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4pjnals of ozonuc niul .Soeioi .)Ico c re,ncn!. 2 4. I °7

CRITERIA. ('ONSTRAINTS AND M ULTI('OLLINEARrrY IN
RANDOM ('OEFFICIENT REGRESSION MODELS

n P. A. V. B. SWAMY*

ihi. puper iii: Iizi' I.\ 0/fl ?iIiifiO eSfiJHl1oI s joi fifhIo?1I ( Oi ttucni regri\o fl iiit)c/e/ 1) ?flj?ljflhii,n
orulncc lunar ii /'ua\O! t'.sf uunolor ti I I.l . .2) the .Snuui-like ef for i/u rh!0 Er s,o,i ,.ui,au'r.

/4) uiuI!Itt000f O)fluffh)ti01 1,1 Squuor&' &,f?Of .'tufliofn t!( \!.SL. .5 1/h lUStS! rtrt 551011 csr:uu,1or. and
(6) h/Iuhood u'siunia(or (.t!/4. .1(1 till (l!j ifttu listS! to, I/h criteria ill es(ip,uuif lIft uind (hlraPnL!ric-
eunsurc'in( s in RcR uuuoultis.

I . bSIHODI ('lION

It has been recognized by many econometricialis that the ucfuIness of the conen-
tional fIxed-parameter regression niodel in the analysis of cross-sectjnn data is
limited because individuals differ greatly in their behavior, and the diversity of
individual decision units implies parameter ariaiion across units. see Swarn'
(1971) and the references cited therein. In recent cars, econometric mc,dels, which
permit different schemes of parameter variation, have been developed. All these
different schemes have been compared by Swam (1972) who developed an
asymptotically efficient procedure ofestimating the parameters in a general random
coellicient regression (RCR) model. Application of these estiniatioii methods in
the analysis of real world data is just beginning, see Fcige and Swaniy (1972). It
has been observed that the use of RCR methods can result in more fruitful and
meaningful econometric analyses of micro panel data. In the present paper we
analyze alternative estimators with purely algebraic tools. Attention is focused on
the criteria of estimation and parametric constraints in RCR models,

The plan of the paper is as follows. Section 2 sets out the estimation rules for
random coeffIcient regression models with arid without an unbiasedness condition.
Constraints on the parameters and partial prior information are introduced in
Section 3 and it is indicated how their presence can help estimation. Methods of
using sample data in conjunction with the first ttto moments of a prior distribu-
tion are reviewed in Section 4. The maximum likelihood method of estimating
the parameters of a random coefficient model is discussed in Section 5. Suniniary
and ('onclusions of the study are presented in Section 6.

2. RANvot1 (omilicimN'1 RGRissmoN \'lin)iL

2.1. The A'! ode!

Swamy (1971) considers the problem of cst mating the following equation
from a time series of cross-sections.

(I) yi ..iI& - u (i = 1.2 uI

* I am gralr'ful to Professor A. Ze/Ine r and Dr. Rictiard I) l'orteu mr help) iii ni ucnit

429



WC! Yi ... , I :1 7 X I \ ector ot oher at iOflS Oil a dependent
ariable. A . 1, 2 K I I, 2 7 ) i a IXl matrix Ofohserva_

tions on K independent %arIahles. is a K .\ I vector 01 coellicierits. and u,
U12 Uir) iS ii TX vector of list UrhaflCeS.
Observations on v's and x's for n individuals taken Over 1 periods of limeare

a ailable. These temporal cross-sect ion data are obtained h' assembling cross-
sections of '1' years. with the same n cross-section Units appearing in all Years. The
indi'idnais here may be firms, consumers or regions. The subscript i indexes
cross-section observations and the subscript t indexes time series observations

In (I) both fi and u are regarded as realizations of random vectors,' and the
following assumptions are made.

iissumption 1
The rank of X1 is K, n > K and T > K:
For 1. j = I. 2 ii: Eu1 = 0 and Lti1u = where

I PT P!'
P I P -

I -
I I 1-2 1-3

L'0i P1 /'
For 1,] = 1,2 ii:Ef11 =

- (A if 1 =j
)(11 -. 1) =

0 otherwise,

A = 1(5.(k, k' = 1,2.....K) is positive definite:
jJ is independent of u1 for i.j = . 2 'i
The are exogenous variables distributed independently of and u.2

Furthermore, X1 is nonstochastic.
The implications of Assumption I are discussed by Swamy( 1972). lfwcarrange

the observations on each variable first h\ individual and then according to period,
we may represent eq. (I) by

= X + D u

where v (y1,',,..., yj. X [X.X XJ, fi fikY. !).diag[X .X, X], ', fl = fi + and u (u,u uY.
For gien A' the random vector y is distributed with mean X and variance-

co\arlance (F-C) matrix of the form

+ (T1D, I2i2
= .V2A.V'. + (7.t),, .

With an abuse of floiation xse use the same symbol to denote a random quaniii and its value2 This assunipiion is partly relaxed in Swam) 1972i
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The oh;ecUve i: to .c the prnic'ter ector 0 =.. ((1. o.) where co is a
[,12 _ K2 + n] > I etr contatnine all the elements of A and p i
1,2 ,:)aritnecd a tudLr.

Model (1) coiilains a sample space Y ofelen.)eiits v. The distribution ol ocr
Y can be taken as known to belong to a continuously parameterited 1imily of
distributions with probability density linction (pdf). p(yl V.0). the parameter
vector 0 ranging over a well-defined parameter space 0 = 0: --

<.
< -j

0< < c fork 1,2, K:ók. < &k&'k,O&k = 1ork = 1.2. K:
o'.<a'ij 0jj=ji for ij=1,2,..., t: O<ua< x. OIp1l for 1=
1,2.....n. We assume that the unknown true value of 0 belongs to 0.

2.2. Criteria of' Estimation

Suppose that the seriousness of sampling errors. 1 - i.is indicated by the
loss matrix (D - )' and we wish to find an estimator for which

l'E(I - I)(D --

is minimum for every i 0 and eery arbitrary ' ector I 0.
We assume that the loss matrix which expresses the demerit ol' the estimate

o ofO is separable in its Components and o. We do not specify the loss function
involving (0. It is worth noting that in the problem of estimating to a quadratic
loss function does not seem to be appropriate. see Ferguson (1967, p. 179). For
each fixed 0, the expected a1uc oi( - - 1)' relative to the distribution of v
determined by 0 is called the risk matrix or the matrix of second order moments
of around . E(J - /3)2 is called the mean square error of..

A moment's reflection will reveal that it is not possible to find an estimator l
which minimizes (4)for every fi c 0 and every I 0, see Silvey (1970. p. 24). For
example, if we take i = a (a vector of constants) for all y. this estimator will have
zero risk when = a and thus to have a_better estimator in the sense of (4), an
estimator must have zero risk for every l. This is obviously not possible. So we
must modify our criterion of estimation.

As is well-known, if we restrict ourselves to a class of linear unbiased estima-
tors of, we can find an estimator which minimizes the risk in (4) for eery J E 0
and every 1 0. Such an estimator is the minimum xariancc linear unbiased
(MVLU) estimator

btu) = (X V) '
'

In the practical situation in which w is iinkno fl. an estimate of O deicloped h)
Swamy (1972) can be used in place of the known value used in (5). We can otTer
an asymptotic justiticat ion for this procedure.

It has been emphasized by many statisticians that there is an element of
arbitrariness in the criterion of MVLU. particularly with regard to unhiasedncss.
Consequently, in what follows we modify the criterion of MVLU.

2.3. Stein-like Lstimator.s

Following one approach of Zeliner and Vandacic (1971), we consider the
problem of estimating when the loss function is quadratic. Specifically, let the
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quadratic Ios huiictiun he 4) I) Q(1 -- f) hec ij " HOW!) I2O5itie deuuiie
matrix. Since the ianec of each / is hounded. the isi, !!tllion L(J) ii)'QU -

is hounded, provided l has finite I ( matrtx. feItn .t atillacle (1971 shoW
that among all estimators of the form ebftt), where e 5 a scalar king between
and 1, the estimator

tr(.V' X) Q

[ tr(X' 'X) 1Q
b(oj

has the smallest risk. That is, L[ch((o) - ii]'Q[eb(oi) - 1] takes the smallest value
for every Ji E when c = c*. Also.

'7f F[u*b() iiiQ[c*bka) l] E[b(oj ii1Q[b)o Ill VI E

Since c*b(w) in olves parameters with unknown values, it cannot he coiii-
puied. Therefore, as in Zeilner and Vandacie (1971) we mar approximate c*b((0) by

(6)

(8) ('*b((;))
I

ir)X 'X)
h()Qb() b(oi)

where E and b() arc as shown in Swam (1972).
The estimator c*b(e) is in the form otan estimator deeloped by Stein for the

mean vector of a K-dimensional normal population, see Zellner and Vandaele
l97l).

Followtng Mehti and Srinivasaii (1971) we mar approximate c h an
exponential function with two adjustable parameters and write

(9) /(;')b(tI) [1 --- ,' exp - b'().V 'Xb(th)}]b)
where 0 < < I and y, > U.

Notice that the factor i multiplying bRi,) in (8) can take on neati e values
with positive probability. Baranchik's analysis of simpler situations (see Stein,
1966) indicates that the estimator ifl (81 can he improved upon hr restricting I
to be nonnegative. The factor [I;') multiplying (th) in (9) can he made positive hr
suitably choosing the values of;' and ;.'. . 1xperiencc in simpler situations (Mehta
and Srinivasan, 1971) has shown that by judicious choice of' and ;', one can make
the risk associated with /(;qb(th) smaller than that associated with 6() or with

b(I4 for a range olvalues of around 0. Since theestimators in (8 land (9) provide
only approximations to the optimal linear estimator c*b(o), neither of them is an
estimator which has minimum average risk within the class of linear or nonlinear
estimators offi. see Strawderman and Cohen (1971). Consequently, there are other
ways of obtaining linear or nonlinear estimators which have smaller risks than
.*b(6) and f(;)b(th) (see Section 4 below).

The estimator in (8) takes b(th) and pulls it toards a central ' alue I) or past U if
b'()Qbth) < tr (X' -

.V) 'Q.' Since all elements ofb(th) are shrunk hr the same
factor towards 0. the extreme aliies exper;encc most shift. The estimators in (8)
and (9) may do very poorly in estiniat ing those elements of wit Ii unusually large

If e knea a priori ihat ihe true alue, ni the ctement of Iu clolv i3 a alue oiher ihantern, we could cash) modrf the formulae in IS and (9 to Iii-ink the etimated vatue of ioardthat aIue. see Lcltiicr and Vandacle 1971 and Mclua inif Srflja',i!i t97i
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Laa.e*:ns.

or small alties. tJnless the true alues of all the elenients of t lie closely in almost
the same interval around 0. the estimators ri (8) and (9 may not yield izood esti-
mates oiil 1 the elements of . It may happen that flr some alues of ( the total risk
associated with (8) is smaller than that associated wit Ii b(1 hut the risk associated
with an clement of(8) is larger than that associated wit Ii the corresponding element
ofb(). To put it differently, the estimator i*b(1) may have good ensemble proper-
ties hut not good component properties. this is also true of h;)b(6)

To guard against this had property of Stein-like estimators, Efron and Morris
(1972) develop a "limited translation estimator which is a compromise between
Stein's estimator and the maximum likelihood estimator (MLE). The compromise
consists offoilowing the Stein rule as closely as possible subject to a fixed constraint
on how far theestimator isallowed todeviate from M LI. This (Mocedure issensible
ifthe probability that an ML estimator of will he far removed from the true value
of is small. Indeed, tins probability is large if A V is close to singularity.

The average value of the squared distance from b(i) to ) is itiven by

(10) EIb(o) ][o) = tr)V' 'V

where ) is a latent root of X X. Consequently. if the set of independent
variables is such that reasonable (lata collection results in an X. A with one
or more latent roots close to 0. then the average distance from b(w) to i will he
large. In this case the Efron--Morris procedure of pulling an estimate of towards
b(w) amounts to pulling an estimate away from . which is not desirable. If the
least squares estimates Ww) lie far away from the true value of as a result of high
tnulticollinearity. then so will he tile estimates 'iven b' /(-;)b(t1) and *h(f.
Typically. XX will not he close to a diagonal matrix in applications of economic
relevance. In the next section we (hiscuss procedures which are specilical!y designed
to minimize the had effects of significant departures of XX from 1. in order to
guarantee good component properties we say that is "uniformly'' better than

* f

(II) lE) - P)(I - ))1 lE(* - -
for every 1 and every e ®. with strici inequality for sonic i. hi this wax we
avoid the specification of Q. An estimator. . is ''inadmissible'' if there exists
another estimator of which completely dominates in the sense of) II): other-
wise it is "admissible''. Notice that. is unifoiml better than in the sense of

(11). if and only if. E(* -- Ifli* f exceeds L)fl - I)(i -- (t) by a positi\c
senii-defInite matrix for cver\' 0 E 0.

3. Su;tsria E'R(icu)uRI 01 Esiit.xi R) IN ('1\SLS or PAR hAL

PRIOR NFOR\iATiON

3.1 Ridge Regression

For the model in the present paper. let fl he constrained to he in a hypersphere

of radius r. Let the estimation criterion he the minimum residual sum of squares

(y - XI)' -
i(y X1) subject to the condition fI r2 -i. The value of that
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I

minimzCs hc function

(V - ') X13) -4- ,i)Dt - r)

is

b(toJ = (.V X 4 p1) 'X' 'y.

This is the ridge estimator developed by Iloerl and Kennard (1 970a).
Unlike the Stein procedure. the above procedure takes into account the

restrictions on the ranges of The estimation procedure based on the matrix
(X l x + p1 with p > 0 rather than X' ' A' can be used to circumvent many
of the difficulties associated with the multicolhinearity problem, and it can he used
to obtain a point estimate of . which is on the average closer to than is
The average value of the squared distance from b(o) to is

l4) E[b(o) -- ][b(o) - = tr[1 -t-p(X' X)'] '(.V' X) I

1i(Y 'X) - Il R' 'X 2

= . ji(X' -
1 ± ILl) .

l'his can he compared with 10). If a , is close to zero. (14) will be substantially
smaller than (10) depending on the value of p. That is. when X' 'X is ill-
conditioned, the estimates of based on b(c1) (hut not on bI)) have a high proba-
hilitv of being lir removed from . Hoerl and Kennard show that there exists a
range of values of p for which the average distance from b(o) to [J is smaller than
that from b(o) to f.

The relationship of a ridge estimator to the Aitken estimator (co) is given
by the alternati e form

IS) b(w) = f 1\') Ii ib(

We max' rewrite 13) as

(16) b(tL) = (V 1X -- (fir X' 'Xb(o).

The estimator (w) will he recognized as a ''matrix weighted average'' of the
vectors b(to) and 0. Like *b(o). it also shrinks the estimated value of a fixed
percentage away from b(w) towards 0. But the shrinkage factor is not the same for
all the elements of b)w). Tluis. the ridge regression technique. by utilizing the
restriction on the range of . leads to an estimator which does not stifler from the
limitations of c*b{o). The estimator in (15) is insensiti\ e to multicolhincaritv. On
the other hand, when .V' - 'A' = I. the matrix factor multiplying o) in 16)
reduces to a sealar tinies identity matrix In this case. by appropriately defining p
we can equate b(wj to (.*b(0))

The second order moment matrix of bo) around is

(17t LbUo) -- U[(o) - = -- ii(.V! V) '(\'V I' I

-[!±/LlX 1X( ±ji2(X''X +pi)(.V''V-jiJr'.
The lirst term on the r.h.s. oft 1 7) is the I -C matrix of 5Aw) and the second term
is the matrix of squares and cross products of the biases of the elements of b(o.
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As is well-known, (X A') is the --( matrix of b(o). The matrix
(

i\') I

'] u(X X)Ll + it.-V' .V) is non-
negative definite so that for sonic values olji and I in a neighborhood olO there is a
possibility 01 L[o) - tj LbU) -- iJ' - Eb,o) - fl [b,(o) -- ii]' being poSitRe
semi-defInite However, the mean square error of an element of b1(w) may not he
substantially smaller than that of the correspondng element ol bRo). if the true
value of is not suflIeicntly close to 0.

An approximate ridge regression estimator is

(lx) b,) (X' 1X ± 1il) 'X'
In Hoerl and Kennard (l971b) some recommendations for choosing a ji > 0
are given.

3.2. Minimum Conditionol Mean Square hrror Estimator 01 i
Recall that the second order moment matrix of a linear estimator .1 4- a

around ji is

f1A' + [(AX - 1) ± aJ[).lX - 1)D -f- aL.

The quantity in (19) cannot he miiiimi,cd unless it is hounded, see Barnard
(1963). Since the range of 0 is bounded, the elements of(19) are bounded. Let f
be a guessed value of. Using in place of fi. we obtain

A/1' + [(AX /)fi* + a][(AA' - !fi + a].
If (201 is chosen as a criterion of estimation, the optimum choice of a is 0

and that of A is (see Rao, 1971, p. 389)

A = fi*fl*v(vfi*fi*'v' + Zr'.

Consequently, the optimal estimator of fi. given f. is

b) = rrx.(vfi*rv + Zr
(Henceforth we shall refer to b*w) as the minimum conditional mean square error
(MCMSE) estimator offi. i'he result in (22) is gisen as an e\creisc in Theil (1971.
p. 125. Problem 4.3).) Notice that the estimator b*ko) exsts even when the rank
of X is less than K. In cases where the rank of X is K. we can write

(Xflfl'X' + Z) = -- E 'X(XZ 'Xy 'X'Z
+ ). 'A'(XZ' i\)-i[p*J* ± (x'Z V)

x (X''XL'X),
see Rao (1965. p. 29. Problem 2.9).

Inserting this hack into (22) gives

b*(w) = '[flfl' - LVZ '.Y
In the practical situation in which Z is unknown, the estimator 5*1w) can

he approximated by

b*(1) = f*f*'\'(Xp*j*V + Z) 'y
= *p*[jj*fl* ± (X' 'X) I] [by 23)]

where is as defined in (8).
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In the Appendix to the paper. it will he shown that a sufficient condition for
(X' 'X) - Eib*Ko) -- to he positis e definite is

(26) sup IYppj 1

where p is the ktli COlUflin of P. P is a nonsingular matrix such that
P'(X' 'xr 1p I pf**J) = ,ii' , and I is the tIrst column of an identity
matrix of ordcrK.

It is clear from (A.4) in the Appendix that the conditional variance of an
element of b*(0), given j, is substantially smaller than the variance of the corre-
sponding element of the Aitkcn estimator b() for every 0. But, for sonic aliies of
0, due to high magnitude of bias the conditional mean square error ofan element
of b*(o), given exceeds the variance of the corresponding element of b(tu).
Condition (26) indicates the values ofO for which G*(ô) based on given is better
than (w). Consequently, the approximate MCMSE estimator b*() cannot
completely dominate the approximate MVLU estimator b)t1) in the sense of (II).
When K = .condition (26) is satisfied if the square of the coellicient of variation
of the MVLU estimator b(o) is greater than one. In the general case condition (26)
is likely to be satisfied if XT X is close to singularity. Under these conditions,
one can improve upon the MVLUcstimatorbv relaxing the unbiasedness condition
as in (20).

We now compare the moment matrices of(o)and *(w). It is seen from (A.4)
and (A6) in the Appendix that since the rank of rii is unity, the conditional
variance of an element of *(w) is substantially smaller than the variance of the
corresponding elenient of(o). However, for any reasonable values of p and
the magnitude of bias ofan element of b*(o) is likely to be larger than that of bias
of the corresponding element of (o). For certain values of parameters, b*() is
better than bIj).

Next, we note that, if a prior estimate of ji is not avaiJable, we may consider
the following estimator:

(27) b(t) b(th)b'(t)X'[Xb('()X + ] - lv.
When there is near-extreme multicollinearity. a precise estimation of D is not
possible, but a relatively precise estimation of Xi and is possible, see Rao (1965.
pp. 184-5) and Thejl (1971, pp. 153-4). The estimator ji() is based on the precise
estimates of. Xi and E.

The estimator b*(w) is based on a prior estimate ofli, while the estimator bo)
is based on a prior knowledge of the iange ofIi. Since the rank of Il' is unity.
we cannot express *(o) in the form of a matrix weighted average of the \ectors
bfto) and 0. Howeer, when K = I. by appropriately defining p we can equate

to b*(w), see Theil (1971, p. 126, Problem 4.4).
In summary, we have found that none of the estimators b(th), *b(I),/()b(tj),

b,,(1), and b*(11) is uniformly better than the other in the sense of (lIt. Conse-
quently, it is not possible to choose among them unless we know "where in the
parameter space to look" for the most efficient estimates. When we are faced
svith an extreme multicollinearity situation, we may use b*() if a reliable prior
estimate of is available and b() otherwise.
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4. ESTJMATING PARAMETERS WITH THE FIRS' Two MOMENTS 01 A
PRIOR E)isrRlnurloN

There are several situations in which extraneous inlorniat ion on sonic of the
parameters of an equation is available. This information may arise from an
analysis of past data and'or from theoretical and practical considerations that is.
from sources other than currently available sample. To incorporate such a prior
information the following procedure was suggested b Durhin (1953) and
developed further by Theil and Goldherger (1961) and Tlicil (1963).

4.1. Mixed Estimation When J is Regarded as Fixed

Suppose that extraneous information of the following form is available.

r = R -i- v with Ev = 0 and Ev' = r2iji.

where r is a q x I vector of prior estimates of R1. R is a q x K matrix of known
constants, visa q x 1 vector of errors in r and q K. We assume that v is uncor-
related with u and in (2). Ve now combine equations (2) and (28) and apply the
Aitken theorem to obtain the following estimator for .

= (x' X + RI IR) '(X'y ± ir)

l'he estimator (o) is the MVLU estimator of where linear now means linear in
y and r. Here the distinction between b(w) as a MV1U estimator of and Ii,,(w)
as a MVLU estimator of the same 1 is to be clearly understood. The linear lunction
ofy, namely b(o), is the MVLU estimator of1 in the sense that any other estimator
of which is also linear in the vector v and unbiased has a V-C matrix which
exceeds that of b(to) by a positive sernidefinite matrix. On the other hand. Io)
is the MVLU estimator of in the sense that any other estimator of Ii which is
linear in y and rand unbiased has a V-C matrix which exceeds that of i(o) by a
positive semidefinite matiix We shall refer to ,(o) as the "mixed regression"
estimator. We again remind the reader that the criterion of MVLU is dcfectie in
its premises, in that the condition of unbiasedness sometimes leads to inadiniss-
ible estimates, see Ferguson (1967, pp. I 35-6).

As r2 - 0, the estimator (o) approaches the restricted estimator of given
by the normal equations (see Chipman, 1964, p. I 101)

[XE 'X R'1 [1 [xE '

L R 0JLi.j L

Eq. 30) is obtained by minimizing

(y X)'E '(y - Xii) - jt'(r - Rh)

where is a vector of Lagrangian multipliers. Theil and Goldberger(196l). soRe
eq. (30) under the assumption that the ranks of X and R are K and q respectively,
while Rao and Mitra (1971, p. 147) solve the same equation without any restric-
tions on the ranks of X and R.
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*

Chipnian (1964, pp. i101 2) points out an iniportant special ease of (29L If
ci' is known. eq. (2t't) can he written as

(32 i r=-y Rt-t-i/ !2

= -j v

When the rank of X is less than K. and 'lien X' ==
I and R* are ''comple-

mentary",4 X* = (.V 1X (I r)Rcii 'R) X" is a genera iiied inverse of
Xt, independently of I t, as long as 0 <: It2 because for all such I
1 rR has the same rowspace as R*. Similarly. R* = 2X ' 'X R ci R) R
is a generah,ed inverse of R*. independently of I 12, as long as 0 i.sinee
for all such r2. TX* has the same ro space as Therefore the estimator
is functionally independent of I r2 as long as 0 < 1 r < L and R* is comple-
nientary to X. In this case the estimator can be computed even when
is unknown.

To consider another case, let q = K and R I. Then !i((i)) becomes

= (x ix 4

)
x 'V 'ri.

It is easily seen that ,(o) in (33) is a ''matrix weighted average'' of (w) and r,
with weights inerscl proportional to their respective IC matrices. Hence, an
estimate of is pulled towards r away from b(o). The estimator ill (33) covers

(w) in (1 3)as a special case. When r Oarid T1J1 = (li)l. ,(o) is thesamne as (33).
Analysis of simpler situations has shown that the estimator

fl) = (xt '.V + ii)'(.i + iP1r).

with known r2,/j, completely dominates b(0) in the sense of (II). provided Es = 1)
and and ii are normal, see Swamy and Mehta (1969), and Mehta and Swan
(1972b). In cases where E(v I1)(v - ii)' = 'r2,, i is unknown. tii is known, and

and u are normal, is better than b(1) if only the coefficient of variation of
each element of v is sufficiently large in magnitude, see Swanty and Mehta (I 972).
Thus, if we mnisspecify the prior moments, there is no guarantee that each diagonal
element of the second order moment matrix of ,(t) around will he less than or
equal to the corresponding diagonal element of the second order moment niatiix
of b() around f.

The compatibility test statistic developed by Theil (1963) can he utilized to
test whether prior information is in conflict with sample information. Mchta and
Swamy (1972a) hac derived the exact finite sample distribution of Theil's
compatibility test statistic. They have also considered the consequences for estinm-
non, in terms of meami square error, of making pteliminarv tests. The efficiency of
preliminary testing procedures has been examined h comparison of the risk
functions of preliminary test estimators with that of pure regression estimator.
b(o), which is an Ailken estimator when no prior information is used. The
preliminary test estimator dominated the pure regression estimator ovet certain
regions of the parameter space.

The mair,cesV and R* are con,plerneniarv ii I rank V - rank IR*I = K. \ and R*
havetIlCs,,rnenrnhr)fc1ll,,,lfl and IItIic r(Iw spae of .l and R* h:vcoIv the oriifl in Conhinan



Returning again to the case where Lv = 0 and Ev" = r2ili, it can he seen that
the matrix

'x + *'*' + tx's 'x- 'j '(X'E 'xr'
[p*D* + (X' 'X) '] - (X' X) I[I1*1i*

+ (Xi X) ][1* + (XEXr l] '(X 'X)

is positive definite only for certain values of 0, and r2i Consequently, the
estimator b*(th) in (25) will not be uniformly better than in (34) even when the
first two moments of r are exactly known.

A particular case which can be solved exactly, and for which there is a com-
plete and simpler treatment is the following. Let K = 1, and fl2 = r2 - t1il.
Notice that Er2 = 1)2 + t2/i. We can use standard analytical and numerical
methods (Mehta and Swamy, l972a) to evaluate the unconditional mean square
error of b*(ü) with respect to the distributions of fl*2 and y. If the square of the
coefficient of variation ofr, (r2,/fl2), is greater than one and the square of the coeffi-
ent of variation of the MVLU estimator b(w) is greater than or equal to one, then
h*(w) is better than f1(w).

Formulae (25) and (34) provide two different ways ofcombining prior informa-
tion with sample information. Neither one of them is better than the other regard-
less of the true values of parameters. It should be emphasized that the estimator
b*()should not be used unless is a reliable estimate of'. lfthe prior point
estimates of the elements of are not reliable, then it is better to express the uncer-
tainties associated with these estimates in the form of a distribution with mean
and VC matrix t2i,i, and use the estimator Ii,,(ó). That the prior information be
unbiased is a severe restriction on the nature of such information, see Zeilnet
(1970, p. 189). This restriction will be eliminated in the next subsection.

4.2. Bayesian Estimation When is Regarded As a Random Variable

We now make the following "wide-sense" assumption.
Assumption 2: A probability distribution on a class of measurable sets in ®

exists. The variable $ is judged a priori to be distributed independently of 0) whose
distribution is a point distribution with the whole mass of the distribution concen-
trated at one point. Furthermore, E = r and E( - r)( - r)' = r2' which is
positive definite.

Even if a purely pragmatic attitude is adopted it does seem to be true that for
at least some inference problems, an approach which assumes the existence of a
prior distribution of 0 is more appropriate than one which does not. 1-lowever. it
is very restrictive to assume that the distribution of (0 is a point distribution. If
this assumption is relaxed, the analysis gets very complicated, see Lindley and
Smith (1972).

Assuming that 0 is a random variable, Zeliner and Vandaele (1971) discuss
the Bayesian interpretations (attributable to Lindley and others) of the Stein-like
estimator c*b(w) When X'X = I, Q = I, 2j, and the prior distribution of
has mean 0 and scalar V-C matrix, one can generate a Bayes estimator of the form
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(.*b(0) Notice tha when r is regarded as a fixed parameter, 3,(o) is still a linear
function ofy but becomes a biased estimator of. ft is interesting to note that if
is considered to he a random variable with mean equal to fixed r and fixed V C
matrix ri/i, then I4(w) in (33) is the "best linear' predictor of 11 in the sense that any
other predictor ofl which is also linear in the vector y has an averaged second order
moment matrix around which exceeds that of (o) by a positive semideitnite
matrix. In other words, ii r and rt/i are the mean and V C matrix of JI, then
completely doninates every other linear in y estimator (predictor) of II in the
sense of (1 l). Proof of this important result is given in Chipman (1964, p. 1105)
and Rao (1965, p. 192). If r 0, i/i and Assumption 2 is true, the formulae
c*b(o( and bft) are inappropriate. When I is random. the procedure outlined in
subsection 3.2 is also inappropriate because, under Assumption 2, (19) is not the
second order moment matrix of Av + a around i, see Chipman (1964, p. 1104).
Notice that the estimators bko), c*o), bft(c) and b*(w) for given are all linear
functions of v. Hence, it follows from the Chipnian Rao theorem that they are
inferior to the best linear estimator [i(w) if Assumption 2 is true. Thus, the biased
estimators generated through the ('hipman--Rao Procedure are better than those
generated through the procedure outlined in subsection 3.2.

We called ti) the best hnear estimator of. The qualification linear can be
dropped if the prior distribution of f, given r and r2t,/,. is normal and the condi-
tional distribution of y, giv X, , and i, is also normal. This is because, under
these normality assum1t ions, the estimator is the mean of the conditional
posterior distribution of. given Lr. r2i/i and the data, see Zeilner (1971. p. 76),
and Zeliner and Vandaele (1971). The posterior mean ,,(w) with known E. r2iJi
and r is admissible with tespect to a quadratic loss function, see Zellner (1971,
p. 24). Thus, admissible estimates can be found if the prior distribution of 0 is
completely known, see Ferguson (1967).

Even though the result in (33) is intuitively appealing, it has certain weak-
nesses. In (13) and (33) different posterior means have been obtained by combining
two different priors with the same likelihood of parameters. These priors were
therefore influential in deciding the posterior means in small samples. It is worth
noting that if the Aitken estimate b(o) and the priormean rare very different, then
the estimate (33) is a long way from (w). In this case it may happen that either the
model specification s at fault or the prior information is incompatible with sample
information, see Box and Jenkins (1970. p. 251). Efron and Morris (1971) also
point out that the estimator 111,(w) must give bad estimates when r is far from 11
Let NK(r. 121/,) represent the true prior distribution of 116 Suppose that this distri-
bution is actually a mixture of various other distributions, one of which is
N,(r ) such that z2çlí - riJi is positive definite. For any fixed value of
ti/i, the expected squared error risk of an element of i,,(o) with respect to the
prior distribution N(r,ri/,1) can be made arbitrarily large by moving r1 arbit-
rarily far from r. That is, the esttmator ,,(o) does well on the population,
.NK(r. r2fr) as a whole, hut may perform very poorly on a particular suhpopula-
tion,NK(rt, t).Theestiniator(X' 1X + (1jr')1/i '[1(X' 'y + (l/t)i/ij 'r1)

The requirement that an estimator of be linear arises from the absence, in our "distribution-free" formulation, of the assumption about the form of the prior distribution of
vdr. r'l represents K-dimensional normal with mean r and tj-C matrix ri
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does well on the suhpopulation NK(rl , ri/i ). If we knew that a particular
belonged to the subpopulation N(r . i. then we could use the estimator
(X' 1X' + (l..th [ X' 'v -- (I /i tr ) iather than (o)). Information
on subpopulat ion distributions can he obtained by assessing r and i2 iJi as precisely
as possible. Now the relevant question is : How can we assess a prior distribution
in practice?

Notice that the probability distribution on a class of measurable sets iii ® is
viewed merely as a reflection of the belief of the statistician about where the true
alue ofO lies prior to an observation being made. Conditions under which such a
!istribution exists arc given in Ferguson(1967, Section 1.4). It has been shown by

Savage and others that personal probabilities assessed in accordance with certain
plausible behavioral postulates of "coherence" must conform mathematically to
a probability measure, Sec Lindley (1971). Winkler (1967a,b 1971) discusses the
practical problem of the assessment of personal probabilities. An operational way
of assessing a probability is through the study of relevant gambles. Methods such
as scoring rules and bets are uselul in leading individuals to make careful proba-
bility assessments.

It should be emphasized. however, that in many economic situations there
remains the practical difficulty of assessing a prior distribution to reflect one's
degree of belief. If the parameter space contains a finite number of points. then by
sufficient introspection one can arrive at the prior odds at which one would just
accept a bet on this parairieter value rather than that, and so eventually find the
prior distribution appropriate for a particular problem. If 0 is continuous, as it
usually is, it is not clear whether any reasonable consideration of the way in which
inferences cohere leads to the existence of the prior distribution, see Lindley (1971.
pp. 7-8). The difficulty of choosing a prior distribution is highlighted, when the
parameter space is infinite-dimensional as in Sims (1971). Efron and Morris (1971.
p. 808) argue that in the realistic situations there is seldom any one prior distribu-
tion that is "true" in an absolute sense. There are only more or less relevant priors.
If a distribution with mean rand V-C matrix t2i is at all in doubt, it would be
well to modify the estimator

In large samples the situation improves. With a reasonably informative
experiment, the values r and T21/f adequate for describing rather imprecise know-
ledge can be changed quite considerably without affecting the final result all that
much. This is the consequence of the fact that, under general conditions, sample
information dominates prior information in fairly large samples. In fact. Lindley
(1971, p. 62) has shown that ifthe pdf p(ylX. 0) satisfies certain regularity conditions
(see Silvey. 1961 and Perlman, 1972), the method of maximum likelihood is shown
to be a reasonably "coherent" technique in large samples. We, therefore, turn to a
study of this topic.

5. MAXIMUM LIKELIHooD METhoD

In this section we assume the following:
Assumption 3: Given X, JI, and , y is normally distributed with mean XØ

and V--C matrix , i.e., y ).
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For simplicity, we let a = 0 if 1 and i = 0 for es cry i. Now 0 = ((c, to)
where to is a (n + K2)X I vector, to (lenotes the vector presentation of the 's

and all elements of A in which e, appear in order lirsE. (lien the elements
of the tirs column of A. the elements of the second column and so on.

(36) l(0, X)[fl lIT-k)1 ex

[ñ A + u(XX)'

b = (XX1) 'X:y1.

see Swarny (1971. PP. 111-12).
Now, given the data v. A'. p(yX. 0) in (35) may be regarded as a function of0.

When so regarded, it is called (he likelihood function of 0 for given y and A'. The
likclihood function is defined up to a multiplicative constant. The likelihood
expresses the relative plausihilities of different parameter values after we have
observed the data v and X, see Barnard (1967). Methods of eliminating nuisance
parameters from the likelihood function so that inferences can be made about the
parameters of interest are considered by Kalbfleisch and Sprott (1970). In this
regard "marginal" and "conditional" likelihoods are introduced. These can he
computed if only the likelihood function factors into two parts, one of which
contains a parameter of interest. say /. only and the other being uninformative
about fl in the absence of knowledge of other parameters. It is clear from (35)
that the likelihood function has the form (apart from irrelevant constants)

I f l(TK)s,

21 {
(b [A

+ a(XX1[ '(bk -.

Each of the first u factors on the right hand side of (36) contains one of the t'Jü
only. It contains no available information concerning and A in the absence of
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(35) p(yjX, 0) = (2itL'T 2
-F AX'A') I 2

.exP {- + (b -

A ± (XX) '] '(bk

where

= vAIy IT - K), .W = I X1tx;. 1
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knowledge of the u. Unfortunately, the last factor contains available information
about every clement of 0, see Kalhfleiscli and Sprott (1970. p. 200). However, as
1 '. since (XX1) - 0. the last factor gives less and less information about the
os. and A ate the palalneters ufoui interest and we cannot derive their marginal
likelihoods from (36). It is meaningless to integrate l(0l', X) in an attempt io obtain
the marginal likelihoods of the elements ofli, see Box and Tiao (1973, p. 73), How-
ever, a close studyof the likelihood function is aiwaysdesirable. In certain instances.
the data will contain no information regarding certain parameters. It is important
to study the likelihood function's properties to determine when this is the case,
see, for example, Box and Jenkins (1970. pp. 225-6), Silvey (1970, pp. 81 -2), Swamy
and Mehta (1971), and Swamy and Rao (1971). A general method for obtaining a
reasonable estimate of 0 in most situations is the well-known maximum likelihood
method, see Rao (1962). In this section we try to verify the conditions which ensure
the consistency and asymptotic normality of an ML estimator ft of 0. First, we
indicate a method of obtaining 0.

An ML estimate 0 is any element of ® such that p(yX.0) = sUp0 p(yX. 0).
0 belongs to the set which is most plausible after we have observed y and X. At
this point it should he appreciated that the ML method always estimates the entire
underlying distribution from given data. Successful estimation of the entire under-
lying distribution is the maximum of objectives attainable by any statistical method.
Since B is an open set, it may happen that no ML estimate offt exists. However, a
neighborhood ML estimate of 9, which is defined by Kieler and Wolfowitz (1956.
p. 892). exists in some cases where at) ML estimate does not. Usually. ML estimates
emerge as a solution of the likelihood equations I log l(OIy. X)/i$0 = 0 shown in
Swamy(1971. p. 112). These equations are nonlinear in the unknowns and have to
be solved numerically. A convenient method of solving the likelihood equations is
the method of scoring described in Rao (1965, p. 302), see also Silvey (1970, 7Q-l).
This method requires an explicit derivation of information matrix which is given
by (see Swam)'. 1971, p. 114)

(36) 1(0) =

s'here

El2 log I

El2 log I
= [A + (7(x:x)

T1II 1=1

El2 log I f El2 log 1

1(010)'
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$

A, denotes the vector presentation of all elements of A in which the elements of the
tIrst row appear in order IIrst. then the elements of the second row and so on:

E2logl l(TKj= - + tr [A + 1(XX) '1 '(XX1)
('11ff 2 aj1

- [A -f- a0(x;x)- '] '(X') (i = 1,2 n)

Ei2 log 1 -

E log I- = [A + (x;x1) -

(i = 1.2 ii)

E2logl I
= [A + XX1) ] 0 [A ± r(YV) -

® (leflotes the Kroneckcr product. see Tracy and Dwer II 969. pp. I 580. 88- 89).

5.1. Consistency of An ML Estimator ofO

The pdfp(yX, 0) in (35) depends on an unknown parameter vector 0 belong-
ing to a metric space e which is a subset of [K + ii + 4K(K ± I )]-dirnensional
Euclidean space. In (35) there is a family of possible distributions given h' dilTerent
values of 0 in ® and we do not know which one is appropriate. Let 0 be the
unknown true value of 0. We shall denote by E0 log p(yjX, 0) and var() log p(vX, 0)
the mean and variance respectively of the random variable log p(yX. 0) on the
sample space Y (of elements y) with respect to the distribution of y determined by
00. Let N0 be an open neighborhood of 00. To prove that 0 is weakly consistent
we have to show that [log p(yIX, 0) SUp1,4 log p(yLV. 0)] '> 0 in proba-
bility according to iyIX, 0) see Silvey (1961, pp. 445- 6). This means that the value
of 0 which maximizes l(0y, X) belongs to in probability when 0) obtains. If.
for every a, T and 0 we have E0 log p(yjX.O,) > E0 tog p(vIX,9). and
E0{log p(yIX,00) - log p(yIX,9)} is large relative to [var1) log p(X.00) -
log p(yIX, O)}]' /2 then it follows from Chebychev's inequality that the nicthod of
maximum likelihood will discriminate well between 00 and other 0. 13v putting
certain regularity conditions on l(Oy, X) we can guarantee that the method will
discriminate well between 0 and, simultaneously, all other parameter values
outside an open neighborhood of 00, for large enough a and 1. This is the basis oi
consistency proofs given by Silvey and others.

The likelihood function in(36) contains terms ofdifTerent orders, each contain-
ing a particular subvector of 0. Consequently. we proceed as follows: First.
assume that 0 E 0. Second, we rewrite (35) as

(37) p(yX, 0)
[r

(siai)]f(bIX. 0)
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whei e

arid

i(bIX0)[ A ± (XX) - (b
1=

[A + a1(XX1 'j (b

By Jensen's inequality (Silvey, 1970, p. 75) we have

Eo[: log g(sa) + log f(hiX, 00)1

[-
log g(s1a0) -F log f(bX, 0)]

where is the true value of The inequality in (38) is strict unless 0 =
because. in view of Assumption 1. 0 is identified and the distributions correspond-
mg to 0( and 0 are different.

There IS a coilnect ion between ''local'' identifiability of a vector-valued
parameter 0 and positive defIniteness of the information matrix 1(0), see Rothenberg
(1971) and Silvey(l970. pp i-2).

Assumption 4: The vectors x0 = (x . .v1 vK,)' arc all contained in a
compact subset ofKdiiiiensional Euclidean space such that for each i = 1, 2

the matrix T .v;.x converges to a fInite positive definite matrix as '1 x.
Let D = Wag [IK. Tt. ulki]. Now consider D 12J(O0)fl 12 where i(0) is

obtained from (36) by replacing 0 by 00. The positive definiteness of lirn.
D ' 21(00)D 2 which is necessary for the local identifiability of 00 follows from
Assumption 3. Following the same argument as in Silvey (1970. pp. 81-2) we can
show that for any 0 00

lirn L0 -- log g() + log/ (bX, 0)
1=1 0

log g(s0la1) logJ(bX.
0)1.

II -

It is easy to show that for every 0 e 0

E0 L: log g(s) + ± log I(bX, 0)] = 0(1),

var( log (siio)] = o(
),

and

var0 ! 10 f'(bX. 0)1 = O(n '1
[H j

Let ® be a compact subset of®.
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Asswnpuon 5 : O E (-.
In variotis practic sit tiations it is often possible to rule out sutIicicntjvextreme values of 0 on theoretical izrounds and form &, so that O E n easeswhere the maxinluni likelihood procedure outlined in the previous subsceti11 leadstt, iiiiplaiisibfe estimates like negative estimates for the diagonal elements of A.Assumption S may not hold. in these cases we should examine Assumption I moreclosel3. Under certain additional conditions we can replace Assumptioii by awider condition, see Perlman (1972).

The function p(yIX, 0) is a pdf on the sample space Y given X. for each 0 in@. and the function 1(0y, X) is continuous on the metric space ® kr each y.given X. Since ® - N0 is compact, we can cover it by a finite number, say h. ofopen spheres of radius having centers O .....0. say. Let log p(yX, 0., r,)be the suprcmtjni of log p(vJX, O) with respect to O when - 01j < r,. Forany O, c wc have, Jim I, log p(vX, O,, r < as r 0 because p(vj.Y, 0)is uniformly bounded in y. 0 and E(, fog p(y!X. 0) < . We can slio that
(43) EO[ log r5,) lo f(bjX, °m' rV,,)!

log g(s4a110 + lof(bIx.00J (?n = 1,2 h).

The results in (38)-(43) are adequate to establish the Consistency of an MLestimate of 0, see Swamy and Rao (1971), and Silvey (1961).
5.2. Asv!npw(i( Normaljff

The standard method of establishing the asymptotic normality of an MLestimator 0 ofO utilizes the following results:
Taylor's theorem in the expansion oflog l(O!v, XjiiO0a central limit theorem applied to D 1 log l(OoI, X)O0)a law of large numbers applied to D i2(.2 log I(O0y. X)O4 ?o)D I 2Under Assumptions I, 3, 4 and 5 we have enough regularity conditiomis to estab-lish the above results see Silvey (1971, pp. 77-8 and Swamy and Rao (1971).Consequently D 2(0 O is aSymptotically normal with mean 0 and Cmatrix flimT, D 21(00)D- I

The argument just presented combined with the fact that the prior (liStribti.tion of 0 does not depend on mm and T, shows that in large samples, when Assuniptions 1-5 are satisfied, the Posterior distribution ofO is approximately nomnial withmean 0 and I-C' matri.
{ log l(OJy, X)O O')1 evaluated at 0: see Lifldle\(1971, p. 62) and Zejfner (1971, pp. 32-3), This result is true even when the priordistribution of is not a point distribution, provided the above conditiomis aresatisfied

6. SUMMARY AND CONCLUSIONS
In this paper we considered six different estimators of the mean of a randoiicoefficient vector. These are (1) the MVLU estimator b(o, (2) the Stein-likeestimator c*(u), (3) the ridge

regression estimator b,,(o). (4) the MCMSE
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estimator b*Ko). (5) the mixed regression estimator o). and (6) an ML estimator
ft of f. We also found feasible approximations to these estimators. None of the
estimators bo), c*b(o), b(o) and b*(w) is uniformly better than the other. Each of
these estimators has its own weaknesses. In cases where a priori unbiased estimator
r of fi is available and its V--C matrix TI is known, the estimator J11(to) isuni-
forrnly better than the estimator b(w). Under these conditions, the estimator I(0)
is also better than (o4 if is not a reliable estimate of '. The estimators
h(o), b*fro) and j,,(o) are insensitive to extreme multicollinearity. The estimator

covers the estimators cth(w) and b(w) as special cases.
When is regarded as a random variable, the formula *(w) is inappropriate

and the estimator (w) covers the estimators b,() and c*h(w) as special cases.
The prior information utilized in obtaining the estimator ,(w} is likely to provide
a better numerical approximation to the practical situation than those utilized in
obtaining the estimators c*b(w) and (w). The estimator ,,(o) is uniformly better
than the estimators b(w), c*b(w), b(ü4 and b*(w) ii f is distributed with mean r
and V--C matrix r21/i Furthermore, (o) has all the desirable properties of a
posterior mean corresponding to a normal prior and normal likelihood. In small
samples one cannot find a uniformly better estimator of unless the prior distri-
bution of is proper and known.

Under certain regularity conditions, the maximum likelihood estiniate fi is at
least as good as any other estimator of in large samples.

Federal Reserte System. Washington D.C.

APPENDIX

Here we proide the proof of (26). The conditional second order moment
matrix of b*(w) in (24) around 1. given r. is

(A.l) ifi"[fPj1" + (X' 'X[ j i(\_ 'X[ l[fi*II* - (X's X)

+ (X' '\') l[Il*fi*' + (X 1X) 1]

± (X'X)'] '(XX)'.
The first term in (Al) is the conditional V-C matrix ofb*(w) and the second term
is the matrix of squares and cross-products of the biases of the elements of b*o
for given fl. Subtracting (A.l) from the V-C matrix of (w) gives

(X'Z 'X[ fifi"[flfi'' + (X' 'X) '] '(X 'X
[*fl + (X' 'X) t] ifl*f*' i) i[filcfl* + (V'X) ']-

p[fi*p* + tX''Xr 'j(X'E 1X)

Let P he a nonsingular matrix such that P'(X' 'X[1P = I. and P'rfl'P =
)i1i'1 where i is the first column olan identity matrix of order K. We pre and
post multiply (A.2) by P' ip and PP - respectively to obtain

P'-'p- 1 - pi{)*jj'()*jj + J)1Aj1j'1P
-- P' 1ji -F I) ').tOiO'i(,.ii J) IJ) I
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S

where O is the charactertstic vector corresf)ondin 1(5 thC lion/en) root / (if

P'JJ1'V. Using an identity in Swamy (1971, p. 25. Lemma 2.2.2 we his ,'

(A.4) P'- 'P-- - F' - 1ii'P (1_

(i - I j>
1 4.

Consequently, given

(AS) E{h(o) - ffl[b(w) -- ]' - E[(o) ][*() -
I [ ;*2 '* 2 1 '*) 0

= P 1 ii + I - +i + ,.-

0,0 + tJii)}P I

where O is the first element of O.
Let the matrix within the curl brackets he B. The matrix in (.A.5( is positive

definite if B is positive definite. Since B is symmetric, B is positive definite if all its
diagonal elements are positive. The first diagonal element of B is positive if

< I + 2A where p1 is the first column ofP. Every other diagonal element
of B is positive if i'pp'j < 1 k = 2,..., K.

Using P ve may rewrite (17) as

A.6) P''{P'P(P'P + 1il)2P'P}P + P LL2(P'P + t1) PIIJ'P

(P'! + ii) P
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