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Derived Demand for Cattle Feeding Inputs 
 

Abstract 
 
Derived demand relationships among four weight categories of feeder cattle entering 

Texas feedlots and feed were examined using a Generalized McFadden dual cost function 

specified as an error correction model.  Relationships among own- and cross-price 

elasticities provide evidence for at least two cattle feeding enterprises, feeding 

lightweight feeder cattle (calves) and feeding heavier cattle.  These results indicate 

systematic differences in demand relationships among the different weight classes, 

providing explanation and insight into mixed results from earlier studies.  Seasonality 

differed across weight categories, providing additional support for multiple cattle feeding 

enterprises.  A third step was added to the Engle-Granger two-step estimation procedure 

to incorporate information provided in the second step. 

 

Introduction 

Feeder cattle are kept on pasture or some other relatively high-roughage sustenance until 

they are placed in feedlots.  Conventional wisdom characterizes the decision to place 

them in feedlots depending on a variety of factors, including relative prices of various 

weights of feeder cattle, feed prices, and other factors.  While many aspects of feeder 

cattle price differentials have been explained, empirical research results on this issue have 

been mixed.  Generally, feeder cattle models have not been specified in ways amenable to 

explaining all of the relationships that underlie reported average placement weights and 

price-weight relationships.  This paper extends earlier research by explicitly examining 

feeder cattle demand by weight category.   
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The research is motivated by three problems: First, many cattle feeding models 

consider only one optimal cattle feeding activity.  Placement weight is either fixed or the 

optimal placement weight is determined for a single feeding activity, given a set of prices 

for cattle and/or feed (Anderson and Trapp; Buccola; Dhuyvetter and Schroeder; Lambert 

et al.; Mark, Schroeder, and Jones; Marsh).  By disallowing solutions with multiple cattle 

feeding enterprises, these specifications preclude capturing links between demonstrated 

feeding regimes (Brewer et al. and Jordan et al.).   

 Second, data on which previous research was based often lacked sufficient detail, 

or modelers failed to exploit the detail that existed, to discern inter-weight-class 

relationships in feeder cattle placements.  For example, average feedlot closeout data 

obscures details of a number of underlying factors (e.g., Hoelscher in FeedStuffs), 

including data on placement weights and days fed.  Third, systematic explanation of 

weight price relationships is often lacking for the mixed results reported across previous 

studies.  Prominent in the literature is the logic that higher feed prices favor heavier 

weight placements, which will be on feed for shorter periods and, thus, eat less high-

priced feed (Dhuyvetter and Schroeder; Anderson and Trapp).  However, some studies 

report opposite results (Marsh). 

This paper highlights differences in demand relationships among different weight 

classes of feeder cattle placements and provides a rationale for the mixed feed/feeder 

cattle demand relationships found in previous studies.  The objectives of this paper are: 

(1) explore the likelihood of multiple cattle feeding enterprises; (2) examine the 

implications of multiple feeding enterprises on demand for feed and feeder cattle of 

different weights; (3) examine seasonal components of feeder cattle placement by 
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weights.  To meet these objectives, a Generalized McFadden cost function is specified 

and estimated as an error correction model (ECM).   

We introduce several innovations: First, we disaggregate feedlot placements into 

four weight subgroups and examine tradeoffs between feed and weight categories. 

Second, feed is decomposed and priced as energy and protein, allowing for parsimony in 

the model and allowing us to test for fixed proportions between energy and protein.  

Third, we add a third step to the Engle-Granger two-step ECM estimation procedure that 

allows us to improve our parameter estimates.  

 

Feeder Cattle Demand and Average Weights of Cattle Entering Feedlots 

The significance of factors affecting the price-weight relationships of feeder cattle and 

calves has been reported in several studies (Anderson and Trapp; Buccola; Dhuyvetter 

and Schroeder; Lambert et al.; Schroeder, and Jones; Marsh).  The literature 

characterizing price-weight relationships for feeder cattle originates from two primary 

analytical perspectives.  One approach exploits feeder cattle price-weight relationships to 

determine an optimal feeder cattle placement weight that maximizes cattle feeding profits 

or minimizes cattle feeding costs.  The second approach is based on the analysis of 

factors that affect price differentials in feeder cattle markets. 

While addressing general price-weight relationships in feeder cattle prices, these 

studies have not addressed the relationships between weight classes.  Reported 

relationships between feeder cattle prices and weights appear mixed across studies.  For 

example, Lambert et al. and Coatney, Menkhaus, and Schmitz report negative 

relationships between feeder cattle price and weight.  Dhuyvetter and Schroeder report a 
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positive, but declining relationship between price and weight.  However they emphasized 

that interactions in their model made it difficult to interpret the marginal effects of each 

variable.  Marsh assumed feeder cattle placement weights were important to the cattle 

feeding decision, but found only indirect supportive evidence.  Other variables affecting 

feed prices have been Fed-cattle futures prices past profits (Kastens and Schroeder) and 

seasonality (Dhuyvetter and Schroeder; Anderson and Trapp), cattle cycles (Simpson and 

Alderman), recent feeding margins (Dhuyvetter and Schroeder), and sex (Dhuyvetter and 

Schroeder; Lambert et al).   

Results characterizing the relationship between feed prices and feeder cattle 

weights also have been mixed.  Some authors report positive relationships between corn 

prices and feeder cattle weights (Dhuyvetter and Schroeder; Anderson and Trapp).  

Heavier weight placements leave calves on feed for shorter periods, thus, consuming less 

high-priced corn (for example, Marsh).  Buccola reports that an increase in corn price 

caused a decrease in feeder cattle price (an implied positive relationship between feeder 

cattle quantity and corn price).  

 

A Cost Function 

Treating feeder cattle of different weight categories as distinct inputs into fed-cattle 

production is a logical, theoretical construct for examining the derived demand for 

distinct weight categories of feeder cattle.  A cost function allows one to derive a system 

of demand equations for estimation via Shepherd's Lemma (Dewiert; Young et al.).  In 

the model specified here, feeder cattle of distinct weight categories are treated as distinct 

elements of an input vector, x, each with a distinct price per unit in a corresponding input 



 5

price vector, w.  Other inputs, such as feeds, and their prices can be included as elements 

in the input and price vectors as well.  Output, y, is represented as the total number of 

feeder cattle multiplied by the average slaughter weight; ignoring death loss.   

While many functional forms are available for specifying a cost function the 

Generalized McFadden cost function is notable for its ease of use (Dewiert and Wales).  

It automatically satisfies most properties of cost functions including homogenity (see 

Varian), but does not satisfy conditions of symmetry and concavity in input prices.  

However, these conditions can be easily imposed1.  The Generalized McFadden cost 

function specified for the cattle feeding application is: 
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where Or = other variable(s) r, and i, j represents feeder cattle four weight classes and two 

feed categories which together ensure (i,j = 6).2  The numeraire, wk, is the price of one 

weight class of feeder cattle.  In the feedlot model Or are seasonal variables, Sr, explicitly 

defined below.  By this notation and by applying Shephard's Lemma, the first derivative 

with respect to input prices yields conditional input demands which can be written as  
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The numeraire insures input demands are homogenous of degree zero in input prices. 

By jointly estimating demands for different weight categories along with demand 

for feed, it is possible to obtain own- and cross-price effects on each weight category.  

This may reveal whether demands for each category of feeder cattle are complementary 

or substitute inputs.  In this paper, complementarity is interpreted as support for an 
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alternate hypothesis of multiple classes of cattle feeding enterprises.  Including feed 

demand allow us to examine category (feed), feed price (category price) relationships.  

Empirical Model Estimation and Results 

This section presents estimation of, and results from, a version of the Generalized 

McFadden cost function specified as an Error Correction Model (ECM) (Friesan; Friesan, 

Capalbo, and Denny).  The ECM consists of two components, a levels (equilibrium) 

component and an unconstrained, differenced (disequilibrium) component.  Joint 

estimation of both components of a nonlinear ECM model is the preferred estimation 

procedure.  However, additional nonlinearities in specification of our model led to a 

failure to converge.3 

Engle and Granger introduced a two-step estimation procedure for ECM's that has 

been widely used.  A levels model is estimated and then, the lagged errors from the levels 

component (first step) are used as explanatory variables in estimating the disequilibrium 

component (second step) of the model.  Parameter estimates on the lagged errors can be 

used to calculate the speed of adjustment to long run equilibrium.4  In accounting for 

disequilibrium, the second step accounts for specification errors in the first step.  Engle 

and Granger demonstrate the consistency of these two-step estimates.  

The Engle-Granger two-step procedure is extended here by introducing a third 

step in which the adjustment parameter, νi, is set and all remaining parameters of the 

ECM model are jointly estimated.  This third step addresses two issues.  First, it further 

reduces specification bias in the first step estimates.  Second, it allows information 

relevant to long run disequlibrium that is discovered in step two to be incorporated in the 

model.  
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Data 

All data are monthly, beginning with December 1995 and continuing through July 2003.  

Feeder cattle data consist of the number of head in each of four weight categories placed 

on feed: under 600 pounds, 600 to 699 pounds, 700 to 799 pounds, and over 800 pounds 

(National Agricultural Statistics Service (USDA-NASS)).  Price data for feeder cattle are 

from Economic Research Service's Red Meats Yearbook, compiled from USDA's 

Agricultural Marketing Service publications:  Prices per hundredweight (cwt) for 

Oklahoma City feeder cattle for Medium, Number 1 steers weighing 500 to 550 pounds 

(for the under 600 pound weight class), steers weighing 600 to 650 pounds (600 to 699 

pound class), heifers weighing 700 to 750 pounds (700 to 799 pound class), and steers 

weighing 750 to 800 pounds (over 800 pound class) are used as proxies for prices for 

each weight category.  Prices for the 700 to 799 pound feeder cattle are proxied by using 

feeder heifer prices because the steer price series was not included in the data source.  

The use of these heifer prices is also of little concern because the weight classes include 

both steers and heifers.  Using this heifer price series as a proxy or instrument also may 

reduce some of the collinearity among the price series.  Feed prices are monthly from 

ERS' "High Plains Cattle Feeding Simulator" (USDA-ERS, Livestock, Dairy, and Poultry 

Outlook).  ERS compiles these prices from AMS' Grain and Feed Weekly Summary and 

Statistics. 

The feed variables were reduced from 5 inputs to 2 by decomposing feed data into 

two nutrient variables, protein and energy5.  Breaking feed into nutrient components 

allowed us to specify a parsimonious, five-equation model consisting of two feed demand 
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equations and three equations representing demand for feeder calves of each of three 

weight categories.  The protein and energy content of two basic feeds, corn (or milo-

which is similar to corn in feeding value) and cottonseed meal were used to derive prices 

for protein and energy.  

 

Results From the Empirical Model 

Our primary objective was to derive demand elasticities for the various weight categories 

and for feed.  As such, the equilibrium component of the model is more relevant as it 

conforms to economic theory.  As noted earlier our third step allows us to improve first-

stage estimates, by using information obtained from estimating the disequilibrium 

component of the model, to re-estimate equilibrium relationships. 

A general iterative procedure was used to estimate the ECM in three steps.  First, 

the long run component of the model was estimated; imposing the required economic 

restrictions on model parameters.  Second, the difference component of the model was 

estimated; using lagged error terms from the first step estimation as explanatory 

variables.  Third, adjustment rates were set to their second stage estimates and the entire 

ECM model estimated (Appendix).  This third step reduces the level of nonlinearity in 

the model, and made it possible for the joint model to converge.  

 

Seasonality 

NASS placement-weight data for states exhibits interesting seasonal patterns for each 

weight category.  In Texas (figure 2), this seasonality is characterized by peak placements 

of heavier cattle during the spring (when many feeder cattle are removed from wheat 
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pasture), and peak placements of the lightest-weight cattle during the fall (after weaning). 

Trigonometric functions were used to capture seasonal variations, which were tested for 

both frequency and location (Anderson and Trapp; Arnade and Pick).  The Sr from 

equation (2) were specified as  

(4) ,)2sin()2cos( ntbntaS rrrrr π+π=  

where r=1 for one peak per year, 2 for two peaks per year, t = time proxied by 

observation number (integers beginning with 1), n1=12 (months per cycle), and n2=6 

(months per cycle).   

Most trigonometric parameters were significant for seasonal variations in all 

feeder cattle equations (table 1) and indicate a consistency with other studies reporting 

significant seasonal variation in feeder cattle demand (Anderson and Trapp; Coatney, 

Menkhaus, and Schmitz; Dhuyvetter and Schroeder).  Anderson and Trapp used both 

annual and semiannual trigonometric functions similar to those used in this study to 

capture seasonality.  However, in contrast to Anderson and Trapp, our results support the 

semiannual cycle for feeder cattle.  Dhuyvetter and Schroeder also reported significant 

interactions between weight and monthly dummy variables.  Results in table 1 also 

suggest semiannual seasonal, but not annual, patterns for both energy and protein.  

Pairwise tests for seasonal location similar to those used by Arnade and Pick, but 

between equations and without the time trend, showed significantly different seasonal 

patterns between under 600-pound feeder cattle and 600 to 699-pound feeder cattle and 

between under 600-pound feeder cattle and energy. 

In addition to the statistical test results, patterns calculated, using trigonometric 

function parameter estimates of intra-year cyclical behavior, are consistent with observed 
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data in figure 2.  The calculated patterns (ECM model) have annual peaks in June for 

600-to-699-pound and 700-to-799-pound feeder cattle placements and in November for 

placements weighing under 600 pounds.  This would be consistent with cattle coming off 

wheat pasture and going into feedlots during the first part of the year.  While not 

conclusive, these different patterns, particularly for the under-600-pound weight 

category, support the hypothesis of multiple classes of cattle feeders.  In this case, the 

evidence suggests one pattern of placing lighter (under 600-pound), just-weaned feeder 

calves in the fall for longer term feeding, and a second pattern of placing heavier feeder 

cattle in the spring for shorter feeding periods. 

 

Feeder Cattle Weight and Feed Relationships 

Published price-weight data indicate a general pattern of declining unit prices as feeder 

cattle weight increases (USDA-AMS), although there are occasional inversions and 

numerous offsetting factors (Lambert et al.).  Results presented in tables 2 and 3 suggest 

systematic patterns that were not evident in the mixed results reported in earlier studies.   

Own price elasticities are negative and increase in absolute value as weight 

increases (table 3).  The relative inelastic finding on (absolute value) own-prices obtained 

in all three specifications for the lightest weight class suggest a relatively inflexible 

feeding enterprise.  The increasing magnitudes (absolute values) of own-price elasticities 

across all weight categories points to an inverse relationship between own price elasticity 

and weight category.  This may reflect a decreasing likelihood of retained ownership (as 

feeder cattle get heavier and options for their uses decrease), recognizing that, ultimately, 

almost all cattle are converted to beef.  Own-price elasticities may increase (absolute 
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value) with weights because heaviest weight feeder cattle are in relatively shorter supply.  

They also have the fewest options available for their use, so large price changes would be 

necessary to change quantities demanded. 

Symmetry and homogeneity conditions were used to obtain elasticities for the 

numeraire.  The calculated own-price elasticity for the heaviest (over 800 pounds) class 

of feeder cattle is too large to be believable.  Likely an artifact of the procedure used in 

its calculation, it is probably only useful as an indicator of the continuation of the general 

pattern observed in the other elasticities, which were directly derived from estimated 

parameters. 

If there are multiple weight-based feeding regimes that characterize the cattle 

feeding industry, one could expect mixed results from using data in which detail about 

weight categories and feeding regimes was missing or obscured.  Imagine two 

distributions of placement weights, one for light calves skewed to the right and one for 

heavy calves skewed to the left.  The "average" across both distributions would fall in the 

skewed tail regions of both distributions and not reflect either mean. 

Cross elasticities between weight groups also are presented in table 3.  Generally, 

one would expect positive (negative) cross-price elasticities if cattle in each weight class 

were substitutes (complements).  The positive results in table 3 provide evidence for 

substitution between the heaviest weight category and the next two lighter weight 

categories.  However, the cross elasticities between the lightest weight category and the 

next heavier weight categories are negative.  Thus, it appears that lightest weight cattle 

are not necessarily substitutes for heavier-weights of feeder cattle, again, consistent with 

feeding lighter cattle being a different enterprise from feeding heavier cattle. 
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The cattle-feeding literature implies that higher corn prices favor heavier weight 

placements that will be on feed for shorter periods and, thus, eat less high-priced corn 

(for example, Marsh; Jordan et al).  Similar expectations exist for protein feeds—when 

protein feed prices are high, it is more efficient to feed heavier cattle whose protein 

requirements are slightly lower than lighter cattle, and heavier cattle are on feed less time.  

Results from other studies with respect to protein and energy are mixed and lack the 

systematic components presented here to explain differences (table 3).  For example, 

some results (Anderson and Trapp; Dhuyvetter and Schroeder; Buccola) show positive 

relationships between energy and protein prices and feeder cattle weight.  In the ECM 

model presented here, a systematic shift can be observed from negative to positive cross 

elasticities over feeder cattle weight class from most negative (lightest cattle) to most 

positive (heaviest cattle).  One interpretation is that substitution doesn't matter so much 

for lighter weight feeder cattle placements, whereas for heavier weight feeder cattle 

placements on feed for shorter periods, substitution is more of an issue. 

The highly inelastic own price elasticities for energy and protein also suggest that 

protein and energy are not substitutes in the same sense that different feedstuffs might be, 

but are necessary inputs for each weight category of feeder cattle.  The near-zero cross 

elasticities between energy and protein further suggest fixed proportions between energy 

and protein, as one would expect in cattle feeding rations (see Weichenthal, Rush, and 

Van Pelt). 
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Conclusions 

Feeder cattle costs constitute the largest cost share of cattle feeding costs.  Feed costs are 

next, but well below feeder cattle costs.  Other costs are relatively minor compared to 

these two.  As such, energy or protein prices may not be the most important determinants 

of placement weights of feeder cattle.  Systematic patterns between feed-input prices and 

feeder cattle in-weights may have not been captured by earlier studies, which have 

produced mixed results.  

Our study looks at the demand for feeder cattle by weight category. Results in this 

paper provide some rationale for the mixed results observed across previous studies, with 

some general patterns emerging. We found negative cross-elasticites between lightest-

weight feeder cattle and other weight categories which suggests cattle feeders placing 

lightest-weight feeder cattle constitute a distinct class of cattle feeders.  Viewing the 

results presented here in the context of multiple classes of cattle feeders, we conclude that 

there is substitution between the heaviest weight category and the next two weight 

categories.  We also conclude that the lightest-weight categories of feeder cattle are less 

likely to be viewed as substitutes with heavier weight classes and represent inputs into a 

separate class of cattle feeding enterprise.   

While we have examined several aspects of the complex relationships between 

weight classes of feeder cattle in more detail, others aspects have not been examined.  

One such aspect is the pricing and feed cost-weight gain relationships between steers and 

heifers, which is left for future research.  This extension would introduce additional 

multicollinearity in a model which already faces multicollinearity.  A basic approach was 

used in this study to overcome the severe collinearity in the data series.  Perhaps a more 
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sophisticated approach may be required for models which further decompose feedlot 

demand.  Other issues to be explored in determining feeder calf demand are retained 

ownership, pasture expenses, price risk, interest rates, and other supply-related issues. 

Several researchers (Jordan et al.; Mark, Schroeder, and Jones; Marsh), note that these 

issues and other factors associated with pasturing cattle tend to equalize overall costs. 

Future studies also could face problems with obtaining sufficiently detailed and 

disaggregated data for all the desired subcategories and well as data required to address 

these other issues-which may influence in-weights. 
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Table 1.  Estimated Parameters  for Third Step of Error Correction Modela,b 

Cholesky Matrix Parameters: 

 Ci1 Ci2 Ci3 Ci4 Ci5 

C1j -14.086***     
C2j -2.2858 4.9108    
C3j 1.4037 -12.879 -12.888   
C4j -1.9914 -2.1841 1.7426 0.0000000***  
C5j -25.57* 10.635 -21.312 0.000000629*** -.000000005***
Intercept (Int), Output (Y), and Seasonal Parameter Estimates: 

Int 89.07**  24.308 88.675 118.18*** 664.53***
Yc 0.0001947*** 0.0002115*** 0.0002714*** -0.000013 0.0006719
Sin1d -0.155  -0.5791*** 0.04905 -0.39346 3.4514
Cos1 200260*** 154490*** 527800*** 202430*** 313350***
Sin2 -34.77*** 0.82341 32.85*** 19.696 208.03
Cos2 -220200*** -169880*** -580360*** -222590*** -344340***
νi

e -0.61815*** -0.66918*** -0.74583*** -0.51094*** -0.46481***

aSubscripts:  1= feeder cattle (fc) under 600, 2=fc 600 to 699, 3=700 to 799, 4=Protein, 5=Energy 
bstatistical significance denoted by asterisks:  *=significance at the .05 level, **=.01, ***=.005 
cY=Output= total number of feeder cattle multiplied by the average slaughter weight 
dCosx=Cosine(x), Sinx=Sine(x); x=1 refers to a frequency of once a year, x=2, twice a year. 
eAdjustment parameter 
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Table 2.  Price Coefficients Calculated from Cholesky Matricesa,b 

 
     
Equation X1 X2 X3 X4 X5   
         
P1 -198.42 -32.198 19.77 -28.05 -360.18   
P2 -32.20 -29.341 66.455 6.174 -110.674   
P3 19.77 66.455 -333.9396 -2.875067 -101.8083   
P4 -28.05 6.174 -2.875067 -11.77262 9.446097   
P5 -360.18 -110.674 -101.8083 9.446097 -1221.129   
    
aPrice parameters derived from estimated parameters of the Cholesky Matrix  
bSubscripts refer to 1=fc (feeder cattle) under 600, 2=fc 600 to 699, 3=700 to 799, 
4=Protein, 5=Energy  
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Table 3.  Feeder cattle and feed Price Elasticities 
-- December 1995 Through June 2003-- 
 Numerator 
Denominator Feeder 

cattle 
under 600 
pounds 

Feeder 
cattle from 
600 to 699 
pounds 

Feeder 
cattle from 
700 to 799 
pounds 

Feeder 
cattle over 
800 
pounds 

Protein Energy 

Feeder cattle 
under 600 
pounds 

-1.86 -0.256 0.17127 5.7126 -0.068 -0.11605

Feeder cattle 
from 600 to 699 
pounds 

-0.28 -0.217 0.53928 0.11171 0.014053 -0.03338

Feeder cattle 
from 700 to 799 
pounds 

0.163 0.468 -2.582 5.14 -0.00614 -0.02914

Feeder cattle 
over 800 pounds 

2.156 0.02755 1.9133 -26.81 0.065278 0.192

Protein -0.0494 0.009203 -0.00472 0.68428 -0.00546 0.000576
Energy -0.13016 -0.03206 -0.03233 14.535 0.000819 -0.0143
Output 0.95505 0.88371 1.2467 -0.1583 0.11413
 

 



 

 
 
 
 

Figure 1.  Steer Placement Weights and Days Fed
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Figure 2.  Texas Feeder Cattle Placements, By Weight Category, 1999-2003
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Endnotes 
                                                           
1 An adequately representative cost function must be concave in the price of the inputs.  

That is, the matrix of second derivatives (represented by the βij  parameters) of the Cost 

function with respect to input prices must be negative definite.  Diewert and Wales 

collect the βij parameters into a matrix and show that, by representing this matrix as the 

product of a lower triangular matrix and its transpose, it is possible to impose concavity 

of the cost function at every data point (See Appendix).  This procedure also insures that 

symmetry conditions hold and that input demands are downward sloping. 

 

2  We have two feed categories, protein and energy derived from five feeds. 

 

3 This was a particular problem since we also imposed concavity restrictions using a 

procedure suggested by Diewert and Wales. 

 

4 The two-step estimation strategy is not ideal and constrains the ability to test for various 

nested dynamic structures. 

 

5 Several approaches were explored for a feed variable.  However, the imposition of 

concavity restrictions on a weighted index variable for the original 5 feedstuffs yielded a 

highly nonlinear specification, the results from which were not well-behaved.  Weights 

were not bounded between zero and one and some were negative.  A grid search was also 

used to explore fixed weights for corn and cottonseed meal, representing energy and 

protein.  Results from this effort revealed an optimal weighting scheme of 0.2 for corn 



 1

                                                                                                                                                                             
and 0.8 for cottonseed meal, approximately the reverse of a typical feeding ration 

weighting of approximately 16 percent protein.  Also, the likelihood values changed by 

less than 1/500 across all the parametrically varied weights, indicating that preset feed 

weights would have little overall effect on the model. 


