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Materials balance based modelling of environmental efficiency 

 
Abstract 
A new method for analysing environmental efficiency, based on the materials 

balance, is proposed. With this method, an environmental allocative efficiency 

measure can be defined analogously to the more commonly used economic 

allocative efficiency. Nutrient surplus in pig fattening, a typical balance indicator, is 

used to illustrate the concept in a two input – one output case. The materials balance 

based efficiency analysis is elaborated using data envelopment analysis (DEA). 

Results are compared with those of more common, merely input or output oriented 

DEA approaches. A main conclusion is that, ignoring the balance feature of 

environmental issues such as nutrient surplus might be a main reason why traditional 

integral analyses of economic and environmental efficiency yield contradictory 

conclusions. 

Key words: nutrient balance, data envelopment analysis, pig fattening, allocative 

efficiency 

 

1. Introduction 
Sustainability is one of the main guiding criteria for further development, innovation or 

diversification in agriculture. More in particular, in countries where agriculture 

reached a highly-industrialised level, environmental side-effects enter the core of 

public debate. To be able to distinguish between firms or production systems 

according to their environmental impact, environmental performance indicators are 

necessary. Moreover, these environmental indicators should be integrated with 

technical and economic performance. 

 

The objective of the paper is to introduce a new environmental efficiency analysis 

method and to illustrate the concept with a simple case of nutrient surplus in pig 

fattening. The method is based on the materials balance concept and worked out 

with the DEA technique. In its most fundamental sense, the materials balance is the 

mass flow equation of raw materials used in the economic system and of the 

residuals disposed of in the natural environment (Field, 1994). The term is also used 

in a more restrictive sense for different types of materials such as water and used in 
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clearly delimited, smaller systems or processes, where the material inputs must 

balance the outputs. An example is the materials balance model of a water treatment 

plant (Carlson & Bellamy, 2001). In the nutrient surplus case, the more restrictive 

connotation is used. 

 

Whereas the link between technical and economic efficiency is well known as the 

allocative efficiency (see Farell, 1957, for the original concept), the link between 

economic and environmental efficiency is less clearly defined. The origin of this 

problem lies in the difficulty to describe the trade-offs between economics and 

ecology. Whereas the environmentally harmful effect is physically a bad joint output, 

in economic terms it may be considered as an increase of inputs to produce 

marketable outputs. When appropriately internalised, the environmentally harmful 

effect gives rise to private costs. In the case of pig fattening, environmental 

inefficiency is caused by the fact that not all nutrient inputs (feed, piglets) are 

completely transformed into fattened pigs, but are partly excreted through the 

manure.  

 

The pig fattening case is an activity of feed transformation into meat starting from a 

10 weeks old piglet and ending with a market hog of about 106 kg. Because of 

current juridical constraints on farm dimension, the farmers profit maximisation 

objective turns into a maximisation of gross margin per pig place. The pig fattening 

process can thus highly be simplified to one output, the marketable meat production, 

and to two variable inputs, feed and rotations. Phosphate is the most limiting factor in 

the nutrient flows in pig production. The feed input accounts for 92 % of the 

phosphate inputs. Only one third of the total phosphate input is incorporated in the 

marketable output “meat” (36%). Although the other two thirds (64%) have a potential 

manuring value, in the intensive pig production regions (Flanders, Brittany, the 

Netherlands), the excess phosphate is a waste product with an expensive disposal.  

 

2. Theoretical framework 
Environmental side-effects of the economic activity may be linked to the inputs, to the 

outputs or to both. Externalities are mostly seen as bad joint outputs (undesirable 

outputs or by-products) associated with the production of goods (desirable outputs). 



 3

Tyteca (1996) sees pollutants as undesirable outputs and considers them as a third 

factor, besides inputs and desirable outputs, to be taken into account in the scope of 

productive efficiency theory. Combustion of fuels, for example, yields energy as well 

as bad outputs such as SO2 , CO2 and NOx emissions (Tyteca, 1996, 1997). On the 

other hand, combustion of the so-called environment friendly natural gas causes 

resource depletion that can be considered as a merely input-associated externality. 

The nutrient problem in agriculture is still more complex. Here, the emission is the 

result of a balance of what enters in the production process and what leaves as a 

good output. 

 

So, with respect to measuring the environmental performance, different approaches 

of efficiency analysis are possible. Tyteca (1997) states that environmental 

performance models differ in the way they account for pollutants as undesirable 

outputs or for resources used as inputs. Overviews of environmental performance 

measures are given by Tyteca (1996) and Reinhard et al. (1999), mostly based on 

work of Färe et al. (1989, 1993).  

 

More in particular for the environmental effects linked to balance variables, one can 

state that a tradition has emerged, both in parametric and in non parametric 

efficiency analysis, to incorporate the environmental damage as another input (Piot-

Lepetit et al., 1997) or as a bad output (Ball et al., 1994). In the case of nutrient 

emissions, the specific nature of the materials balance variable may cause difficulties 

for conventional efficiency modelling (Reinhard, 1999), but will also offer 

opportunities for a “third modelling way” based on behaviour optimisation (Lauwers et 

al., 1999).  

 

In the case the bad output is the result of a materials balance, the isoquant “bad 

output - good output” graph under the constant returns to scale (CRS) assumption 

yields a linear production possibility curve: desirable outputs and pollution are perfect 

substitutes (Reinhard, 1999). In this case it is difficult to derive an efficiency measure 

in the conventional way (a move to the frontier): simply because of the balance 

condition, it is impossible to imagine input-output combinations situated beneath the 

frontier. The same applies for the input oriented approach. Similar to the isoquant 
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production possibility curve, the isoquant factor substitution in the “nutrient input - 

nutrient emission” space is linear. Despite these observations most nutrient surplus 

modelling concerned merely input or output oriented approaches. 

 

The idea of using the materials balance property in efficiency research originated 

from an empirical research on the nutrient emission efficiency in pig fattening 

(Lauwers et al., 1999). Our approach is based on the analytical analogy of nutrient 

excretion with the gross margin: both are balance variables depending on inputs and 

outputs. The nutrient excretion is related to the physical quantities of inputs and 

outputs through the nutrient content coefficients, just as gross margin does through 

the prices. This opens the possibility to consider nutrient emission minimisation as a 

behaviour optimising approach in efficiency analysis and to define allocative 

efficiency from an environmental point of view.  

 

Figure 1 gives an isoquant representation SS’ in a two-input space. Both inputs have 

a price and a per unit contribution to the nutrients flow. The economic optimum is 

point Q where the rate of technical substitution equals the slope of the isocost line (or 

that point on the isoquant where the isocost line is tangent). Similar to the isocost line 

CC’, an isonutrient input line NN’ is defined. The isonutrient input line is tangent to 

the isoquant at point Q’. Here, the input-combination minimizes the nutrient input per 

unit output, thus minimizes the nutrient emission. Using the same graph one can see 

that Q’ is not economic efficient. The economic efficiency of Q’ is obtained from the 

ratio: 

'OQ
OEEE =  

being the product of technical efficiency and the economic allocative efficiency (EAE). 

The term economic allocative efficiency is introduced in order to distinguish from the 

other allocative efficiency that will be defined from the environmental point of view. 

Analogously, the economic optimal point Q is not environmentally efficient. The 

environmental efficiency of Q is obtained from the ratio: 

OQ
OMME =  
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which, again, is the product of a technical and an allocative component. Here, the 

term environmental allocative efficiency (MAE) is proposed. The technical inefficient 

point P has the same environmental allocative efficiency as Q: 

OQ
OMMAE =  

The environmental efficiency of P is: 

OP
OM

OP
OQ

OQ
OMTEMAEME === **

 
 
Figure 1. Definition of economic and environmental allocative efficiencies in the 
isoquant “input-input” space 
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Empirical results of an earlier application of these differential allocative concepts 

revealed a V-shaped link between economic and environmental allocative efficiency 

(Lauwers et al., 1999). This particular form stems from the fact that the rays starting 

from the origin and passing through the economic and the environmental optimum 



 6

divide the scatter of points into three subpopulations (figure 1, I-III). In the two outer 

parts, moving to one of the rays means improving the corresponding allocative 

efficiency, but also implies an improvement of the other allocative efficiency. Only 

between the two rays, moving away from one ray means coming closer to the other. 

Or, in efficiency terms, increasing one allocative efficiency means decreasing the 

other. 

 

 

3. Non parametric modelling 
A non parametric efficiency analysis method has been chosen based on following 

grounds: DEA is relatively easy to perform, does not require a priori knowledge on 

the functional form of the frontier and benchmarks to real existing firms (Gerber and 

Franks, 2001). Although this method may attribute stochastic noise to the inefficiency 

scores and thus may be more sensitive to outliers (Coelli, 1995; Reinhard, 1999), in 

our case this is a minor problem because of the highly-conditioned nature of the pig 

fattening production process. The choice for DEA is further supported by some earlier 

publications on efficiency analyses in the pig sector (Sharma et al., 1999; Piot-Lepetit 

et al., 1997). 

 

The constant returns to scale (CRS) assumption is maintained. This assumption not 

only allows for a simple illustration of the theoretical concepts developed in previous 

section, but can also be empirically verified in the pig fattening case. Another 

argument for using CRS is the possibility to compare output-oriented and input-

oriented measures without disturbance from scale effects. Finally, radial efficiency 

measures in the CRS framework are preferred because farmers’ technology choice 

concerns mainly the choice of the breed (genetic differences). Genetic progress 

within the range of current possibilities leads to a more or less homothetic shift in the 

isoquant and may thus be considered as Hicks neutral (Arnade, 1998).  

 

The CRS input oriented technical efficiency for each farm is obtained from the well 

known optimisation problem as described in most textbooks. The economic efficiency 

is then derived from a cost minimising model (Coelli et al., 1998; Sharma et al., 

1999): the ratio of the costs associated with the economic efficient input vector to the 
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observed costs on farm i gives the economic efficiency. The economic efficiency of a 

farm is a product of the technical and the economic allocative efficiency (EAE), so the 

latter is computed as  

                                       TEi
EEiEAEi =  

 

Although the theoretical reflections in the previous section do not justify the use of 

either input or output oriented DEA-model for deriving an environmental efficiency 

measure, some of them are applied for comparison reasons. The first model is based 

on the radial expansion of both bad and good output, which is also the first 

mentioned by Ball et al. (1994). The second allows for a subvector radial expansion 

of the bad output, which is comparable to the first model given by Tyteca (1997). 

Finally, subvector radial expansion can also concern the good output, which yields a 

model comparable to the second Ball et al. (1994) model. The outcomes of these 

three output oriented models are notated as ROO, SBOO and SGOO. 

 

For the input oriented approach, three model variants are used. The first considers 

the nutrient emission as a single input to be minimised for a given good output. The 

model is a non parametric operationalisation of the Reinhard (1999) definition of 

environmental efficiency. The second model considers the nutrient emission as one 

more input to be equiproportionally minimised just like the others. The third input 

oriented model aims at a subvector radial contraction of the nutrient emission given 

the other inputs and the good output. The outcomes of these input oriented models 

have already a higher environmental efficiency meaning than those of the output 

oriented models and are notated as SIO, RIO and SBIO. 

 

Finally, these models are compared with a materials balance DEA model that exploits 

the analytic similarity of the economic and environmental objectives. The 

environmental efficiency is derived from an analogous model as for the economic 

efficiency measurement. The environmental efficiency of the i-th farm, MEi is given, 

according to the derivation in section2, by the ratio of the nutrient flows associated 

with the ecologic efficient input vector to the observed nutrient flows on farm i. Similar 
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to the economic allocative efficiency, the environmental allocative efficiency, MAEi is 

then defined as 

                                       TEi
MEiMAEi =  

 

 

4. Results for the simplified pig fattening case 
The models are applied on a cross section of 175 pig fattening farms from the 

Belgian FADN (accounting year 1996-1997). The average technical efficiency score 

(0.87) and the average economic efficiency score (0.85) are almost the same, which 

indicates a very high economic allocative efficiency (0.98). Table 1 gives an overview 

of the main descriptive statistics of the DEA models’ outcomes. The output oriented 

technical efficiency indicators are relatively high. The SGOO indicator coincides with 

the TE indicator. So, the extra “bad output” constraint is redundant with respect to the 

information in the original technical efficiency model. The high efficiency scores 

obtained with the ROO and SBOO-models could be interpreted in the sense that 

there is still room for “excretion expansion”. But this has to be taken with care 

because if no scale effects occur, all points should be technically efficient and must 

lie on a linear frontier. Probably some remaining but minor scale effects are the 

reason behind these unexpected results. 

 

Input-oriented measures have already a more sound environmental meaning. The 

more the environmental detrimental input is dominant to the other inputs in the 

model, the lower the efficiency scores are: the SIO score is lower than the SBIO 

score which is lower than the RIO score. The latter equals TE, which again proves 

that the materials balance information is redundant when the other inputs intervene. 

Finally, the average environmental efficiency score based on the materials balance 

DEA model is 0.769, which is between the average SBIO and the average TE score. 

 

The correlation analysis shows a close link between the outcomes of the single input 

approaches (SIO, SBIO) and those of the materials balance approach. As these two 

are also conceptually the most explicitly oriented towards environmental efficiency, 

their link provides evidence about their usefulness for environmental efficiency 
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analysis. The SIO efficiency measure yields, however, a too optimistic potential for 

emission reduction. The SBIO oriented efficiency measure has already an 

intermediate average value but its link with the balance based measure is less close.  

 

Table 1. Descriptive statistics of the different efficiency scores obtained from the 
comparative DEA technical and environmental efficiency analysis of a 1996-1997 
cross section of Belgian FADN pig fattening farms 

  

TE 

TE – output oriented ME input oriented ME 

balance 

based 

Average scores ROO SBOO SGOO SIO RIO SBIO  

 0.873 0.984 0.905 0.873 0.634 0.873 0.731 0.769 

Pearson correlation coefficients 

TE 

ROO 

SBOO 

SGOO 

1 

0.451 

- 0.771 

1 

 

1 

0.011 

0.451 

1

-0.771 1

 

SIO 

RIO 

SBIO 

ME 

0.802 

1 

0.950 

0.808 

0.166 

0.451 

0.289 

0.243 

-0.963

-0.771

-0.868

-0.932

0.802

1

0.950

0.808

1

0.802

0.894

0.987

1

0.950

0.808

 

 

1 

0.892 1

ROO : radial output oriented; SBOO : subvector bad output oriented; SGOO : subvector good output 

oriented; SIO : single input oriented; RIO : radial input oriented; SBIO : subvector bad input oriented 

 

The main advantages of the materials balance approach lies in its potential to 

separate the overall environmental efficiency into a technical and an allocative 

component and in its interpretation as a behavioural outcome similar to the economic 

efficiency. This enables a more differentiated diagnosis of environmentally inefficient 

farms and possible solutions: by changing allocative behaviour or by a technology 

change. 

 



 10

The behaviour optimisation modelling for deriving economic and environmental 

efficiency also yields a cost and a nutrient input minimising vector. Whereas the 

efficiency score is derived from the ratio “cost (c.q. nutrient) input at this minimising 

vector over the actual cost (c.q. nutrient) input”, the difference between the two terms 

of the ratio gives an absolute estimate for the cost (c.q. nutrient) input reduction 

potential. In the pig fattening example our results indicate that at the Flemish level, a 

macroeconomic cost saving of about 162 million euro per year is possible and that 

the annual emission reduction potential is about 8 million kg of phosphate. 

 

The materials balance approach also allows for a more dynamic analysis. Price shifts 

will guide the economic allocative behaviour and thus also influence the 

environmental one. In the case of pig fattening, the concentrated feed price 

decreases faster than the rotation price. So, theoretically, the economic optimum 

shifts to a higher feed input at the expense of the rotation number. This input 

allocation coincides with a higher endweight of the hog (slaughtering pig) and is 

confirmed by the observed endweight evolution during the last 25 years (from 95 to 

106 kg). With this trend, the resulting economic optimum (Q in figure 1) shifts, 

however, further away from the environmental optimum (Q’ in figure 1). 

 

Internalisation, which means turning the public costs of external effects into private 

costs, is another dynamic aspect. A better consideration of the social costs of input 

use may lead to a price ratio that gets closer to the nutrient content ratio. The farms 

that show a positive correlation between economic and environmental allocative 

efficiency, will further lose when internalisation proceeds. At first sight this seems to 

be a paradox. The reason behind this paradox stems from the fact that they belong to 

the subpopulation I in figure 1. With internalisation the axe OP will move towards OP’, 

lowering both their economic and environmental allocative efficiency. Farms 

belonging to subpopulation II (figure 1) have a negative correlation between 

economic and environmental allocative efficiency, but will be less affected by 

internalisation. 

 

Finally, some observations with respect to the pig fattening case may illustrate a 

potential for incorporating life cycle accumulated externalities. Based on the nutrient 
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input of feed and rotations (piglets), the number of rotations should increase 

drastically. In order to satisfy this increased piglet demand, piglet production has to 

be up-scaled. But more piglets also means a similar increase of the externalities 

(phosphate emission) associated with the piglet production. During piglet production 

the emission is about 1 kg P2O5 per produced piglet. Adding this amount to the actual 

nutrient content of the piglet will change the nutrient content ratio and shift the 

environmental optimum to a somewhat lower rotation number. On the other hand, 

when the feed input is a valorisation of a waste product from other production 

processes, the situation becomes even more complex. In the example of pig 

fattening, about 30 to 40% of the livestock concentrated feed is, in one way or 

another, a valorisation of by-products of the human food manufacturing. A question 

can be how to price and to incorporate this recycling of “otherwise unwanted” inputs 

in our models. 

 

 

5. Conclusions 
This paper has tried to find out the underlying reasons why conventional input or 

output oriented approaches with regard to environmental efficiency do not give 

satisfactory results. As illustrated, the choice for one of the possible approaches 

influences the link between economic and environmental efficiency. Whereas the 

output oriented approach under the weak disposability assumption leads to shadow 

prices (abatement costs) of externalities reduction, the input related approach starts 

from a cost saving viewpoint. The balance approach offers a much more 

differentiated picture of who might lose or win on one criterion when optimising for 

another. This approach therefore provides an appropriate framework for analysing 

apparently paradoxical conclusions obtained from a static or dynamic viewpoint. The 

method also has a potential for analysing internalisation actions and life cycle 

aspects of a production process. 

  

The balance approach as presented in this paper can of course still be improved, in 

the first place with regard to CRS-assumption. Closely related to the VRS problem is 

the need to enlarge the cost and nutrient input minimisation approach to a profit 

maximisation and an emission minimisation approach. The balance based approach 
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can also be extended for a wider range of environmental problems, provided the 

nutrient flow feature can be generalised to an externality flow.  
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