistent with derived elasticities being invariant to the 

units of measurement employed in the data used.  However, the “cost” of this 

improvement is added nonlinearity to the AIDS model.  As such, this makes for a nice 

transitional model to compare with the linear approximate AIDS specification.  The 

employed specification contains 17 parameters to be estimated.   

This model is estimated under two different starting conditions: 1) using the 

default starting values implied by SAS of 0.01 for all parameters and 2) using the 
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coefficients suggested by a Genetic Algorithm technique the iterates 50,000 times 

attempting to minimize the sum of squared errors in the system.  It is not feasible to OLS 

techniques to derive starting values due to the nonlinear price index implicit in estimation 

of the GAIDS system. 

Model Specification #3: The final estimated model is a more complex 

specification of a Generalized Almost Ideal Demand System (GAIDS) containing 36 

parameters to be estimated.  This specification adds additional parameters, implicitely 

assumed to be zero in Model Specification #2.  Again, this adds nonlinearity to the model 

making it a nice transitional model to compare.  

This model is estimated under two different starting conditions: 1) using the 

default starting values implied by SAS of 0.01 for all parameters and 2) using the 

coefficients suggested by a Genetic Algorithm technique the iterates 50,000 times 

attempting to minimize the sum of squared errors in the system.  It is not feasible to OLS 

techniques to derive starting values due to the highly nonlinear price index implicit in 

estimation of the GAIDS system. 


