This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 2, number 4

Volume Author/Editor: Sanford V. Berg, editor
Volume Publisher:
Volume URL: http://www.nber.org/books/aesm73-4
Publication Date: October 1973

Chapter Title: Criteria Constraints And Multicollinearity In Random Coefficient Regression Models
Chapter Author: P. A. V. B. Swamy
Chapter URL: http://www.nber.org/chapters/c9935
Chapter pages in book: (p. 429-450)

Annals of Economic and Social Mcustormint. 2 \&. 107

(RITERIA. CONSTRAINTS AND MULTICOLILINEARITY IN RANDOM COEFFICIENT REGRESSION MODELS

By P. A. V. B. Swamy*

 comstrains in RCR models.

I. Intromethon

It has been recognized by matis econometricians that the nefinthess of the conventional fixed-parameder regression model in the anatysis of cross-section data is limited becanse individuals differ greatly in their behavior. and the diversity of individual decision mitis implies parameter variation across units. see Swamy (1971) and the references cited therein. In reeent yars. econometric models. which permit different sehemes of parameter vartation. have been developed. All these different schemes have been compared by Swamy (1972) who developed an asymptotically efficient procedure of estmating the parameters in a general randon coeflicient regression (RCR) model. Application of these estimation methods in the analysis of real world data is just beginning. see Feige and Swamy (1972). It has been observed that the use of RCR methods can ressilt in more fruifful and meaningful econometric analyses of micro panel data. In the present paper we analyze alternative estimators with purely atgebraic tools. Altention is focused on the criteria of estimation and parametric constraints in RCR models.

The pian of the paper is as foltows. Scetion 2 sets ont the estimation rules for random coefficient regression models with and withont an mbinsedness condition. Constraints on the parameters and partial prior information are introduced in Section 3 and it is indicated how their presence can helpestimation. Methods of using sample data in conjunction with the first two moments of : prior distribution are reviewed in Section 4. The maximim tikelihood method of estimating the parameters of a random coeflicient modei is discussed in Section 5. Summary and Conclusions of the stady are presented in Section 6.

> 2. Random Cobhechent Regrission Mobel

2.1. The Model

Swamy (1971) considers the problem of estimating the fothowing equation from atime series of cross-sections.

$$
\begin{equation*}
y_{i}=X_{i} \beta_{i}+\mathbf{u}_{i} \quad(i=1.2 \ldots, n) \tag{1}
\end{equation*}
$$

[^0]
 tions on α mdependent tariabies. $\boldsymbol{\beta}_{i}$ is a $K \lambda 1$ vector of cocllicients. and $\mathbf{u}_{i}=$ $\left(u_{i}, u_{i 2}, \ldots u_{i r}\right)$ is a $T X$ vector of disturbaness.

Observations on y sand x sor n individuals taken over 9 periods of time are a a ailable. These ternporal cross-section data are obtained by assembling crosssections of T years. with the same n cross-section units appearing in all years. The individuals here may be firms. consumers or regions. The subseript i indexes cross-section observations and the subseript t indexes time serics observations.

In (1) both $\boldsymbol{\beta}_{i}$ and \mathbf{u}_{i} are regarded as realizations of random vectors. ${ }^{1}$ and the following assumptions are made.

Assumption!
(1) The rank of X_{i} is $K, n>K$ and $T>K$:
(2) For $i, j=1.2 \ldots, n: E \mathbf{u}_{i}=\mathbf{0}$ and $E \mathbf{u}_{i} \mathbf{u}_{j}=\sigma_{i j} \Omega_{i j}$ where
(3) For $i . j=1.2 \ldots n: E \beta_{i}=\bar{\beta}$.

$$
E\left(\boldsymbol{\beta}_{i}-\bar{\beta}\right)\left(\boldsymbol{\beta}_{j}-\overline{\boldsymbol{\beta}}\right)= \begin{cases}\Delta & \text { if } i=j \\ 0 & \text { otherwisc. }\end{cases}
$$

$\Delta=\left\{\delta_{k \cdot} ;(k . k=1.2 \ldots, K)\right.$ is positive definite:
(4) $\boldsymbol{\beta}_{i}$ is independent of \mathbf{u}_{j} for $i . j=1.2 \ldots$ i:
(5) The $x_{i k i}$ are cxogenous variables distributed independently of $\boldsymbol{\beta}_{i}$ and $u_{i} \cdot{ }^{2}$ Furthermore. X_{i} is nonstochastic.
The implications of Assumption 1 are discussed by Swamy (1972). If we arrange the observations on each variable first by individual and then according to puriod. we maly represent eq. (1) by

$$
\begin{equation*}
y=X \bar{\beta}+D_{x} \xi+\mathbf{u} \tag{2}
\end{equation*}
$$

Where $y \equiv\left(y_{1}, y_{2}^{\prime} \ldots y_{n}^{\prime}\right)^{\prime}, \lambda \equiv\left[x_{1}, X_{2} \ldots \ldots X_{n}\right]^{\prime} \cdot \bar{\beta} \equiv\left(\bar{\beta}_{1} \cdot \bar{\beta}_{2} \ldots \ldots \bar{\beta}_{k}\right)^{\prime}, D_{a} \equiv$ $\operatorname{diag}\left[X_{1}, X_{2} \ldots \ldots X_{n}\right] . \dot{\xi} \equiv\left[\xi_{1}, \xi_{2} \ldots \ldots \xi_{n}^{\prime}\right], \boldsymbol{\beta}_{i}=\overline{\boldsymbol{\beta}}+\boldsymbol{\xi}_{;}$and $\mathbf{u} \equiv\left(\mathbf{u}_{1}^{\prime}, \mathbf{u}_{2}^{\prime} \ldots \ldots . \mathbf{u}_{n}^{\prime}\right)^{\prime}$

For given X the random vector y is distributed with mean $X \bar{\beta}$ and variancecovariance ($\mathrm{V}^{-}-\mathrm{C}$) matrix of the form

$$
\Sigma=\left[\begin{array}{cccc}
X_{1} \Delta X_{1}+\sigma_{11} \Omega_{11} & \sigma_{12} \Omega_{12} & \cdots & \sigma_{1 n} \Omega_{1:} \tag{3}\\
\sigma_{21} \Omega_{21} & X_{2} \Delta X_{2}+\sigma_{22} \Omega_{22} & \cdots & \sigma_{2 n} \Omega_{2 n} \\
\vdots & \vdots & & \vdots \\
\sigma_{n 1} \Omega_{n 1} & \sigma_{n 2} \Omega_{n 2} & \ldots X_{n} \Delta X_{n}^{\prime}+\sigma_{n n} \Omega_{n n}
\end{array}\right] .
$$

[^1]The objectite in 10 anatic the parameter vetor $\theta=\left(\bar{\beta}^{\prime}\right.$. $\left.\boldsymbol{\omega}^{\prime}\right)$ where $\boldsymbol{\omega}$ is a $\left[n^{2}+K^{2}+n\right] \times 1$ wector containing all the elements of $\sigma_{i f}, \Delta$ and $p_{2}(i=$ $1,2, \ldots$, arraned in ani uder.

Model (1) contains a sample space Y of elements \mathbf{y}. The distribution of y over Y can be taken as known to belong to a continuonsly paranicterized family of distributions with probability derisity function (pdf). $p(y \mid X .0)$, the parameter vector 0 ranging over a well-defined parameter space $\Theta=\left\{\theta:-x<\bar{\beta}_{k}<x\right.$. $0<\delta_{k k}<\alpha$ for $k=1,2, \ldots K: \delta_{k k^{\prime}}^{2}<\delta_{k k^{\prime}} \delta_{k k^{\prime}} \cdot \delta_{k k^{\prime}}=\delta_{k^{\prime} k}$ for $k \neq k^{\prime}=1.2 \ldots \ldots K$: $\sigma_{i j}^{2}<\sigma_{i i} \sigma_{j j} \sigma_{i j}=\sigma_{j i}$ for $i \neq j=1.2 \ldots, n: 0<\sigma_{i i}<x, 0 \leq\left|p_{i}\right|<1$ for $i=$ $1,2 \ldots, n_{l}^{\prime}$. We assume that the unk nown true value of θ belongs to Θ.

2.2. Criteria of Estimation

Suppose that the seriousness of sampiing errors. $\hat{\boldsymbol{\beta}}-\overline{\boldsymbol{\beta}}$. is indicated by the loss matrix $(\hat{\bar{\beta}}-\bar{\beta})(\hat{\bar{\beta}}-\overline{\boldsymbol{\beta}})^{\prime}$ and we wish to find an estimator $\hat{\boldsymbol{\beta}}$ for which

$$
\begin{equation*}
1 E(\hat{\beta}-\bar{\beta}) \mid \bar{\beta}--\bar{\beta}) 1 \tag{4}
\end{equation*}
$$

is minimum for cery $\bar{\beta} \in \Theta$ and every arbitrary wetor $\mathbf{1} \neq \mathbf{0}$.
We assume that the loss matrix which expresses the demerit of the estimatic $\hat{\boldsymbol{\theta}}$ of θ is separable in its components $\boldsymbol{\beta}$ and $\boldsymbol{\omega}$. We do not specify the loss function involving $\boldsymbol{\omega}$. It is worth noting that in the problem of estimating es a quadratic loss function does not seem to be appropriate. see Ferguson (1967. p. 179). For each fixed θ, the expected value of $(\hat{\bar{\beta}}-\overline{\boldsymbol{\beta}})(\overline{\bar{\beta}}-\overline{\boldsymbol{\beta}})$ relative to the disiribution of y determined by θ is called the risk matrix or the matrix of second order moments of $\hat{\beta}$ around $\overline{\boldsymbol{\beta}}$. $E\left(\overline{\bar{\beta}}_{k}-\bar{\beta}_{k}\right)^{2}$ is called the mean square error of $\overline{\bar{\beta}}_{k}$

A moment's reflection wiil reveal that it is not possible to find an estimator $\hat{\tilde{\beta}}$ which minimizes (4) for every $\overline{\boldsymbol{\beta}} \in \Theta$ and every $\mathbf{I} \neq \mathbf{0}$. see Silvey (1970. p. 24). For example, if we take $\hat{\bar{\beta}}=\mathbf{a}($ a vector oi constants) for all \mathbf{y}, this estimator will have zero risk when $\overline{\boldsymbol{\beta}}=\mathbf{a}$ and thus to have a better estimator in the sense of (4), an estimator $\hat{\beta}$ must have zero risk for every $\bar{\beta}$. This is obviously not possible. So we must modify our criterion of estimation.

As is well-known, if we restriet ourselves to a chass of linear unbiased estimators of $\bar{\beta}$, we can find an estimator which minimizes the risk in (4) for every $\bar{\beta} \in \Theta$ and every $\mathbf{1} \neq \mathbf{0}$. Such an estimator is the minimimm variance linear unbiased (MVLU) estimator

$$
\begin{equation*}
\overline{\mathrm{b}}(\boldsymbol{\omega})=\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X^{\prime} \Sigma^{-1} y . \tag{5}
\end{equation*}
$$

In the practical situation in which ω is unk nown an estimate $\hat{\boldsymbol{\theta}}$ of ω dereloped by Swamy (1972) can be used in place of the known value used in (5). We can offer an asymptotic justification for this procedure.

It has been emplasized by many statisticians that there is an element of arbitrariness in the criterion of MVLU particularly with regard to unbiasedness. Consequently, in what follows we modify the criterion of MVLU.

2.3. Stein-like Estimator:

Following one approach of Zellner and Vandaele (1971), we consider the problem of estimating $\overline{\boldsymbol{\beta}}$ when the ioss function is quadratic. Specifically. let the

 that among all estimators of the form (b̈̈($\boldsymbol{\sigma}$). where e is a satar tying between 0 and 1 , the estimator
hats the smallest risk. That is. $E[\bar{\hbar}(\boldsymbol{\omega})-\bar{\beta}]^{\prime} Q[\bar{b}(\boldsymbol{\omega})-\overline{\boldsymbol{\beta}}]$ takes the smallest value for evciy $\bar{\beta} \in \Theta$ when $c=c^{*}$. Also.

$$
\text { (?) } E\left[\left[c^{*} \bar{b}(\omega) \cdots \bar{\beta}\right] Q\left[c^{*} \dot{b}(\omega)-\boldsymbol{\beta}\right] \leq E[\bar{b}(\omega)-\bar{\beta}] Q[\bar{b}(\omega)-\bar{\beta}] \forall \bar{\beta} \in \Theta .\right.
$$

Since $c^{*} \bar{b}(\boldsymbol{\omega})$ involves parametcrs with unk nown values. it camuot be com puted. Therefore as in Zilluct and Vandact (1971)we may approximalce $c^{*} \mathrm{~b}(\omega)$ by

$$
\hat{c}^{*} \overline{\mathbf{b}}(\hat{\omega}) \equiv\left[\begin{array}{cc}
1 & \boldsymbol{\omega}\left(X^{\prime} \hat{\Sigma}^{1} \cdot\right)^{1} Q \tag{8}\\
\overline{\mathbf{b}}(\hat{\omega}) Q \overline{\mathbf{b}}(\hat{\omega})
\end{array}\right]_{\overline{\mathrm{b}}(\hat{\omega})}
$$

where $\hat{\Sigma}$ and $\bar{b}(\hat{\omega})$ arc as shown in Swamy (1972).
The estimator $\hat{c} * \vec{b}(\hat{\omega})$ is in the form of an estimator devcloped by Stein for the meatn vector of a K-dimensional normal population. see Zelluer and Vandaele (1971).

Following Mchatand Srinivasall (1971) we may approsimate c^{*} by an exponential function with two adinstable parameters and write
where $0<\sigma_{1}<$! and $\because:>0$.
Notice that the fictor \hat{c}^{*} multipl; ing $\bar{b}(\hat{\omega})$ in (8) can take on negative values with positive probability. Baranchik's anallysis of simpler situations (sce Stein. 1966) ndicates that the istimator in (\$) can be improved upon by restricting \hat{c}^{*} to be nonnegative. The factor $f(;)$ multiplying $\bar{b}(\hat{0})$ in (9) can be made positive by
 and Srinivasan. 1971 hat shown that by fledicions choice of \ddot{i}_{1} and $; i_{2}$ one can make the risk associated with $\hat{f}(;) \bar{b}(\hat{\boldsymbol{\omega}})$ smatler thatn that associated with $\overline{\mathbf{b}}(\hat{\boldsymbol{\omega}})$ or with $\hat{c}^{*} \vec{b}(\hat{\omega})$ for a range of values of $\tilde{\beta}$ around $\mathbf{0}$. Since the cstimators in (8) and (9) provide only approximations to the optimal linear cstimator $c^{*} \vec{b}(\omega)$. ncither of them is an estimator which has minimum average risk within the class of lincar or nonlinear estimators of $\overline{\boldsymbol{\beta}}$, see Strawderman and Cohen (1971). Consequently, there arc other ways of obtaining linear or montinear estimators which have smaller risks than $\hat{c}^{*} \vec{b}(\hat{\omega})$ and $\hat{f}(i) \bar{b}(\hat{\omega})$ (sec Section 4 below).

The cstimator in (8) takes $\overline{\mathrm{B}}(\hat{0})$ and pults al towards a cintral value 0 or past 0 if
 factor towads 0 . the extreme values experience most shift. The cstimators in (8) and (9) may do very poorly in estimating those ctements of $\overline{\bar{\beta}}$ with umbsuatly large

[^2]or small values. Uness the true values of all the elements of β lie elosely in ahmest the sarne interval around 0, the estimators in (8) and (9) may not yied good estimates of all the elements of $\bar{\beta}$. It may happen that for some values of $\bar{\beta}$ the total risk assoeiated with (8) is smaller than that associated with $\bar{b}(\hat{o})$ but the risk associated with an element of (8) is larger than that associated with the eorresponding eleneent of $\bar{b}(\hat{\omega})$. To put it differently, the estimator $\hat{c}^{*} \bar{b}(\hat{\omega})$ may have yood ensemble properties but not good componcint properties. This is also trac of $f(\vec{j}) \boldsymbol{h}(\hat{0})$.

Toguard against this bad property of Stein-like estimators, Efron and Morris (1972) develop a "limited translation estimator" which is a compromise between Stein's estimator and the maximmon likelihood estimator (ML.E). The compromise consists offollowing the Stein rule as closely as possible subjee to a fixed constraint on how far the estimator is allowed to deviate from MLE. This procedure is sensible if the probatiity that an ML estimator of $\bar{\beta}$ will be far renoved from the trie value of $\bar{\beta}$ is small. Indeed, this probability is large if $X^{\prime} \Sigma^{1} X$ is elose to singularity.

The average value of the squared distance from $\bar{b}(1)$ to β is given by

$$
E[\overline{\mathbf{b}}(\omega)-\overline{\boldsymbol{\beta}}]\left[\overline{\mathbf{b}}(\omega)-\overline{\boldsymbol{B}}=\operatorname{tr}\left(X \Sigma X^{\prime}\right)=\sum_{i}^{K} i_{i}{ }^{\prime}\right.
$$

where i_{i} is a latent root of $X \sum$ ' X. Consequently, if the set of independent variables is such that reasonable data collection results in an $X \cdot \Sigma$. ' X with one or more latent roots close to 0 . then the average distance from $\bar{b}(\omega)$ to $\bar{\beta}$ will be large. In this case the Efron-Morris procedure of pulling an estimate of $\bar{\beta}$ towards $\overline{\mathrm{b}}(\omega)$ anomuts to pulting an estimate away iron $\bar{\beta}$, whith is not desitable. If the least squares estimates $\overline{\mathbf{b}}(\boldsymbol{\omega})$ lie far away from the true value of $\overline{\boldsymbol{B}}$ as al result of high multicollinearity, then so will be the estimates given by $\hat{f}(;) \boldsymbol{j})\left(\hat{\omega}(\hat{\omega})\right.$ and $\hat{c}^{*} \overline{\mathrm{~b}}(\hat{\omega})$. Typically, $X^{\prime} X$ will not be close to a diagonal matrix in applications of econonic relevance. In the next section we disenss proeedures which are specifically designed to minimize the bad effects of significant departures of $X X$ from I. In order to guarantee good component properties we say that $\hat{\tilde{\beta}}$ is "uniformly" better than $\bar{\beta}^{*}$ if

$$
\begin{equation*}
1 E(\overline{\bar{\beta}}-\bar{\beta})(\tilde{\beta}-\tilde{\beta}) 1 \leq 1 E\left(\bar{\beta}^{*}-\bar{\beta}\right)\left(\beta^{*}-\bar{\beta} 1\right. \tag{11}
\end{equation*}
$$

for every $1 \neq 0$ and every $\bar{\beta} \in \Theta$, with sitet inequality for some $\bar{\beta}$. In this way we avoid the specification of Q. An estimator. $\tilde{\beta}^{*}$, is "inadmissible" if there exists another estimator of $\bar{\beta}$ which completely dominates $\bar{\beta}^{*}$ in the sense of (11); otherwise it is "admissible". Notice that $\overline{\bar{\beta}}$ is uniformly better than $\bar{\beta}^{*}$ in the sense of
 semi-definite matrix for every $\boldsymbol{\theta} \in \Theta$.

3. Suggested Procedire of Estmalien in Cash of Partial. Prior information

3.1. Ridge Regression

For the model in the present paper. iet $\bar{\beta}$ becenstrained to be ill a hypersphere of radius r. Let the estimation eriterion be the minimum residual sum of squares $(y-X \bar{\beta}) \Sigma^{-1}(y-X \bar{\beta})$ subject to the condition $\bar{\beta} \bar{\beta}=r^{2}<x$. The value of $\bar{\beta}$ that
minimizes the function

$$
\begin{array}{ll}
(12) & (y-X \bar{\beta}) \Sigma^{1}(y-X \bar{\beta})+\mu\left(\bar{\beta} \beta-r^{2}\right) \\
\text { is } & \overline{\mathbf{b}}_{\mu}(\boldsymbol{\alpha})=\left(X^{\prime} \Sigma^{1} X+\mu\right)^{\prime} X^{\prime} \Sigma^{1} y \\
\text { (13) } &
\end{array}
$$

This is the ridge estimator developed by Hoerl and Kennard (1970a).
Unlike the Stein procedure. the above procedure takes into accomt the restrictions on the ranges of $\bar{\beta}$. The estimation procedure based on the matrix $\left(X^{\prime} \Sigma^{1} X+\mu\right)$ with $\mu>0$ rather than $X^{\prime} \Sigma^{-1} \lambda$ can be used to circumvent many of the difficulties associated with the multicollinearity problent. and it can be used to obtain a point estimate of $\bar{\beta}$. which is on the average ctoser to $\bar{\beta}$ than is $\bar{b}(\omega)$. The a verage value of the squared distance from $\bar{b}_{u}(\omega)$ to $\bar{\beta}$ is

$$
\begin{aligned}
& \text { (14) } E\left[\bar{b}_{\mu}(\omega)-\overline{\boldsymbol{b}}\right]^{\prime}\left[\bar{b}_{\mu}(\omega)-\overline{\boldsymbol{\beta}}\right]=\operatorname{rr}\left[I+\mu\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right]^{-1}\left(\Sigma^{-1} \Sigma^{-1} X\right)^{1} \\
& \left.\cdot \mu N \Sigma^{1} X^{-1}+I\right]^{1}+\mu^{2} \beta^{\prime}\left(X^{\prime} \Sigma^{1} X+\mu I\right)^{-2} \beta \\
& \left.=\sum_{i}^{K} i_{i}\left(i_{i}+\mu\right)^{2}+\mu^{2} \bar{\beta} X^{-\prime} \Sigma^{-1} X+\mu\right)^{-2} \bar{\beta} .
\end{aligned}
$$

This can be compared with (l0). If a i is close to zero. (14) will be substantially smaller than (10) depending on the value of μ. That is. when $X^{-1} \Sigma^{1} X$ is illconditioned. the estimates of $\bar{\beta}$ based on $\overline{\mathbf{b}}(\hat{\omega})$ (but not on $\left.\bar{b}_{u}(\hat{\omega})\right)$ have a high probability of being far removed from $\overline{\boldsymbol{\beta}}$. Hoerl and Kennard show that there exists a range of values of μ for which the average distance from $\bar{b}_{\mu}(\omega)$ to $\bar{\beta}$ is smatler than that from $\bar{b}(\sigma)$ to $\bar{\beta}$.

The relationship of a ridge estimator to the Aitken estimator $\bar{b}(\omega)$ is given by the altemative form

$$
\begin{equation*}
\overline{\mathrm{b}}_{: i}(\omega)=\left[I+\mu\left(X \Sigma^{-1} X\right)^{-1}\right]^{-1} \bar{b}(\omega) . \tag{15}
\end{equation*}
$$

We may rewrite (1) in as

$$
\begin{equation*}
\overline{\mathbf{E}}_{u}(\omega)=\left(\lambda^{\prime} \Sigma^{1} X+\mu\right)^{-1} \lambda^{-1} \Sigma^{-1} X \bar{b}(\omega) \tag{16}
\end{equation*}
$$

The estimator $\bar{b}_{u}(\omega)$ will be recognized as a "matrix weighted average" of the vectors $\bar{b}(\omega)$ and 0 . Like $e^{*} \bar{b}(\omega)$. it also shrinks the estimated value of $\bar{\beta}$ a fixed percentage away from $\overline{\mathbf{b}}(\boldsymbol{\omega})$ towards $\mathbf{0}$. But the shrinkage factor is not the sante for all the elements of $\bar{b}(\omega)$. Thus. the ridge regression techmique. by utilizing the restriction on the range of $\bar{\beta}$. keads to an estimator which does not suffer from the limitations of $e^{*} \bar{b}(\omega)$. The estmator in (15) is insensitive to multicollinearity. On the other hand. When $X^{\prime} \Sigma^{-1} X=I$. the matrix factor maltiplying $\bar{b}(\omega)$ in (16) reduces to a scatar times identity matrix. In this case by appropriately defining μ We can equate $\tilde{b}_{\mu}(\boldsymbol{\omega})$ to $\iota^{*} \overline{\mathbf{b}}(\boldsymbol{\omega})$.

The second order moment matrix of $\bar{b}_{\mu}(\omega)$ around $\bar{\beta}$ is

$$
\begin{aligned}
& {\left[!+\mu X^{1} \Sigma^{i}\right)^{1}+\mu^{2}\left(X^{-1} X+\mu\right)^{-1} \bar{\beta}\left(X^{1} \Sigma^{1} X+\mu\right)^{-1} .}
\end{aligned}
$$

The first term on the r.h.s. of 117) is the 1 (matrix of $\bar{b}_{4}(\omega)$ and the second term is the matrix of squares and cross products of the biases of the elements of $\bar{b}_{t i}(\boldsymbol{\omega})$.

As is well-known. $\left(X^{\prime} \Sigma{ }^{1} X\right)^{\prime}$ is the $l^{\prime}($ matrix of $\overline{\mathrm{b}}(\omega)$. The matrix $\left.\left.\left(X^{\prime} \Sigma^{1} X\right)^{-1}-\left[I+\mu X \Sigma^{1} X\right)^{1}\right]{ }^{2}\left(X^{\prime} \Sigma{ }^{1} X\right)^{\prime 1}\left[I+\mu X^{\prime} \Sigma{ }^{1} X\right)^{1}\right]^{-1}$ is nonnegative definite so that for some values of μ and $\bar{\beta}$ in a neighborhood of 0 there is a possibility of $E\left[\overline{\bar{b}}(\boldsymbol{\omega})-\bar{\beta} \mid\left[\bar{b}(\boldsymbol{\omega})-\overline{\boldsymbol{\beta}} j^{\prime}-\boldsymbol{L}\left[\bar{b}_{\mu}(\boldsymbol{\omega})-\overline{\boldsymbol{\beta}}\right]\left[\mathbf{b}_{\mu}(\boldsymbol{\omega})-\boldsymbol{\beta}\right]\right.\right.$ being positive semi-definite However, the mean syiare crror of an element of $\overline{\mathbf{b}}_{\boldsymbol{r}}(\boldsymbol{\omega})$ maty not be substantially smaller than that of the corresponding clement of $\bar{b}(\omega)$. if the true value of $\bar{\beta}$ is not sufficiently close to 0 .

An approximate ridge regression cstimator is
(18)

$$
\overline{\mathrm{D}}_{j}(\hat{\mathbf{O}})=\left(X \hat{\Sigma}^{-1} X+\mu i\right)^{-1} X^{\hat{\Sigma}} \cdot:
$$

In Hoerl and Kenard (1971b) some recommendations for choosing a $\mu>0$ are given.

3.2. Minimum Conditional Mean Suture Frror Estimator of B

Recall that the second order moment matrix of a lincar estimator $A y+a$ around $\bar{\beta}$ is
(19)

$$
A \Sigma A+[(A X-I) \bar{\beta}+\mathbf{a}][1 A X-I \bar{\beta}+\mathbf{a}]
$$

The quantity in (19) cannot be minimized unless it is bounded. see Barmard (1963). Since the range of θ is bounded. the clements of (19) are bounded. Let $\bar{\beta}^{*}$ be a guessed value of $\bar{\beta}$. Using $\bar{\beta}^{*}$ in piace of $\bar{\beta}$. we obtain

$$
\begin{equation*}
A \sum A^{\prime}+\left[(A X-l) \bar{\beta}^{*}+\mathbf{a}\right]\left[(A X-l) \beta^{*}+\mathbf{a}\right] . \tag{20}
\end{equation*}
$$

If (20) is chosen as a critcrion of estimation. the optimum choice of \mathbf{a} is $\mathbf{0}$ and that of A is (see Rao. 1971, p. 389)

$$
\begin{equation*}
A^{*}=\bar{\beta}^{*} \bar{\beta}^{*} X^{\prime}\left(X \bar{\beta}^{*} \bar{\beta}^{*} Y^{*}+\Sigma\right)^{-1} \tag{2I}
\end{equation*}
$$

Consequently, the optimal estimator of $\bar{\beta}$. given $\bar{\beta}^{*}$. is

$$
\begin{equation*}
\overline{\mathbf{b}}^{*}(\omega)=\overline{\boldsymbol{\beta}}^{*} \overline{\boldsymbol{\beta}}{ }^{*} X^{\prime}\left(X \bar{\beta}^{*} \bar{\beta}^{*} X^{\prime}+\Sigma\right)^{-1} \mathrm{y} \tag{22}
\end{equation*}
$$

(Henceforth we shall refer to $\overline{\mathbf{b}}^{*}(\boldsymbol{\omega})$ as the minimum conditional mean square crror (MCMSE) estimator of $\bar{\beta}$. The result in (22) is gien as an excreise in Theil (1971. p. 125, Problem 4.3).] Notice that the extimator $\bar{b}^{*}(\omega)$ exists cven when the rank of X is less than K. In cases where the rank of X is K. we can write

$$
\begin{align*}
& \left(X \bar{\beta}^{*} \bar{\beta}{ }^{*} X+\Sigma\right)^{-1}=\Sigma^{-1}-\Sigma^{-1} X\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X \Sigma \Sigma^{1} \tag{23}\\
& \quad+\Sigma^{-1} X\left(X^{-1} \Sigma^{-1} X\right)^{-1}\left[\bar{\beta} * \bar{\beta}^{*}+\left(X^{\prime} \Sigma^{\prime} X\right)^{-1}\right]^{1} \\
& \quad \times\left(X^{\prime} \Sigma^{-1} X\right)^{-1} X \Sigma^{-1} .
\end{align*}
$$

see Rao (1965. p. 29. Problem 2.9).
Inserting this back into (22) gives

$$
\begin{equation*}
\overline{\mathbf{b}}^{*}(\omega)=\tilde{\boldsymbol{\beta}}^{*} \bar{\beta}^{*}\left[\tilde{\beta} \bar{\beta}^{*} \bar{\beta}^{*}+\boldsymbol{i} \boldsymbol{X}^{\prime} \Sigma^{\prime} X\right)^{1} j^{-1} \overline{\mathrm{~b}}(\omega) . \tag{24}
\end{equation*}
$$

In the practical situation in which Σ is unknown, the estimator $\overline{\mathbf{b}}^{*}(\boldsymbol{\omega})$ can be approximated by

$$
\begin{align*}
& \overline{\mathbf{b}}^{*}(\hat{\omega})=\overline{\boldsymbol{\beta}}^{*} \bar{\beta}^{*} X^{\prime}\left(X^{\prime} \overline{\boldsymbol{\beta}}^{*} \bar{\beta}^{*} X^{\prime}+\hat{\Sigma}\right)^{-1} y \tag{25}
\end{align*}
$$

where $\dot{\Sigma}$ is as defined in (8).

In the Appendix to the paper, it will be shown that a sulficient condition for $\left(X^{\prime} \Sigma^{-1} X\right)^{-1}-E\left\{\left[\bar{b}^{*}(\boldsymbol{\omega})-\bar{\beta}\right]\left[\bar{b}^{*}(\boldsymbol{\omega})-\bar{\beta}_{j}^{\prime} / \bar{\beta}^{*} ;\right.\right.$ to be positive definite is

$$
\begin{equation*}
\sup _{k} \bar{\beta} p_{k} p_{k}^{\prime} \bar{\beta}<1 \tag{26}
\end{equation*}
$$

where P_{k} is the k th column of $P . P$ is a nonsingular matrix stach that $P^{\prime}\left(X^{\prime} \Sigma^{-1} X\right)^{-1} P=I, P^{\prime} \overline{\boldsymbol{\beta}}^{*} \boldsymbol{\beta}^{*} P=\lambda_{1}^{*} \mathbf{i}_{1} \mathbf{i}_{1}^{\prime}$, and \mathbf{i}_{1} is the first column of an identity matrix of order K.

It is clear from (A.4) in the Appendix that the conditional variance of an element of $\bar{b}^{*}(\omega)$, given $\bar{\beta}^{*}$, is substantially smaller than the variance of the corresponding element of the Aitken estimator $\bar{b}(\omega)$ for every $\boldsymbol{\theta}$. But. for some values of θ, due to high magnitude of bias the conditional mean square error of an element of $\bar{b}^{*}(\omega)$, given $\bar{\beta}^{*}$. exceeds the variance of the corresponding element of $\overline{\mathrm{B}}(\omega)$. Condition (26) indicates the values of θ for which $\bar{b}^{*}(\omega)$ based on given $\bar{\beta}^{*}$ is better than $\bar{b}(\omega)$. Consequently, the approximate MCMSE estimator $\bar{b}^{*}(\hat{\omega})$ cannot completely dominate the approximate MVLU estimator $\overline{\mathbf{b}}(\hat{1})$ in the sense of (11). When $K=1$. condition (26) is satisfied if the square of the coeflicient of variation of the MVLU estimator $\overline{\mathbf{b}}(\omega)$ is greater than one. In ihe general catsc condition (26) is likely to be satistied if $X^{\prime} \Sigma^{-}{ }^{1} X$ is close to singularity. Under these conditions. one can improve upon the MVLU estimat or by relaxing the unbiasedness condition as in (20).

We now compare the moment matrices of $\bar{b}_{\mu}(\omega)$ and $\overline{\mathbf{b}}^{*}(\omega)$. It is seen from (A.4) and (A.6) in the Appendix that since the rank of $\bar{\beta}^{*} \bar{B}^{*}{ }^{*}$ is unity. the conditional variance of an element of $\bar{b}^{*}(\omega)$ is substantially smaller than the variance of the corresponding element of $\bar{b}_{\mu}(\boldsymbol{\omega})$. However, for any reasonable vahes of μ and $\overline{\boldsymbol{\beta}}^{*}$. the magnitude of bias of an element of $\overline{\mathrm{b}}^{\star}(\omega)$ is likeiy to be larger than that of bias of the corresponding element of $\overline{\mathbf{b}}_{\mu}(\boldsymbol{\omega})$. For certain values of parameters. $\overline{\mathbf{b}}^{*}(\hat{\boldsymbol{\omega}})$ is better than $\overline{\mathbf{b}}_{\mu}(\hat{\boldsymbol{\omega}})$.

Next, we note that, if a prior estimate of $\overline{\boldsymbol{\beta}}$ is not available. We may consider the following estimator :

$$
\overline{\overline{\mathbf{b}}}(\hat{\omega})=\overline{\mathbf{b}}_{\mu}(\hat{\boldsymbol{\omega}}) \overline{\mathbf{b}}^{\prime}(\hat{\omega}) X^{\prime}\left[X \overline{\mathbf{b}}(\hat{\omega}) \overline{\mathbf{b}}(\hat{\omega}) X^{\prime}+\hat{\Sigma}\right]^{-1} \mathbf{y}
$$

When there is near-extreme multicollinearity, a precise estimation of $\bar{\beta}$ is not possible, but a relatively precise estimation of $X \bar{\beta}$ and Σ is possible. see Rao(1965. pp. 184-5) and Theil (1971, pp. 153-4). The estimator $\overline{\hat{\boldsymbol{\beta}}}(\hat{\boldsymbol{\omega}})$ is based on the precise estimates of $\bar{\beta} . X \bar{\beta}$ and Σ.

The estimator $\overline{\mathbf{b}}^{*}(\omega)$ is based on a prior estimate of $\overline{\boldsymbol{\beta}}$. While the estimator $\overline{\mathbf{b}}_{i}(\omega)$ is based on a prior knowledge of the range of $\bar{\beta} \bar{\beta}$. Since the rank of $\bar{\beta}^{*} \bar{\beta}^{* \prime}$ is unity. we cannot express $\bar{b}^{*}(\omega)$ in the form of a matrix weighted average of the vectors $\overline{\mathrm{b}}(\omega)$ and 0 . However. when $K=1$. by appropriately defining μ we can equate $\overline{\mathbf{b}}_{\mu}(\omega)$ to $\overline{\mathbf{b}}^{*}(\omega)$, see Theil (1971, p. 126, Problem 4.4).

In summary, we have found that none of the estimators $\left.\bar{b}(\hat{\theta}) . \hat{c}^{*} \bar{b}(\hat{\theta}) . \bar{j}(;) \bar{b}(\hat{0})\right)$. $\bar{b}_{p}(\hat{\boldsymbol{0}})$, and $\overline{\mathbf{b}}^{*}(\hat{\omega})$ is uniformly better than the other in the sense of (11). Consequently. it is not possible to choose among them unless we know "where in the parameter space to look" for the most cfficient estimates. When we are faced with an extreme multicollinearity situation, we may use $\overline{\mathbf{b}}^{*}(\hat{\boldsymbol{\omega}})$ if a reliable prior estimate of $\overline{\boldsymbol{\beta}}$ is available and $\hat{\bar{b}}(\hat{\boldsymbol{\omega}})$ otherwise.

4. Estimating Parameters with the First Two Moments or a Prior Distribution

There are several situations in which extraneous information on some of the parameters of an equation is available. This information may arise from an analysis of past data and/or from theoretical and practical considerations: that is, from sources other than currently available sample. To incorporate such a prior information the following procedure was suggested by Durbin (1953) and developed further by Theil and Goldberger (1961) and Theil (1963).

4.1. Mixed Estimation When $\bar{\beta}$ is Regarded as Fixed

Suppose that extraneous information of the following form is a vailable.

$$
\begin{equation*}
\mathbf{r}=R \overline{\boldsymbol{\beta}}+\mathbf{v} \quad \text { with } \quad E \mathbf{v}=\mathbf{0} \quad \text { and } \quad E \mathbf{v} \mathbf{v}^{\prime}=\tau^{2} \psi . \tag{28}
\end{equation*}
$$

where r is a $q \times 1$ vector of prior estimates of $R \bar{\beta} . R$ is a $q \times K$ matrix of known constants, \mathbf{v} is a $q \times 1$ vector of errors in r and $q \leq K$. We assune that v is uncorrelated with u and ξ in (2). We now combine equations (2) and (28) and apply the Aitken theorem to obtain the following estimator for $\bar{\beta}$.

$$
\begin{equation*}
\hat{\bar{B}}_{\rho}(\omega)=\left(X^{\prime} \Sigma^{-1} X+\frac{1}{\tau^{2}} R \psi^{-1} R\right)^{-1}\left(X^{\prime} \Sigma^{-1} y+\frac{1}{\tau^{2}} R \psi^{-1} \mathbf{r}\right) . \tag{29}
\end{equation*}
$$

The estimator $\hat{\bar{p}}_{p}(\boldsymbol{\omega})$ is the MVLU estimator of $\overline{\bar{\beta}}$ where linear now means linear in \boldsymbol{y} and \mathbf{r}. Here the distinction between $\overline{\mathbf{b}}(\boldsymbol{\omega})$ as a MVLU estimator of $\overline{\bar{\beta}}$ and $\hat{\bar{\beta}}_{p}(\boldsymbol{\omega})$ as a MVLU estimator of the same $\bar{\beta}$ is to be elearly understood. The linear function of \mathbf{y}, namely $\overline{\mathbf{b}}(\boldsymbol{\omega})$, is the MVLU estimator of $\overline{\boldsymbol{\beta}}$ in the sense that any other estimator of $\bar{\beta}$ which is also linear in the vector y and unbiased has a $V-C$ matrix which exceeds that of $\overline{\mathrm{b}}(\boldsymbol{\omega})$ by a positive semidefinite matrix. On the other hand. $\hat{\bar{\beta}}_{p}(\boldsymbol{\omega})$ is the MVLU estimator of $\bar{\beta}$ in the sense that any other estimator of $\bar{\beta}$ which is linear in \mathbf{y} and \mathbf{r} and unbiased has a $V-C$ matrix which exceeds that of $\overline{\boldsymbol{\beta}}_{p}(\omega)$ by a positive semidefinite matiix. We shall refer to $\hat{\bar{\beta}}_{p}(\boldsymbol{\omega})$ as the "mixed regression" estimator. We again remind the reader that the criterion of MVLU is defective in its premises, in that the condition of unbiasedness sometimes leads to inadmissible estimates, see Ferguson (1967, pp. 135-6).

As $\tau^{2} \rightarrow 0$, the estimator $\hat{\boldsymbol{\beta}}_{r}(\boldsymbol{\omega})$ approaches the restricted estimator of $\bar{\beta}$ given by the normal equations (see Chipman, 1964, p. 1101)

$$
\left[\begin{array}{cc}
X^{\prime} \Sigma^{-1} X & R^{\prime} \tag{30}\\
R & 0
\end{array}\right]\left[\begin{array}{l}
\bar{\beta} \\
\mu
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} \Sigma^{\prime} y \\
\mathrm{r}
\end{array}\right] .
$$

Eq. (30) is obtained by minimizing

$$
\text { (31) } \quad \frac{1}{2}(\mathbf{y}-X \overline{\boldsymbol{\beta}})^{\prime} \Sigma^{-1}(\mathbf{y}-X \overline{\boldsymbol{\beta}})-\boldsymbol{\mu}^{\prime}(\mathbf{r}-R \overline{\boldsymbol{\beta}})
$$

where μ is a vector of Lagrangian multipliers. Theil and Goldberger (1961), solve eq. (30) under the assumption that the ranks of X and R are K and $¢$ respectively, while Rao and Mitra (1971, p. 147) solve the same equation withont any restrictions on the ranks of X and R.

Chipman (1964, pp. 11012) points ont an imporiant special case of (29) If ψ is known, cq. (28) can be written als

$$
\begin{align*}
\dot{\psi}:{ }^{2} \mathbf{r} & =\dot{\psi}:-R \beta+\dot{\psi} \quad 2^{2} \tag{32}\\
\mathbf{r}^{*} & =R^{*} \beta+\mathbf{v}^{*} .
\end{align*}
$$

When the rank of X is less than K and when $X^{*}=X^{1} \Sigma^{1}$ and R^{*} are "eomplementary", $X^{*}=\left(X^{-1} \Sigma^{\prime}+\left(1, T^{2}\right) R \psi^{\prime} R\right)^{\prime} X^{*}$ is a gencralized inverse of X^{*}. independently of t^{2}, as long as $0<1 \tau^{2}<x$, becallse for all such $1 \tau^{2}$. $1 \tau R^{*}$ has the same rowspace as R^{*}. Similarly, $R^{*}=\left(\mathbb{r}^{2} \lambda^{\prime} \Sigma^{\prime} X+R \not \psi^{\prime} R\right)^{\prime} R^{*}$ is a generalized inverse of R^{*}. independently of $1 \tau^{2}$, as long as $0<\tau^{2}<x$. since for all such τ^{2}. τX^{*} has the same ron space as y^{*}. Therefore the estimator $\hat{\boldsymbol{\beta}}_{p}(\omega)$ is functionally independent of $1 \tau^{2}$ as long as $0<1 \tau^{2}<x$ and R^{*} is complementary to X^{*}. In this case the estimator $\hat{\bar{\beta}}_{p},(\omega)$ can be computed even when \boldsymbol{r}^{2} is unknown.

To consider another case fet $\varphi=K$ and $R=1$. Then $\hat{\vec{\beta}}_{p}(\omega)$ becomes

$$
\begin{equation*}
\tilde{\boldsymbol{\beta}}_{p}(\omega)=\left(X^{\prime} \Sigma^{1} x+\frac{1}{\tau^{2} \psi}\right)^{1}\left(x^{2} \Sigma^{1} y+\frac{1}{\psi^{\prime}} \psi^{\prime} r\right) \tag{33}
\end{equation*}
$$

It is casily seen that $\overline{\bar{\beta}}_{p}(\omega)$ in (33) is a "matrix weighted ancrage" of $\bar{b}(\omega)$ and \mathbf{r}. with weights inversely proportional to their respective $F C$ matrices. Hence, an estimate of $\bar{\beta}$ is pulled towards r away from $\bar{b}(\omega)$. The estimator in $(.33)$ covers $\bar{b}_{\mu}(\omega)$ in (13) as a special casc. When $\mathbf{r}=0$ and $\tau^{2} \psi=(1 / \mu) I, \bar{b}_{\mu}(\omega)$ is the same as (33).

Analysis of simpler situations has shown that the estimator

$$
\begin{equation*}
\tilde{\bar{\beta}}_{r}(\hat{\omega})=\left(x^{\prime} \hat{\Sigma}^{-1} x+\frac{1}{\tau^{2}} \psi^{-1}\right)^{-1}\left(x^{\prime} \hat{\Sigma}^{\prime} y+\frac{1}{\tau^{2}} \psi^{-1} \mathbf{r}\right) . \tag{34}
\end{equation*}
$$

with known $\tau^{2} \psi$, completely doninates $\overline{\mathbf{b}}(\hat{\omega})$ in the sensc of (11), provided $E v=0$ and ξ and u are normal, see Swamy and Mehta (1969). and Mehta and Swans (1972b). In cases where $E(\boldsymbol{v}-\boldsymbol{\eta})(\boldsymbol{v}-\boldsymbol{\eta})^{\prime}=\tau^{2} \psi \cdot \eta$ is unk nown. $\tau^{2} \psi$ is known. and ξ and \mathbf{u} are normal. $\hat{\tilde{\boldsymbol{p}}}_{p}(\hat{\boldsymbol{\omega}})$ is better than $\overline{\boldsymbol{b}}(\hat{\boldsymbol{\omega}})$ if only the coefficient of variation of cach element of \mathbf{v} is sufficiently large in magnitude. sec Swamy and Mehta (1972). Thus, if we misspecify the prior moments, there is no guarantee that each diagonai efement of the second order moment matrix of $\tilde{\bar{\beta}}_{p}(\hat{\boldsymbol{\omega}})$ around $\overline{\boldsymbol{\beta}}$ will be less than or equal to the corresponding diagonal element of the second order moment matix of $\overline{\boldsymbol{B}}(\hat{\omega})$ around $\overline{\boldsymbol{\beta}}$.

The compatibility test statistic developed by Theil (1963) can be utilized to test whether prior information is in conflict with sample information. Mehta and Swamy (1972a) have derised the exact finite sample distribution of Theils compatibility test statistic. They have also considered the consequences for estimation, in terms of mean square error. of making preliminary tests. The cfficiency of preliminary testing procedures has been examined by comparison of the risk functions of preliminary test estimators with that of pure regression estimator. $\overline{\mathrm{b}}(\omega)$, which is an Aitken estimator when no prior information is used. The preliminary test estimator dominated the pure regression estimator over certain regions of the parameter space.
${ }^{+}$The matrices X^{*} and R^{*} are complementary it $\left.!1\right)$ rank $\left(A^{*}\right)+\operatorname{rank}\left(R^{*} \mid=K . I_{2}\right) X^{*}$ and R^{*} have the same numberofeolumns. and bit the row apace of l^{*} and R^{*} have only the origin in commen

Returning again to the case where $E v=\mathbf{0}$ and $E v^{\prime}=\tau^{2} \psi$, it can be seen that the matrix

$$
\begin{aligned}
&\left(X^{\prime} \Sigma^{-1} X\right.\left.+\frac{1}{\tau^{2}} \psi^{-1}\right)^{-1}-\beta^{*} \bar{\beta}^{*}\left[\beta^{*} \beta^{*^{\prime}}+\left(X^{\prime} \Sigma{ }^{1} X\right)^{-1}\right]^{-1}\left(X^{\prime} \Sigma^{-1} X\right)^{-1} \\
& \times\left[\overline{\beta^{*}} \bar{\beta}^{\prime \prime}+\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right]^{-1} \bar{\beta}^{*} \overline{\beta^{*}}-\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\left[\overline{\beta^{*}} \overline{\bar{\beta}^{*}}\right. \\
&\left.+\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right]^{-1} \bar{\beta} \bar{\beta}^{\prime}\left[\bar{\beta}^{*} \bar{\beta}^{* \prime}+\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right]^{-1}\left(X^{\prime} \Sigma^{-1} X\right)^{-1}
\end{aligned}
$$

is positive definite only for certain values of $\boldsymbol{\theta}, \overline{\boldsymbol{\beta}}^{*}$ and $\tau^{2} \psi$. Consequently, the estimator $\overline{\mathrm{b}}^{*}(\hat{\boldsymbol{\omega}})$ in (25) will not be uniformly better than $\hat{\bar{\beta}}_{p}(\hat{\boldsymbol{\omega}})$ in (34) even when the first two moments of r are exactly known.

A particular case which can be solved exactly, and for which there is a complete and simpler treatment is the following. Let $K=1$, and $\bar{\beta}^{* 2}=\left|r^{2}-\tau^{2} \psi\right|$. Notice that $E r^{2}=\beta^{2}+\tau^{2} \psi$. We can use standard analytical and numerical methods (Mehta and Swamy, 1972a) to evaluate the unconditional mean square error of $\bar{b}^{*}(\omega)$ with respect to the distributions of $\bar{\beta}^{* 2}$ and \mathbf{y}. If the square of the coefficient of variation of $r,\left(\tau^{2} \psi / \beta^{2}\right)$, is greater than one and the square of the coeffient of variation of the MVLU estimator $b(\omega)$ is greater than or equal to one, then $b^{*}(\omega)$ is better than $\overline{\bar{B}}_{n}(\omega)$.

Formalae (25) and (34) provide two different ways of combining prior information with sample information. Neither one of them is better than the other regardless of the true values of parameters. It should be emphasized that the estimator $\overline{\boldsymbol{b}}^{*}(\hat{\omega})$ should not be used unless $\overline{\boldsymbol{\beta}} \overline{\boldsymbol{\beta}}^{* \prime}$ is a reliable estinnate of $\overline{\boldsymbol{\beta}} \overline{\boldsymbol{\beta}}^{\prime}$. If the prior poimt estimates of the elements of $\overline{\boldsymbol{\beta}}$ are not reliable, then it is better to express the uncertainties associated with these estimates in the form of a distribution with mean $\bar{\beta}$ and $V-C$ matrix $\tau^{2} \psi$ and use the estimator $\hat{\overline{\boldsymbol{\beta}}}_{p}(\hat{\boldsymbol{\omega}})$. That the prior information be unbiased is a severe restriction on the nature of such information, see Zellner (1970, p. 189). This restriction will be eliminated in the next subsection.

4.2. Bayesian Estimation When $\overline{\boldsymbol{\beta}}$ is Regarded As a Ranaom Variable

We now make the following "wide-sense" assumption.
Assumption 2: A probability distribution on a class of measurable sets in Θ exists. The variable $\bar{\beta}$ is judged a priori to be distributed independently of ω whose distribution is a point distribution with the whole mass of the distribution concentrated at one point. Furthermore, $E \bar{\beta}=\mathrm{r}$ and $E(\overline{\boldsymbol{\beta}}-\mathrm{r})(\overline{\boldsymbol{\beta}}-\mathrm{r})^{\prime}=\tau^{2} \psi$ which is positive definite.

Even if a purely pragmatic attitude is adopted it does seem to be true that for at least some inference problems, an approach which assumes the existence of a prior distribution of $\boldsymbol{\theta}$ is more appropriate than one which does not. However, it is very restrictive to assume that the distribution of ω is a point distribution. If this assumption is relaxed, the analysis gets very complicated, see Lindley and Smith (1972).

Assuming that $\boldsymbol{\theta}$ is a random variable. Zellner and Vandaele (1971) discuss the Bayesian interpretations (attributable to Lindley and others) of the Stein-like estimator $c^{*} \bar{b}(\omega)$. When $X^{\prime} X=I, Q=I, \Sigma=\sigma^{2} I$, and the prior distribution of $\bar{\beta}$ has mean 0 and scalar $V-C$ matrix. one can generate a Bayes estimator of the form
$c^{*} \overline{\mathrm{~b}}(\omega)$. Notice that when \mathbf{r} is regarded as a fixed parameter. $\overline{\overline{\boldsymbol{\beta}}}_{p}(\boldsymbol{\omega})$ is still a linear function of y but becomes a biased estimator of $\bar{\beta}$. It is interesting to note that if $\bar{\beta}$ is considered to be a random variable with mean equal to fixed \mathbf{r} and fixed $V C$ matrix $\tau^{\dot{ }} \psi$, then $\bar{\beta}_{d}(\omega)$ in (33) is the "best linear" predictor of $\bar{\beta}$ in the sense that any other predictor of $\bar{\beta}$ which is also linear in the vector y has an a averaged second order moment natrix around $\bar{\beta}$ which exceeds that of $\overline{\bar{\beta}}_{p}(\omega)$ by a positive semidefinite matrix. In other words. if r and $\tau^{2} \psi$ are the mean and $V C$ matrix of $\bar{\beta}$, then $\hat{\beta}_{p}(\omega)$ completely donisates every other linear in y estimator (predictor) of $\bar{\beta}$ in the sense of (11). ${ }^{5}$ Proof of this important result is given in Chipman (1964, p. 1105) and Rao ! 1965, p. 192). If $\mathbf{r} \neq \mathbf{0}, \psi \neq 1$ and Assumption 2 is true, the formulac $c^{*} \overline{\mathrm{~b}}(\boldsymbol{\omega})$ and $\overline{\mathbf{b}}_{\mu}(\boldsymbol{\omega})$ are inalppropriate. When $\overline{\boldsymbol{\beta}}$ is random. the procedure outlined in subsection 3.2 is also inappropriate because, under Assumption 2, (19) is not the second order moment matrix of $A \bar{y}+\mathrm{a}$ around $\overline{\boldsymbol{\beta}}$, see Chipman (1964, p. 1104). Notice that the estimators $\overline{\boldsymbol{b}}(\omega) \cdot c^{*} \dot{\bar{b}}(\omega)$. $\overline{\boldsymbol{b}}_{\mu}(\omega)$ and $\overline{\boldsymbol{b}}^{*}(\omega)$ for given $\overline{\boldsymbol{\beta}}^{*}$. are all linear functions of y. Hence, it follows from the Chipman Rato theorem that they are inferior to the best linear estimator $\overline{\bar{B}}_{p}(\omega)$ if Assumption 2 is true. Thus, the biased estimators generated through the Chipman Rao procedure are better than those generated through the procedure outtined in subsection 3.2.

We called $\hat{\bar{p}}_{p}(\boldsymbol{\omega})$ the best linear estimator of $\overline{\boldsymbol{\beta}}$. The qualification linear can be dropped if the prior distribution of $\bar{\beta}$. given \mathbf{r} and $\tau^{2} \psi$. is normal and the conditional distribution of \mathbf{y}, giveti X, Σ, and $\bar{\beta}$, is also normal. This is because, under these normality assumpinous. the estimator $\hat{\bar{\beta}}_{p}(\omega)$ is the mean of the conditional posterior distribution of $\bar{\beta}$. given Σ. r. $\tau^{2} \psi$ and the data, see Zellner (1971. p. 76), and Zeliner and Vandaele (1971). The posterior meaut $\hat{\hat{\boldsymbol{\beta}}}_{f}(\boldsymbol{\omega})$ with known $\Sigma . \tau^{2} \psi$ and \mathbf{r} is admissible with respect to a quadratic loss function. see Zellner (1971, p. 24). Thus, admissible estimates can be found if the prior distribution of $\boldsymbol{\theta}$ is completely known. see Fergisison (1967).

Even though the result in (33) is intuitively appealing, it has certain weaknesses. In (13) and (33) different posterior means have been obfained by combining two different priors with the same likelihond of parameters. These priors were therefore influential iri deciding the posterior means in small samples. It is worth noting that if the Aitken estimate $\overline{\bar{b}}(\boldsymbol{\omega})$ and the prior mean r are very different, then the estimate (33) is a long way from $\bar{b}(\omega)$. In this case it may happen that either the model specification is at fault or the prior information is incompatible with sample information, see Box and Jenkins (1970, p. 251). Efron and Morris (1971) also point out that the estimator $\hat{\boldsymbol{\beta}}_{p}(\omega)$ must give bad estimates when \mathbf{r} is far from $\overline{\boldsymbol{\beta}}$. Let $N_{K}\left(\mathbf{r}, \tau^{2} \psi\right)$ represent the true prior distribution of $\bar{\beta}{ }^{6}{ }^{6}$ Suppose that this distribution is actually a mixture of various other distributions, one of which is $N_{\mathrm{K}}\left(\mathbf{r}_{1}, \tau_{1}^{2} \psi_{1}\right)$ such that $\tau^{2} \psi-\tau_{1}^{2} \psi_{1}$ is positive definite. For any fixed value of $\tau_{1}^{2} \psi_{1}$. the expected squared error risk of an element of $\hat{\hat{\beta}}_{p}(\omega)$ with respect to the prior distribution $N_{K}\left(\mathbf{r}_{1}, \tau_{1}^{2} \psi_{1}\right)$ can be made arbitrarily large by moving \mathbf{r}_{1} arbit rarily far from \mathbf{r}. That is, the estimator $\hat{\overline{\boldsymbol{\beta}}}_{p}(\boldsymbol{\omega})$ does well on the population, $N_{K}\left(\mathbf{r}, \tau^{2} \psi\right)$ as a whole, but may perform very poorly on al particular subpopulation, $N_{K}\left(\mathbf{r}_{1}: \tau_{1}^{2} \psi_{1}\right)$. The estimator $\left(X^{\prime} \Sigma^{-1} X+\left(1 / \tau_{i}^{2}\right) \psi_{1}^{-1}\right)^{-1}\left(X^{-} \Sigma^{-1} \mathbf{y}+\left(1 / \tau_{i}^{2}\right) \psi_{1}^{-1} \mathbf{r}_{1}\right)$

[^3]does well on the subpopulation $N_{\mathrm{K}}\left(\mathbf{r}_{1}, \tau_{1}^{2} \psi_{1}\right)$. If we knew that a particular $\bar{\beta}$ belonged to the subpopulation $N_{\kappa}\left(\mathbf{r}_{1}, \tau_{1}^{2} \dot{\psi}_{1}\right)$, then we could use the estimator
 on subpopulation distributions can be obtained by assessing r and $\tau^{2} \psi$ as precisely as possible. Now the relevant question is: How can we assess a prior distribution in practice?

Notice that the probability distribution on a class of measurable sets in Θ is viewed merely as a reffection of the belief of the statisticlian about where the true value of θ lies prior to an observation being made. Conditions under which such a listribution exists are given in Ferguson (1967, Section 1.4). It has been shown by savage and others that personal probabilities assessed in accordance with certain plausible behavioral postulates of "coherence" must conform mathematically to a probability measure, see Lindley (1971). Winkler (1967a,b: 1971) disensses the practical problem of the assessment of personal probabilities. An operational way of assessing a probability is through the study of relevant gambles. Methods such as scoring rules and bets are uselul in leading individuals to make careful probability assessments.

It should be emphasized. however, that in many economic sittations there remains the practical difficulty of assessing a prior distribution to refiect one's degree of belief. If the parameter space contains a finite number of points. then by sufficient introspection one can arrive at the prior odds at which one would just accept a bet on this parameter value rather than that. and so eventually find the prior distribution appropriate for a partieular problem. If Θ is continuous. as it usually is, it is not clear whether any reasonable consideration of the way in which inferences cohere leads to the existence of the prior distribution, see Lindley (1971, pp. 7-8). The difficulty of choosing a prior distribution is highlighted, when the parameter space is infinite-dimensional as in Sims (1971). Efron and Morris (1971. p. 808) argue that in the realistic situations there is seldom any one prior distribution that is "true" in an absolute sense. There are only more or less relevant priors. If a distribution with mean r and $V-C$ matrix $r^{2} \psi$ is at all in doubt, it would be well to modify the estimator $\hat{\boldsymbol{\beta}}_{p}(\boldsymbol{\omega})$.

In large samples the situation improves. With a reasonably informative experiment, the values \mathbf{r} and $\tau^{2} \psi$ adequate for describing rather imprecise knowledge can be changed quite considerably without affecting the final result all that much. This is the consequence of the fact that, under general conditions, sample information dominates prior information in fairly large samples. In fact, Lindley (1971, p. 62) has shown that if the pdf $p(y \mid X . \theta)$ satisfies certain regularity conditions (see Silvey, 1961 and Perlman, 1972), the method of maximum likelihood is shown to be a reasonably "coherent" technique in large samples. We, therefore. turn to a study of this topic.

5. Maximum Likelihood Method

In this section we assume the following:
Assumption 3: Given $\bar{X}, \overline{\boldsymbol{\beta}}$, and Σ, y is normally distributed with mean $X \bar{\beta}$ and $V-C$ matrix Σ, i.e., $y \sim N_{n T}(X \bar{\beta}, \Sigma)$.

For simplicity, we let $\sigma_{i j}=0$ if $i \neq j$ and $\rho_{i}=0$ for cuery i. Now $\boldsymbol{\theta}=(\boldsymbol{\beta}, \boldsymbol{\omega})$) where ω is a $\left(n+K^{2}\right) X$) vector. ω denotes the vector presentation of the $\sigma_{i i}$'s and all elements of Δ in which $\sigma_{11} \ldots \ldots \sigma_{n n}$ appear in order first. then the elements of the first column of A the elements of the second column and so on.

The pdf of y, given X, is

$$
\begin{align*}
p(y \mid X, \boldsymbol{\theta})= & (2 \pi)^{-n T} 2 \prod_{i=1}^{n}\left\{\sigma _ { i i } \left\{\left(T-\Lambda_{1}\left|X_{i} X_{i}\right|^{12}\left|\Delta+\sigma_{i i}\left(X_{i}^{\prime} X_{i}\right)^{\prime}\right|\right.\right.\right. \tag{35}\\
& \cdot \exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left[\frac{(T-K) S_{i i}}{\sigma_{i i}}+\left(\mathbf{b}_{i}-\overline{\boldsymbol{\beta}}\right)^{\prime}\right.\right. \\
& \left.\left.\cdot\left[\Lambda+\sigma_{i i}\left(X_{i}^{\prime} X_{i}\right)^{-1}\right]^{-1}\left(\mathbf{b}_{i}-\overline{\boldsymbol{\beta}}\right)\right]\right\}
\end{align*}
$$

where

$$
s_{i i}=y_{i}^{\prime} M_{i} y_{i}(T-K) . \quad M_{i}=I-X_{i}\left(X_{i}^{\prime} X_{i}\right)^{\prime} X_{i}
$$

and

$$
\mathbf{b}_{i}=\left(X_{i}^{\prime} X_{i}\right)^{-1} X_{i}^{\prime} \mathbf{y}_{i}
$$

see Swamy (1971, pp. 111-12).
Now, given the data $\mathbf{y}, X, p(y \mid X, \theta)$ in (35) may be regarded as a function of 0 . When so regarded, it is called the likelihood function of θ for given y and X. The likelihood function is defined up to a multiplicative constant. The likelihood expresses the relative plausibilities of different parameter values after we have observed the data y and X, see Barnard (1967). Methods of eliminating nuisance parameters from the likelihood function so that inferences can be made about the parameters of interest are considered by Kalbfleisch and Sprott (1970). In this regard "marginal" and "conditional" likelihoods are introduced. These can be computed if only the likelihood function factors into two parts, one of which contains a parameter of interest, say $\bar{\beta}_{k}$, only and the other being uninformative about $\bar{\beta}_{k}$ in the absence of knowledge of ether parameters. It is clear from (35) that the likelihood function has the form (apart from irrelevant constants)

$$
\begin{align*}
& \mathbf{1}(\boldsymbol{\theta} \mid \mathbf{y}, X) \times\left[\prod_{i=1}^{n} \sigma_{i i}^{-\frac{1}{2}(T-\kappa)}\right] \exp \left\{-\frac{1}{2} \sum_{i=1}^{n} \frac{(T-K) s_{i i}}{\sigma_{i i}}\right\} \tag{36}\\
& \cdot\left[\prod_{i=1}^{n}\left|\Delta+\sigma_{i i}\left(X_{i}^{\prime} X_{i}^{\prime}\right)^{-1}\right|^{-12}\right] \exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{b}_{i}-\overline{\boldsymbol{\beta}}\right)^{\prime}[\Delta\right. \\
& \\
& \left.\left.+\sigma_{i i}\left(X_{i}^{\prime} X_{i}\right)^{-!}\right\}^{-1}\left(\mathbf{b}_{i}-\overline{\boldsymbol{\beta}}\right)\right\}
\end{align*}
$$

Each of the first in factors on the right hand side of (36) contains one of the $\sigma_{i i}$ only. It contains no available information concerning $\overline{\boldsymbol{\beta}}$ and Δ in the absence of
knowledge of the $\sigma_{i i}$. Unfortunately. the last factor contains available information abont every element of θ. see Kalbfleisth and Sprott (1970, p. 200). However. as $T \rightarrow x$ simee $\left(X_{i} X_{i}\right)^{i} \rightarrow 0$. the last factor gives less and less information about the $\sigma_{i i}$) $\bar{\beta}$ and Δ ate the parameters of our interestand we cannot derive their marginat likelihoods from (36). It is meaniugless to integrate $l(\theta \mid y . X)$ in an attempt to obtain the uarginal likelihoods of the elenents of $\bar{\beta}$. see Box and Tiao (1973. p. 73). However a close study of the likelihood function is always desirable. In certain instances. the data will contain no information regarding certain parameters. It is important to study the likelihood function's properties to determine when this is the case. see, for example. Box and Jenk ins (1970. pp. 225-6). Silvey (1970. pp. 81-2). Swamy and Mehta (197i). and Swamy and Rao (1971). A general method for obtaining a reasonable estinate of 0 in most situations is the well-known naximum likelihood method. see Rao (1962). In this section we try to verify the conditions which ensure the consistency and asymptotic normality of an ML estimator $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$. First. we indicate a method of obtaining $\hat{\boldsymbol{\theta}}$.

An ML estimate $\hat{\boldsymbol{\theta}}$ is any element of Θ such that $p(y \mid X, \hat{\boldsymbol{\theta}})=\sup _{\mathrm{v} \in \mathrm{E}} p(y \mid X . \boldsymbol{0})$. $\hat{\boldsymbol{\theta}}$ belongs to the set which is most plausible after we have observed y and X. At this point it should be appreciated that the ML nethod always estimates the entire underlying distribution from given data. Successful estination of the entire underlying distribution is the maximum of objectives attainable by any statistical method. Since Θ is an open set. it may happen that no ML estinate of $\boldsymbol{\theta}$ exists. Hewever. a neighborhood ML estimate of θ. which is defined by Kiefer and Wolfowitz (1956. p. 892). exists in some cases where an ML estimate does not. Usually, ML estimates emerge as a solution of the likelihood equations $\partial \log 1(\theta \mid y . X) / \dot{\theta}=\mathbf{0}$ shown in Swamy (1971. p. 112). These equations are nonlinear in the unknowns and have to be solved numerically. A convenient method of solving the likelihood equations is the method of scoring described in Rao (1965. p. 302), see also Silvey (1970. 70-1). This method requires an explicit derivation of information matrix which is given by (see Swanly. 1971. p. 114)

$$
I(\theta)=\left[\begin{array}{cc}
E \hat{c}^{2} \log 1 & E \hat{c}^{2} \log 1 \tag{36}\\
\hdashline \bar{c} \overline{\operatorname{c}} \overline{\mathrm{\beta}} & \frac{\partial \overline{\mathrm{\beta}} \boldsymbol{\omega} \omega^{\prime}}{} \\
& \frac{E c^{2} \log 1}{\check{c} \overline{\mathrm{\beta}} \overline{\boldsymbol{\beta}}}
\end{array}\right]
$$

where

$$
\begin{aligned}
& -\frac{E c^{2} \log 1}{i \bar{\beta} \bar{c} \bar{\beta}^{\prime}}=\sum_{i=1}^{n}\left[\Delta+\sigma_{i i}\left(X_{i} X_{i}\right)^{1}\right]^{-1} . \quad-\frac{E \hat{C}^{2} \log 1}{i \bar{\beta} \bar{C} \mathbf{0}^{\prime}}=0, \\
& -\frac{E \hat{c}^{2} \log 1}{\hat{\hat{\omega} \boldsymbol{\omega} \hat{c} \boldsymbol{\omega}^{\prime}}=\left[\begin{array}{ll}
\left\{-\frac{E \hat{c}^{2} \log 1}{\left.\hat{\hat{c} \sigma_{i i} \hat{i} \sigma_{j j}}\right\}}\right\} & \left\{-\frac{E \hat{c}^{2} \log 1}{\hat{\partial} \sigma_{i i} \hat{\partial} \Delta_{r}}\right\} \\
& \left\{-\frac{E c^{2} \log 1}{\partial \Delta_{r} \hat{\partial} \Delta_{r}}\right\}
\end{array}\right] .}
\end{aligned}
$$

Δ, denotes the vector presentation of all elements of Δ in which the elenents of the first row appear in order first, then the elements of the second rew and so on:

$$
(i=1.2, \ldots, n)
$$

$$
-\frac{E \hat{c}^{2} \log 1}{\partial \Delta_{r} \partial \Delta_{r}}=\frac{1}{2} \sum_{i=1}^{n}\left[\Delta+\sigma_{i i}\left(X_{i} X_{i}\right)^{-1}\right]^{-1} \otimes\left[\Delta+\sigma_{i i}\left(X_{i} X_{i}\right)^{-1}\right]^{-1}
$$

\otimes denotes the Kronecker product. see Tracy and Dwyer 11969 , pp. 1580. 88-89).

5.1. Consistency of An ML Estimator of $\boldsymbol{\theta}$

The $\operatorname{pdf} p(\mathbf{y} \mid X, \theta)$ in (35) depends on an unknown parameter vector θ betonging to a metric space Θ which is a subset of $\left[K+n+\frac{1}{2} K(K+1)\right]$-dimensional Euclidean space. In (35) there is a family of possible distributions given by different values of θ in Θ and we do not know which one is appropriate. Let θ_{0} be the unknown true value of θ. We shali denote by $E_{0} \log p(y \mid X, \theta)$ and $\operatorname{var}_{0} \log p(y \mid X, \theta)$ the mean and variance respectively of the random variable $\log p(y \mid X, \theta)$ on the sample space Y (of elements \boldsymbol{y}) with respect to the distribution of \boldsymbol{y} determined by $\boldsymbol{\theta}_{0}$. Let N_{0} be an open neighborhood of $\boldsymbol{\theta}_{0}$. To prove that $\hat{\boldsymbol{\theta}}$ is weakly consistent we have to show that $\left[\log p\left(y \mid X . \theta_{0}\right)-\sup _{\theta \in \Theta \cdots,} \log p(y \mid X . \theta)\right]>0$ in probatbility according to $p\left(y \mid X, \boldsymbol{\theta}_{0}\right)$ see Silvey (1961, pp. 445 . 6). This means that the value of θ which maximizes $1\left(\theta \mid y, X^{\prime}\right)$ belongs to N_{0} in probability when $\boldsymbol{\theta}_{0}$ obtains. If. for every n, T and $\boldsymbol{\theta} \neq \boldsymbol{\theta}_{0}$, we have $E_{0} \log p\left(\boldsymbol{y} \mid X, \boldsymbol{\theta}_{0}\right)>E_{0} \log p(\boldsymbol{y} \mid X, \boldsymbol{\theta})$, and $E_{0}\left\{\log p\left(y \mid X, \boldsymbol{\theta}_{0}\right)-\log p(\mathbf{y} \mid X, \boldsymbol{\theta})\right\}$ is large relative to $\left[\operatorname{var}_{0}\left\{\log p\left(\mathbf{y} \mid X, \boldsymbol{\theta}_{0}\right)-\right.\right.$ $\log p(\mathbf{y} \mid X, \theta)\}]^{1 / 2}$, then it follows from Chebychev's inequality that the method of maximum likelihood will discriminate well between θ_{0} and other θ. By pusting certain regularity conditions on $1(\theta \mid y, X)$ we can guarantee that the method will discriminate well between $\boldsymbol{\theta}_{0}$ and. simultaneously, all other parameter values outside an open neighborhood of $\boldsymbol{\theta}_{0}$. for large enough n and 7 . This is the basis oi consistency proofs given by Silvey and others.

The likelihood function in (36) contains terms of different orders. each containing a particular subvector of $\boldsymbol{\theta}$. Consequently, we proceed as follows : First. we assume that $\theta_{0} \in \Theta$. Second, we rewrite (35) as

$$
\begin{equation*}
p(\mathbf{y} \mid X, \theta)=\left[\prod_{i=1}^{n} g\left(s_{i i} \mid \sigma_{i i}\right)\right] f(\mathbf{b} \mid X . \boldsymbol{\theta}) \tag{37}
\end{equation*}
$$

$$
\begin{aligned}
& -\frac{E \hat{\theta}^{2} \log 1}{\partial \sigma_{i i} \partial \sigma_{i i}}=\frac{1(T-K)}{2} \frac{\sigma_{i i}^{2}}{\sigma_{2}^{2}}+\frac{1}{2}\left(\Delta+\sigma_{i i}\left(X_{i} X_{i}\right)^{1}{ }^{1}\left(X_{i} X_{i}\right)^{\quad}\right. \\
& \cdot\left[\Delta+\sigma_{i i}\left(X_{i}^{\prime} X_{i}\right)^{-1}\right]^{-1}\left(X_{i} X_{i}\right)^{-1} \quad(i=1,2 \ldots . n) \\
& -\frac{E \partial^{2} \log 1}{\partial \sigma_{i i} \partial \sigma_{j j}}=0 \quad \text { if } i \neq j, \\
& -\frac{E \partial^{2} \log 1}{\partial \sigma_{i i} \hat{\imath} \Delta}=\left\{\frac{1}{2}\left[\Delta+\sigma_{i i}\left(X_{i}^{\prime} X_{i}\right)^{-1}\right]^{-1}\left(X_{i}^{\prime} X_{i}\right)^{-1}\left\{\Delta+\sigma_{i i}\left(X_{i}^{\prime} \cdot X_{i}\right)^{-1}\right]^{-1} ;\right.
\end{aligned}
$$

where

$$
g\left(s_{i i} \mid \sigma_{i i} ; \alpha \sigma_{i i}: / \prime \operatorname{si} \exp \left\{\begin{array}{cc}
1(T-K) s_{i i} \\
-2 & \sigma_{i i}
\end{array}\right\}\right.
$$

and
$j\left(\mathbf{b}|X, \boldsymbol{\theta}| \boldsymbol{x}\left[\prod_{i=1}^{n} \mid \Delta+\sigma_{i i}\left(X_{i}^{\prime} X_{i}\right)^{-1}\right]^{-1}\right] \exp \left\{-\sum_{i=1}^{1} \sum_{i=1}^{n}\left(\mathbf{b}_{i}-\bar{\beta}\right)^{\prime}\right.$

$$
\left.\cdot\left[\Delta+\sigma_{i i}\left(X_{i}^{\prime} X_{i}\right)^{-1}\right]^{-1}\left(\mathbf{b}_{i}-\boldsymbol{\beta}\right)\right\} .
$$

By Jensen's inequality (Silvey, 1970, p. 75) we have
(38)

$$
\begin{aligned}
& E_{0}\left[\frac{1}{n T} \sum_{i=1}^{n} \log g\left(s_{i j} \mid \sigma_{i i 0}\right)+\frac{1}{n} \log f\left(\mathbf{b} \mid X, \boldsymbol{\theta}_{0}\right)\right] \geq \\
& E_{0}\left[\frac{1}{n T} \sum_{i=1}^{n} \log g\left(s_{i i} \mid \sigma_{i i}\right)+\frac{1}{n} \log f(\mathbf{b} \mid X, \theta)\right]
\end{aligned}
$$

where $\sigma_{i i 0}$ is the true value of $\sigma_{i i}$. The inequality in (38) is strict unless $\boldsymbol{\theta}=\boldsymbol{\theta}_{i}$, becaluse. in view of Assumption $1 . \boldsymbol{\theta}$ is identified and the distributions corresponding to θ_{0}, and $\boldsymbol{\theta}$ are different.

There is a connection between "local" identifiability of a vector-valued parameter θ and positive definiteness of the information matrix $I(\theta)$, see Rothenberg (1971) and Silvey (1970.pp 81-2).

Assumption 4: The veetors $\mathbf{x}_{i t}=\left(x_{i 1}, x_{i 21}, \ldots, x_{i K_{1}}\right)^{\prime}$ are all contained in a compact subset of K dimensional Euclidean space such that for each $i=1,2 \ldots$ n the matrix $T^{-1} X_{i} X_{i}$ converges to a linite positive definite matrix as $T \rightarrow \infty$.

Let $D=\operatorname{diag}\left[n I_{K}, T I_{n}, n I_{K^{2}}\right]$. Now consider $D^{-1 / 2} I\left(\theta_{0}\right) D^{-1 / 2}$ where $I\left(\theta_{0}\right)$ is obtained from (36) by replacing 0 by $\mathbf{0}_{0}$. The positive definiteness of $\lim _{T \ldots \infty, n \ldots}$ $D^{-1 / 2} l\left(\boldsymbol{\theta}_{0}\right) D$! which is necessary for the local identifiability of $\boldsymbol{\theta}_{0}$ follows from Assumption 4. Following the same argument as in Silvey (1970, pp. 81-2) we can show that for any $\boldsymbol{\theta} \neq \boldsymbol{\theta}_{0}$
(39) $\lim _{\substack{r=; \\ n \rightarrow ;}} E_{0}\left[\frac{1}{n T} \sum_{i=1}^{n} \log g\left(s_{i i} \mid \sigma_{i i 0}\right)+\frac{1}{n} \log f\left(\mathbf{b} \mid X, \theta_{0}\right)\right]$

$$
>\lim _{\substack{\pi \cdots \\ n \cdots,}} E_{0}\left[\frac{1}{n T} \sum_{i=1}^{n} \log g\left(s_{i i} \mid \sigma_{i i}\right)+\frac{1}{n} \log f(\mathbf{b} \mid X \cdot \boldsymbol{\theta})\right] .
$$

It is casy to show that for every $\boldsymbol{\theta} \in \Theta$

$$
\begin{gather*}
E_{0}\left[\frac{1}{n T} \sum_{i=1}^{n} \log g\left(s_{i i} \mid \sigma_{i i}\right)+\frac{1}{n} \log f(\mathbf{b} \mid X, \theta)\right]=O(1), \tag{40}\\
\operatorname{var}_{0}\left[\frac{1}{n T} \sum_{i=1}^{n} \log g\left(s_{i i} \mid \sigma_{i i}\right)\right]=O\left(\frac{1}{n T}\right) .
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{var}_{0}\left[\frac{1}{n} \log f(\mathbf{b} \mid X . \boldsymbol{\theta})\right]=O\left(n^{-1}\right) \tag{42}
\end{equation*}
$$

Let Θ_{s} be a compact subset of Θ.

Assumption 5: $\boldsymbol{0}_{0} \in \Theta_{\mathrm{s}}$,

In various practical situations it is often possible to rule ont sufficiontly exareme values of 0 on theoretical grounds and form Θ, so that $\theta_{6} \in \Theta$. In cases where the maximum likelihood procedure outhed in the previeus subscolion leads to inplansible estmates like negative estimates for the diagonal elements of Λ. Assumption 5 may not hold. In these cases we should examine Assumption 1 more closely. Under certain additional conditions we can replate Assumption 5 by a wider condition, see Perlman (1972).

The function $p(y \mid X, \theta)$ is a pdf on the sample space Y. given X. for each θ in Θ_{s}. and the function $1(\theta \mid y, X)$ is continuous on the metric spate $\Theta_{,}$for eath y. given X. Since $\Theta_{s}-N_{0}$ is compate, we can cover it by a finite number say h. of open spheres of radius $r_{s_{t}}$, having centers $\theta_{1} \ldots \theta_{h}$. saly. Let $\log p\left(y \mid X, \theta_{n}, r_{s_{n}}\right)$ be the supremum of $\log p\left(\boldsymbol{y} \mid X . \boldsymbol{\theta}_{j}\right)$ with respect to $\boldsymbol{\theta}_{j}$ when $\left\|\boldsymbol{\theta}_{m}-\boldsymbol{\theta}_{j}\right\|<r_{x_{1}}$. For any $\theta_{m} \in \Theta_{s}$ we have, $\lim E_{0} \log p\left(y \mid X . \theta_{m} . r_{s_{0}}\right)<\gamma$ as $r_{s_{0} \rightarrow 0}$ because piylf. $\left.\theta\right)$ is uniformly bounded in $y . \theta$ and $E_{0} \log p\left(y \mid X \cdot \theta_{0}\right)<x$. We can show that

$$
\begin{align*}
& E_{0}\left[\frac{1}{n T T_{i=1}} \sum_{i}^{n} \log g\left(s_{i i} \mid \sigma_{i i m} \cdot r_{v_{0}}\right)+{ }_{n}^{1} \log f\left(\mathbf{b} \mid X \cdot \theta_{m} \cdot r_{x_{i}}\right)\right] \tag{43}\\
& \quad<E_{0}\left[\frac{1}{n T} \sum_{i=1}^{n} \log g\left(s_{i i} \mid \sigma_{i i 0}\right)+\frac{1}{n} \log f\left(\mathbf{b} \mid X \cdot \boldsymbol{\theta}_{0}\right]\right] \quad(m=1.2 \ldots h) .
\end{align*}
$$

The results in (38)-(43) are adequate to establish the consistency of an ML estimate of $\boldsymbol{\theta}$. see Swamy and Rao (1971). and Silvey (1961)

5.2. Asymptotic Normality

The standard method of establishing the asymptotic normality of an MI estimator $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$, utilizes the following results
(a) Taylor's theorem in the expansion of $\partial \log 1(\hat{\theta} / y . X) / \hat{\theta_{0}}$:
(b) a central limit theorem applied $10 D^{-1 / 2}\left(c \log 1\left(\theta_{0} \mid y, X\right), \theta_{0}\right)$:
(c) a law of large numbers applied to $D^{-1: 2}\left(c^{2} \log 1\left(\boldsymbol{\theta}_{0} \mid \boldsymbol{y} . \lambda\right) / \boldsymbol{\lambda} \boldsymbol{\theta}_{0}<\boldsymbol{\theta}_{0}\right) D^{-1 / 2}$ Under Assumptions 1.3. 4 and 5 we have enough regularity conditions to establish the above results, see Silvey (1971, pp. 77-8) and Swamy and Rao (19?1). Consequently. $D^{-1,2}\left(\hat{\theta}-\theta_{0}\right)$ is asymptotically normal with mean 0 and $F C$ matrix $\left[\lim _{\substack{-, n \rightarrow,}} D^{-12} I\left(\theta_{0}\right) D^{-1 / 2}\right]^{-1}$.

The argumen
tion of $\boldsymbol{\theta}$ does not depent tions 1 - 5 are satisfied, the pond n, shows that in large samples, when Assumpmean $\hat{\boldsymbol{\theta}}$ and V - (matrix $\left[-1 \hat{r}^{2} \log\right.$ ligtribution of θ is approximately normal with
 distribution of ω is not a point distribut . This result is true even when the prior sanisfied.

6. Summary and Conceusions

In this paper we considered six different estimators of the mean of a random coefficient vector. These are (1) the MVLU estimator $\bar{b}(\omega)$, (2) the Stein-like estimator $\mathbf{c}^{*} \bar{b}(\omega)$, (3) the ridge regression estimator $\bar{b}_{\mu}(\omega)$, (4) the MCMSE
estimator $\bar{b}^{*}(\omega)$. (5) the mixed regression estimator $\hat{\bar{\beta}}_{f}(\boldsymbol{\omega})$. and (6) an ML estimator $\hat{\bar{\beta}}$ of $\bar{\beta}$. We also found feasible approximations to these estimators. None of the estimators $\overline{\mathbf{b}}\left(\boldsymbol{\omega}\right.$!. $c^{*} \overline{\mathrm{~b}}(\boldsymbol{\omega}), \overline{\mathbf{b}}_{u}(\boldsymbol{\omega})$ and $\overline{\mathbf{b}}^{*}(\boldsymbol{\omega})$ is uniformly better than the other. Each of these estimators has its own weaknesses. In cases where a priori unbiased estimator r of $\bar{\beta}$ is available and its γC matrix $\tau^{2} \dot{\psi}$ is known, the estimator $\hat{\boldsymbol{\beta}}_{p}(\boldsymbol{\omega})$ is uniformly better than the estimator $\overline{\mathrm{B}}(\omega)$. Under these conditions, the estimator $\hat{\bar{\beta}}_{p}(\boldsymbol{\omega})$ is also better than $\overline{\mathbf{b}}^{*}(\boldsymbol{\omega})$ if $\overline{\boldsymbol{\beta}}^{*} \bar{\beta}^{*}$ is not a reliable estimate of $\overline{\boldsymbol{\beta}} \bar{\beta}^{\prime}$. The estimators $\overline{\mathbf{b}}_{\mu}(\boldsymbol{\omega}), \overline{\mathbf{b}}^{*}(\boldsymbol{\omega})$ and $\hat{\boldsymbol{p}}_{p}(\boldsymbol{\omega})$ are insensitive to extreme multicollinearity. The estimator $\hat{\boldsymbol{\beta}}_{p}(\boldsymbol{\omega})$ covers the estimators $c^{*} \overline{\mathrm{~b}}(\boldsymbol{\omega})$ and $\overline{\mathbf{b}}_{\mu}(\boldsymbol{\omega})$ as special cases.

When $\overline{\boldsymbol{\beta}}$ is regarded as a random variable, the formula $\overline{\mathbf{b}}^{*}(\boldsymbol{\omega})$ is inappropriate and the estimator $\hat{\boldsymbol{\beta}}_{\rho}(\boldsymbol{\omega})$ covers the estimators $\overline{\boldsymbol{b}}_{\mu}(\boldsymbol{\omega})$ and $c^{*} \overline{\mathbf{b}}(\boldsymbol{\omega})$ as special calses. The prior information utilized in obtaining the estimator $\hat{\hat{p}}_{p}(\omega)$ is likely to provide a better numerical approximation to the practical situation than those utilized in obtaining the estimators $c^{*} \overline{\mathrm{~b}}(\boldsymbol{\omega})$ and $\overline{\mathbf{b}}_{\mu}(\omega)$. The estimator $\hat{\boldsymbol{p}}_{p}(\omega)$ is uniformly better than the estimators $\overline{\mathbf{b}}(\omega), c^{*} \overline{\mathbf{b}}(\omega), \overline{\mathbf{b}}_{\mu}(\omega)$ and $\overline{\mathbf{D}}^{*}(\boldsymbol{\omega})$ if $\overline{\boldsymbol{\beta}}$ is distributed with mean \mathbf{r} and $V-C$ matrix $\tau^{2} \psi$. Furthermore, $\hat{\overline{\hat{\beta}}}_{p}(\omega)$ has all the desirable properties of a posterior mean corresponding to a normal prior and normal likelihood. In small samples one cannot find a uniformly better estimator of $\bar{\beta}$ unless the prior distribution of $\bar{\beta}$ is proper and known.

Under certain regularity conditions, the maximum likelihood estimate $\hat{\bar{\beta}}$ is at least as good as any other estimator of $\bar{\beta}$ in large samples.

Federal Reserve System, Washington D.C.

Appendix

Here we provide the proof of (26). The conditional second order moment matrix of $\overline{\mathrm{b}}^{*}(\boldsymbol{\omega})$ in (24) around $\overline{\bar{\beta}}$. given $\overline{\boldsymbol{\beta}}^{*}$, is

The first term in (A.1) is the conditional $V-C$ matrix of $\bar{b}^{*}(\omega)$ and the second term is the matrix of squares and cross-products of the biases of the elements of $\bar{b}^{*}(\omega)$ for given $\overline{\boldsymbol{\beta}}^{*}$. Subtracting (A.1) from the $\bar{V}-C$ natrix of $\overline{\mathrm{b}}(\omega)$ gives

$$
\text { (A.2) } \begin{aligned}
& \left(X \Sigma^{-1} X\right)^{-i}-\overline{\beta^{*}} \bar{\beta}^{*}\left[\left[\overline{\beta^{*}} \bar{\beta}^{*}+\left(X \Sigma^{-1} X\right)^{-1}\right]^{-1}\left(X^{\prime \prime} \Sigma^{-1} X\right)^{-1}\right. \\
& \quad\left[\overline{\boldsymbol{\beta}^{*}} \overline{\boldsymbol{\beta}}^{* \prime}+\left(X \Sigma^{-1} X\right)^{-1}\right]^{-1} \overline{\bar{\beta}} \bar{\beta}^{* \prime}-\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\left[\bar{\beta}^{*} \bar{\beta}^{*-}+\left(X \Sigma^{-1} X\right)^{-1}\right]^{-1}
\end{aligned}
$$

$$
\cdot \bar{\beta} \bar{\beta} \bar{P}\left[\overline{\mathrm{\beta}} * \overline{\mathrm{\beta}} \bar{x}^{*-}+\left(X \Sigma^{-1} X\right)^{-1}\right]^{-1}\left(X^{\prime} \Sigma^{-1} X\right)^{-1}
$$

Let P be a nonsingular matrix such that $P^{\prime}\left(X \Sigma^{-1} X\right)^{-1} P=I$ and $P \cdot \bar{\beta}^{*} \bar{\beta}^{*} P=$ $i_{i}^{*} i_{1} i_{1}$ where i_{1} is the first column of an identity matrix of order K. We pre and post multiply (A.2) by $P^{-1} P^{\prime}$ and $P P^{-1}$ respectively to obtain

$$
\begin{align*}
& P^{-1} P^{-1}-P^{\prime-1}\left(\lambda_{1}^{*} \mathbf{i}_{1} i_{1}\left(\lambda_{1}^{*} \mathbf{i}_{1} \mathbf{i}_{1}+I\right)^{-2} \lambda_{1}^{*} \mathbf{i}_{1} i_{1}\right\} P^{-1} \tag{A.3}\\
&-P^{-1}\left(\partial_{1}^{*} \mathbf{i}_{1} \mathbf{i}_{1}^{\prime}+I\right)^{-1} \lambda_{1} 0_{1} 0_{1}\left(i_{1}^{*} \mathbf{i}_{1} i_{1}+I\right)^{-1} P^{-1} \\
& 447
\end{align*}
$$

$$
\begin{align*}
& \bar{\beta}{ }^{*} \bar{\beta}^{*}\left[\bar{\beta} \bar{\beta}^{*} \bar{\beta}^{*}+\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\right]^{-1}\left(X \Sigma^{-!} X\right)^{-1}\left[\bar{\beta}^{*} \overline{\beta^{*}}+\left(X^{\prime} \Sigma^{-!} X\right)^{-1}\right]^{-1} \overline{\beta^{*}} \bar{\beta}^{*} \tag{A.1}\\
& +\left(X^{\prime} \Sigma^{-1} X\right)^{-1}\left[\bar{\beta} \bar{\beta}^{*} \bar{\beta}^{*}+\left(X \Sigma^{-1} X\right)^{-1}\right]^{-1} \overline{\mathrm{~B}} \overline{\mathrm{~B}}\left[\overline{\mathrm{\beta}} \bar{\beta}^{*} \bar{\beta}^{*}\right. \\
& \left.+\left(X \Sigma^{-1} X\right)^{-1}\right]^{-1}\left(X \Sigma^{-1} X\right)^{-1} .
\end{align*}
$$

where 0_{1} is the characteristic vector corresponding to the nonero root i_{1} of $P^{\prime} \bar{\beta} \bar{\beta}^{\prime} P^{\prime}$. Using an identity in Swamy (1971. p. 25. Lemma 2.2.2 we hat
(A.4)

$$
\begin{aligned}
& \left(1 \cdots i_{1}^{*} i_{1}^{i_{1} i_{1}}\right) P^{\prime} .
\end{aligned}
$$

Consequently, given $\tilde{\beta}^{*}$
(A.5) $E[\overline{\mathbf{b}}(\omega)-\overline{\boldsymbol{\beta}}][\overline{\mathbf{b}}(\boldsymbol{\omega})-\overline{\boldsymbol{\beta}}]^{\prime}-E\left[\overline{\mathbf{b}}^{*}(\boldsymbol{\omega})-\overline{\boldsymbol{\beta}}\right]\left[\overline{\mathbf{b}}^{*}(\boldsymbol{\omega})-\overline{\boldsymbol{\beta}}\right]$

$$
\begin{array}{r}
=P^{\prime-1}\left\{I-\mathbf{i}_{1} \mathbf{i}_{1}^{\prime}\left[\frac{i_{1}^{* 2}}{\left(1+i_{1}^{*}\right)^{2}}+\frac{i_{1}^{*} i_{1}\left(\theta_{1}^{2}\right.}{\left(1+i_{1}^{*}\right)^{2}}\right]-i_{1} \mathbf{0}_{1} \mathbf{0}_{1}^{\prime}+\frac{i_{1}^{*} j_{1} 0_{11}}{\left(1+i_{1}^{*}\right)}\right. \\
\left.\quad \cdot\left(i_{i} \mathbf{0}_{1}^{\prime}+\mathbf{0}_{1} \mathbf{i}_{1}\right)\right\} P^{\prime}
\end{array}
$$

where 0_{11} is the first element of 0_{1}
Let the matrix within the curl brackets be B. The matrix in (A.5) is positive definite if B is positive definite. Since B is symmetric. B is positive definite if all its diagonal elements are positive. The first diagonal element of B is positive if $\bar{\beta}^{\prime} \boldsymbol{p}_{1} \mathbf{p}_{1}^{\prime}, \bar{\beta}<1+2 \lambda_{1}^{*}$ where \mathbf{p}_{1} is the first column of P. Every other diagonal element of B is positive if $\overline{\boldsymbol{\beta}}^{\prime} \mathbf{p}_{k} \mathbf{p}_{k}^{\prime} \overline{\boldsymbol{\beta}}<1 k=2, \ldots .$.

Using P we may rewrite (17) as
(A.6) $\quad P^{\prime-1}\left\{P^{\prime} P\left(P^{\prime} P+\mu I\right)^{-2} P^{\prime} P_{1} P^{-1}+P^{-1}\left\{\mu^{2}\left(P^{\prime} P+\mu\right)^{-1} P \bar{\beta} \bar{\beta} P\right.\right.$

$$
\left(P P^{P}+\mu\right)^{-1} ; P^{-1} .
$$

References

Barnard. G. (1963), "The Logic of Least Squares." Journal of the Royal Stutixtical Society. Serics B. 25. pp. 124-7.
. (1967), "The Use of the Likelihood Function in Statistical Practice." pp. 27-40, in Proceceding, of the Fifth Berkeley Simposium on Mathematical Statistics and Prohahiliy: I. Berkeley and Los Angeles: University of California Press.
Box. G. E. P. and G. M. Jenkias (1970). Time Series Analysis. Forecasting. and Comerol. San Francisco: Holden-Day.
Box. G. E. P. and G. C. Tiao(1973). Buestan Inference in Statistical Analysis. Massachusetts: Addi:on Wesley Publishing Company.
Chipman. J. S. (1964). 'On Leas! Squares with Insufficient Obser vations." Journal of the American Statistical Association. 59. pp. 1078-111.
Durbin. J. (1953). "A Note on Regression When There is Extraneous Information Abeut one of the Coefficients." Journal of the American Statistical Avsociation. 48. pp. 799-808.
Efron: B. and C. Morris (1971), "Limiting the Risk of Bayes and Empiricai Bayes Estimators. Part I The Bayes Case," journal of the American Statistical Association. 66. pp. 807-15.
(1972), "Limiting Risk of Bayes and Empirical Bayes Estimators--Pant II: The Fmpirical Bayes Case," Joumal of the American Statistical Association. 67, pp. 130-9.
Feige. E. L. and P. A. V. B. Swamy (1972), 'A Rändom Coefficient Model of the Demand for Liquid
Assets," Workshop Paper \#7211, Social Systems Research Institute. The Liniversity of Wisconsin
Madison. Accepted for publication in Journal of Mones. Credit. and Banking.
Ferguson, T. S. (1967), Mathematical Statistics, New York: Academic Press
Hoerl. A. E. and R. W. Kennard (1970a), "Ridge Regression: Biased Estimation for Non-Orthogonal Problems," Technometrics, 12, pp. 55-67.
12. (1970b), 69 . 82 .

Kalbfleisch. J. G. and D. A. Sprott (1970). ' Applic:tion of Likelihood Methods to Models Involving Large Numbers of Parameters." Jotrnal of the Roval Siatistical Sociey. Series B. 32. pp. 17594. Kiefer. J. and J. Wolfowitz (1956), "Consistency of the Maximım Likelitiood Estimator in the Presence of Infinitely tiany Nuisance Falamelets. Antais of Mathematical Suntisics. 27. pp. 887906.
Lindley. D. V. (1971). Baresian Statistics. A Revien. SIAM. Philadelphia.
Lindley. D. V. and A. F. M. Smith (1972). "Bayes Estimates for the Linear Model." Journal of the Royal Statistical Sociery. Series B. 34. pp. I-41.
Mehta. J. S. and R. Srinivasan (1971). Estimation of the Mean by Shrinkage to a Point." Joarmal of the Amerisan Statistical Association. 66. pp. 86-90.
Mehta. J. S. and P. A. V. B. Swamy (1972a), "The Exact Finite Sample Distribution of Theils Cornpatibility Statistic and its Application." Report 7204. Division of Economic Research. Department of Economics. Ohio State Umbersity. Columbus. Accepted for publication in Jowmat af in. Americant Statistical Association.
. (1972b). Efficient Method of Estimating the Ievel of a Stationary First-C.oier Autoregres. sive Process." Commmications in Statistics (fortheoming).
Periman, M. D. (1972): *On the Strong Consistency of Approximate Maximum Likelihood Estimators." Fp. 263-81 in Proccedings of ihe Sixth Berkeley Symposium on Mahhematical Statisuics and Probability. 1. Berkeley and Los Angeles: California University Press.
Rao. C. R. (!962). *Apparent Anomalies and Irregularities in Maximum Likcihood Estimation (with discussion)," Samkhia, Series A. 24, pp. 73-102.
-- (1965). Linear Stansical Inforence and ins Applicatoms. New York: John Wiley \& Sons. (1971). "Unified Theory of Lincar Estimation." Samkhã. Series A, 33. pp. 37194.

Rao. C. R. and S. K. Mitra (1971). Gencralized Incerse of Matrices and its Applications. New York: John Wiley \& Sons.
Rothenberg. T. J. (1971). "Identification in Parametric Models. ${ }^{*}$ Econometrica. 39. pp. 577-92.
Silvey. S. D. (1961). "A Note on Maximum-Likelihood in the Case of Dependent Random Variables. Journal of the Royal Statistical Socicus. Series B. 23. pp. 444.52.

- (1970). Statistical inferestec. Baltimore: Penguin.

Sims. C. A. (1971). "Distributed Lag Estimation When the Parameter Space is Explicitly InfiniteDimensional." Amnals of Mathematical Statistics. 42. pp. 1622-36.
Stein, C. (1966). "An Approach to the Recovery of Inter-Block Information in Balanced Incomplete Block Designs." pp. 351-66. in F. N. David (editor), Re search Papers in Statistics. Festschrift for J. Neyman. New York: John Wiley \& Sons.

Strawderman. W. E. and A. Cohen (1971). "Admissibility of Estimators of the Mean Vector of a Multivariate Normal Distribution with Quadratic Loss." Annals of Mahematical Siatistics. 42. pp. 720-96.
Swamy. P. A. V. B. (1971). Statisticat Infercnce in Randem Cocfficiont Regression Models. New York: Springer-Verlag.
Front (1972). "Linear Models with Random Coefficients." to appear in Paul Zarembka (editor). Froniers of Econometrics. New York: Academic Press. forthcoming.
Swamy, P. A. V. B. and J. S. Mehta (1969). "On Theil's Mixed Regression Estimator."Journal of the Amcrican Siatigtical Association. 64. pp. 273-6.
Economic Research Deparment's Mixed Regression Estimators." Report 7218. Division of Economic Research. Department of Economics. Ohio State University. Columbus.
--.-. (1971). "Bayesian Analysis of Error Components Regression Models," Report 7203. Division of Economic Research. Department of Economics. Ohio State University. Columbus. to appear in Journal of the American Statistical Association.
Swamy. P. A. V. B. and J. N. K. Rao (1971). "On Consistency and Asymptotic Normality of Maximum Likelihood Estimators of Parameters in a Distributed Lag Model with Auto-correlated Errors." Technical Report \#16. University of Manitoba. Winnipeg.
Theil. H. (1963). "On the Use of Incomplete Prior Information in Regression Analysis." Journal of ihe American Siatistical Association. 58, pp. 401-14.
Thei (1971). Principics of Economerrics. New York: John Wiley \& Sons.
Theii. H. and A. S. Goldberger (1961). "On Pure and Mixed Statistical Estimation in Economics." International Economic Review. 2. pp 65-78.
Tracy. D. S. and P. S. Dwyer (1969). "Multivariate Maxima and Minima with Matrix Derivatives." Journal of the American Statistical Association. 64, pp. 1576-94
Winkler. R. L. (1967a)."The Assessment of Prior Distributions in Bayesian Analysis," Journal of the American Siatistical Association. 62. pp. 776-800.
-. (1967b)."The Quantification of Judgment: Some Methodological Suggestior.s." Jonrnal of the Amcrican Statistical Association. 62, pp. 1109-20.
C. 1971). "Probabilistic Prediction: Some Experimental Results." Journal of the American Siatistical A.ssociation. 66. pp. 675.85.

Zellner, A. (1970), "The Bayestan Approach and Ahernatives to tionometrics 1," pp. 178 93 M. D. Intriligator (editor), Fromiters of Quathitatite Ecomomhes. Amsterdant: North-Holland Publishing Company
elner, A. and W. Vandacte (1971) Bescian Interence in Ecomemetrics. New York: John Wiley \& Sons taneous Equation Models,"presentedat the Therd VBER Nor K-Means, Regression and Simulin Econometrics.

[^0]: * 1 am grateful to Profesor A. Zellacr and Dr. Richard D Porter for helpful comments

[^1]: With an abuse of notation we use the same symbol to denote a random yuantity and its vaiue
 ${ }^{2}$ This assumption is partly relaxed in Swany (1972).

[^2]: ${ }^{3}$ If we knew aprion that the true value of the clemems of $\bar{\beta}$ lay closely 10 a value other then cero, we could casily modify the formulie in (x) and (9) to wink the wimated value of $\bar{\beta}$ toxards that talue. see Zether and Vandacle (1971). and Mehta and Sinisament 1971 .

[^3]: ${ }^{5}$ The requirement that an estimator of $\overline{\bar{\beta}}$ be linear arises from the absence. in our "distributionfree" formulation, of the assumption about the form of the prior distribution of $\overline{\bar{\beta}}$.
 ${ }^{6} N_{\mathrm{k}}\left(\mathrm{f} \cdot \mathrm{r}^{2} \psi\right)$ represents K-dimensional normal with mean r and $V^{\prime}-C$ matrix $\tau^{2} \psi$

