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STABILIZATION POLICY AND LAGS:
SUMMARY AND EXTENSION*

BY J. PHiLLIP COOPER AND STANLEY FISCHER

This paper examines the effects of both the length and variability of lugs on the effectiveness of counter-
cyclical stabilization policy. The authors conclude that while the latter are an argumeni in favor of less
vigorous use of stabilization policy, the former are not. The longer are lags, the more vigorousiy should
stabilization policy be used. They also find that in their models, the constant growth rate value is never
optimal and that the careful use of feedback controls is bound 1o be stabilizing,

INTRGDUCTION

The niajor aim of this paper is to study the effects of both the length and variability
of lags on the effectiveness of countercyclical stabilization policy. The chief tool
of analysis is a simple difference equation, in which the value of a target variable (y)
is determined as a function of its lagged value and concurrent and lagged values
ofa policy variable (x) as well as an additive stochastic term (u) ; the policy variable
(x,) is taken to be determined by a closed-loop feedback control rule responding to
the lagged value of the target variable (y,_,)—proportional control---and the
change in the value of the target variable (y,_, — y,_,)—derivative control.

The effectiveness of stabilization policy is evaluated by the value of the
asymptotic variance of the target variable under the rules; various parameters
of the difference equation determine both the mean length and the variability of
the lags in the effect of policy. We are thus able to examine the results of changes
in the length and variability of lags on the effectiveness of policy as policy is
adjusted optimally (with respect to minimization of asymptotic variance) in
response to these parameter changes. Our interest is not, however, confined to
optimal policies and we also investigate other properties of the system, such as
its stability and sensitivity to nonoptimal choice of control rules, as lags vary.

In Section 1 below we very briefly summarize results obtained in our “CC”
(constant coefficients) model in which all lag parameters are constant. The notion
of variable lags and our representation of the notion through the randomizing of
lag coefficients are discussed in Section 2, when our “'RC model” is introduced.’
The effects of the variability of Jags—as measured by the variance of the lag
coefficients—on the outcome of policy rules is examined in Section 3. There is
discussion in Sections 2 and 3 of the merits of a completely inactive policy which
avoids any attempts at “fine tuning”—such policies have been recommended to
the monetary authorities by Friedman [2] and others.

* The research described in this paper was supported by NSF Grant GS 29711. This is a much-
shortened and somewhat changed version of our paper, “*Stabilization Policy and Lags' which was
presented at the NSF-NBER Conference on Control Theory and Economic Systems. Stabilization
Policy and Lags” is forthcoming in the Journal of Political Economy.

! Although the CC model is a special case of the RC model, it is convenient to treat them separately
so that the effects of the length of lags can be discussed apart from the effects of their variability. In

addition, there are certain results which we obtain analytically for the CC model put numerically for
the RC model.
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This paper is @ much-abbreviated summary of the paper presented at the
MNSF-NBRER Conference on Control Theory and !-:cnnomlc Systems which js
forthcoming in the Journal of Political Economy. Aside from the fact that many
results are summarized but not fully developed here. the other major change
between the Conference paper and this one is that we here use a different stochastic
process for the behavior of the random lag coctlicients. The process. described here
as the “‘random f3’" case, is one which we now regard as u fairer representation of
the notion of variable lags in the context of discussien of the relative merits of
active and inactive countercyclical policies than the “random 4™ case presented
in the Conference paper. Our reasons for this view are discussed later.

l. T CC MODEL

A. Model Descrintion

The model with constant coeflicients is a standard first-order autoregressive
scheme.

X
(1 =By + Y ax,_; +u,.
i=0

The restriction to a first-order autoregressive process is made for simplicity.

The variable y, represents deviations of some economic variable from its
target level in each period and will be referred to as “output™; x, is to be under-
stood as the deviations of some relevant instrument or policy variable (say, the
rate of change of the money supply) from that path which would, in the absence
of disturbances. keep the system on target at all times. Equation (1) may represent
the reduced form of some structural model in which there is only one controllable
exogencus variable. The value of 1, is not known at ihe time the current value of
the policy variable. x,. is chosen : information available at the time X, is chosen
consists of past levels of output and of the policy variable itsell. The random
variable u, has mean zero. is serially uncorrelated. and without loss of generality
has variance unity. It is assumed that |ff] < | so that the system is stable in the
absence of an active stabilization policy (i.e. ifx, = Oforallr): generally we assume
B positive.

The time form of the lag coeflicients for the effects of policy. that is the g,
of (). is assumed proportional to z density function belonging to the Pascal
family [5].

r=1.2234._.

1
Q) % = a(r v )(1 — iy Q
i D<icl.

The parameters r and / determine thestructure ofthe coeflicients ;1 we concentrate
on the cases ¥ = 1 and r = 2, particularly in the RC model below, but results
holding for all members of the Pascal family are given in this section.

~ To standardize the long-run multiplier for monetary policy at unity. we set «
In (2} equal to (1 — f). It may be confirmed that then the ultimate effect on the
level of v obtained by increasing x by one unit and holding x at its higher level
forever. is to increase ¥ by one unit, independent of the valnes of ; and B. Weare
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thus assured that the “bang per buck” of policy stays constant for any permanently
held values of 2 and f.

Two comments: first, the u;—which we call the “direct™ (or “policy”) lag
coefficients-—do not give the total effects on y, of a unit input of x at time t — i,
for changes in x at t - i change output at time ¢ through the autoregressive
parameter f§ as well as directly. The level of output as a function of past levels of
the policy variable and the random variable is

(3) »w= Z &i'\‘l—i + Z ﬁi“l~i
i=0 i=0
where
{4) &,‘ = Z ﬁjfli_j.
j=0

This is a convolution of the previous lag coefficients and we refer to the & as the
“final form™ lag distribution. For § = 7, the final form lag coefficients are simply
Pascal of order one higher than the order of the distribution for the «; themselves.

Second, we use a particular structure for the «; and a particular autoregressive
structure in order to study the effects of the length of lags on stabilization policy;
the mean final form lag of the effect of x on y is B/l — B) + (rA)/(1 — 2). The
length of lag is thus an increasing function of r, 4 and .

The mean final form lag is the sum of the lag due to the autoregressive
structure (the “system” lag) and that due to the policy lag. Thus, by distinguishing
f from A, we can discuss separately the effects of lags which are inherent in the
economy (f) from those due to policy (4 and r). A long system lag (large ) auto-
matically implies a long final form lag though policy may work slowly even if
1s small.

B. Tne Constant Growth Rate Rule (CGRR)

We describe the policy x, = Oforall 1 as CGRR, i.e. a policy where no attempt
is made to respond to deviations of y from trend. The asymptotic variance of
output under a constant growth rate rule is

1

(5) o, = lim Efy!] = =
The minima! attainable variance of y, is unity, obtained under any policy which
succeeds in making y, = u, for ali t. Thus if # = 0, the optimai policy is CGRR.
If B 15 not zero, there is room for improvement by use of some policy other than
CGRER—the potential improvement increasing with |#}. It is useful to interpret f
as a measure of the instability of the system in the absence of stabilization policy
in much of what follows, the instability increasing as the system lag increases.

We shall refer to any policy which produces y, = u, as perfect control. All
other policies are imperfect control.

C. Policy Rules

The policy rules used are of the form
(6) x, = I'(B}- By,
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where B is the backshift operator, and T(B) is a polynomial in B of order . For
instance, one such rule with n = 1 is

M X, = P¥e-1 H 7o = &Ye-a + 8aVioy -y 2y)
where g, is a proportional control and g, a Qex‘ivalive control.
Substituting (6), (5} and (2) in (1), and using the operator B, one obtaing for
the general Pascal distribution :
(1 — AB)y,
® Y= (T 2BV~ BB) — (1 — A1 — T (B)B

which is an autoregressive moving-average model of order (r + 1,r) when r >n
By setting n = = and choosing the coeflicients in 1(B) appropriately it is always
possible to obtain

(9) Ye = U4,

which minimizes asymptotic variance---and also, any criterion function including
only variances of output in each period. Thus optimal policies in the CC model
are straightforward to obtain.?

To have a better idea of the properties of such policies, we turn for simplicity
to the case r = 1, although similar results apply also for other values of r. The
optimal policy for r = 1 is to use rule (7) with

g = >l .y
o _om
TR YT}

There are a number of interesting features of the rule (10).

(1) In this model, with perfect control, the proportional control depends
only on the autoregressive parameter, and, in a sense, offsets the autoregressive
component of the model, while the derivative control deals also with the direct
lagged effects of policy.

(i) Perhaps most interesting, the strength of the controls is an increasing
function of the average length of lag, but increases in the length of lag do not
increase the variance of cutput.?

(ii)) The use of negative feedback controls cannot lead to the minimum
variance policy if § < 0, that is, if the model itself, in the absence of control,
contains only negative feedback.

Wearealsointerested in the behavior of the system when policy is nonoptimal.
Accordingly, we solved analytically for the value of the asymptotic variance of
the system as a function of §, 4 and the parameters in the control rule, for values

11 is easy 10 show 1hal for perfect control,

rmy = B (- By
-8 -2y

JObViousl_y the second half of this sentence musl be 1rue if perfect control can be aitained. A
stronger resull is obtained in Howrey [3].
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of r = 1 and r = 2. This expression is used in defining the stability conditions
—in terms of f, 1 and the control parameters—for the system; it is also used to
define a region containing pairs of values of g: and g, which improve upon
CGRR.Forthecasesr = landr = 2the following additional results are obtained.

(iv) The longer are both policy and system lags, the more likely is the system
to be stable for given values of the control parameters.

(v) Weak negative feedback controls are bound to be stabilizing relative to
CGRR (for g > 0).

(vi) The longer are both system and policy lags, the more likely is any
choice of control parameters to be stabilizing relative to CGRR.

(vi1) In cases where insufficient control parameters are used, long lags reduce
the potential gains from an active stabilization policy relative to CGRR ; however,
they increase the likelihood that any given policy will be stabilizing relative to
CGRR.

2. VARIABLE LLAGS AND THE RC MODEL
Equation (1), the basic difference equation, can be rewritten as
(“) W= Byl—l +w, + U,

where w, represents the total direct effects of policy, past and present. For the
Pascal distribution with r = 1, the case on which we concentrate in this section,

(12 w=( =B =D T Fxy =0 = B — A, + Ay,
i=0

In our random coefficients model, we continue to use (11)and (12) but modify
them by making # a random variable. This has the effect of making both the
autoregressive component and the effects of policy random. Specifically, we write
B, instead of § in both (11) and (12), and assume

“3) Bl:B+l‘:3

where ¢, has mean zero, variance 6%, is serially uncorrelated and has zero covariance
with all u,. Substituting B, for 8 in (11) and (12), the final form lag coefficients,
&, which give the total effects on the level of output in period t of a unit change
in x at time ¢t — i, are

i-j

(14) 8= =B~ F ] Bnss.
Jj=0 m=1

In Figure 1 we present final form lag distributions generated for the RC
model with 2 = 0.8, 8 (now the mean of the distribution of BY=05andr = 1.
The B, used in Figure | were drawn from a beta distribution—for which the
domain is [0, 1]— with the variance ¢ stated on the diagram. The three cases
shown were chosen from a set of ten distributions generated and represent the
range of examples produced.

The formulation described above s for obvious reasons called the “random B’
case. In the Conference paper we used the “random A’ case in which 1 in (12)
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is a random variable. In the random 1 case, randomness of the lag coeflicients
affects in the current period only the results of active countercyclical policy and

not CGRR ; in the random f case the results of both types of policy are affected.
It can be shown that under CGRR

(15)




We believe it fairer to active policy to use the random B model since we do not
believe that CGRR would lead to any less variability of behavioral parameters
than other rules.

We believe that the lag formulations of (14), as shown in Figure I, reflect
the notion of “variable lags.”” The time pattern of the effects of any particular
policy action is not likely to be the same as those of any other policy action;
the consequences of any particular policy action are known with certainty neither
in the period in which they are taken, nor in subsequent periods.

Our representation of variable lags treats these lags as stochastic, but
variability of lags is possible in a deterministic model. For instance, the lags of
monetary policy could vary systematically with the behavior of other exogenous
variables in the economy, as they do in the FRB-MIT-Penn Econometric model.
One might want to model variable lags by, say, having f, be a function of a variable,
the time path of which is specified in some suitable way. This is another possible
route, but it is not one we have so far taken.

For the case r = 2, which we have also examined we have instead of (12)

(16) w, = {1 = B)(1 - A)°x, + 2Aw,_, — A%w,_,

and then both the f in (11) and that in (16) become B, with B, determined as
in (13).

Finally, we note an important point : our basic assumption for the RC model
is that the lags are “truly” stochastic—the distribution of the B, is specified for
all time.

3. RULES AND THE VARIANCE OF QUTPUT IN THE RC MODEL

For the caser = 1, using (11) and (12) and the policy rule (7), with B.=P+e,
we obtain

Iy =B+ 2+ =B = Ay lyecy + (4B — (1 = BYL — Ay,ly,—,
=1, — Ay,
or
(18) yi=by,—y +eyoa~ (1 = (1 = Dy ey,—y + 261y, + (1 = Ayrey_,
=u, — Au,_,
where
b=p+ i+ (1~ Bl - Ay,
c=21p—(1 - A1 - Ay,.

The question of the stability conditions for equation (18) now arises. There
are a number of concepts of stochastic stability,* and we shall use the finiteness
of the asymptotic variance of output as our criterion; for ¢2 = 0 this gives the
same stability conditions as those for the CC model. This is a convenient definition
in view of the fact that we evaluate policies by this same criterion.

4 Sce Kozin [4] for discussion of some of these concepts.
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Deriving the asymptotic variance of y, from (18), we obtain

(I + o + 4% — 22b — az[uvzz(l —AMb =) —a,d

2 1 - , MO =
(19) o} = (1=l + ¥ = b*] — a?[(1 + )a,, — ba,, — b1 — c)a,,

+ (1 - Aa,, — a*[ay,ay, — aya;,]]
where
A == (=)0 = (1 = Ay, — 2b) + (1 — %3 + 42
@y =(1 = Ap,[200 = (1 = Ayy) — ab), @y, = Al — (1 = Ay,),
az, = M1 — 2)y,.
It is possible—though very tedious—to show that

agtl o 3

= >0
6(72’62._.0 602 a2=0
(20) utlgt] forf >0
gt/g5
00’2 a?=0 > 0

where g} and g3 are the optimal proportional and derivative controls. Thus,
the presence of slight variability of the lag coefficients leads to weaker derivative
and relatively stronger proportional controls than would be optimal in the
absence of the variability. (The proportional control may actually increase
absolutely.) Basically, feedback controls use the level of output and changes in
output as guides to the behavior of the additive error term. When lag coeflicients
become variable, the level of output becomes a less safe guide to the behavior of
the additive error—but the change in output is doubly less safe.® Thus, relatively
more weight is thrown on the proportional control.

It is clear that, in the RC model, we do not obtain certainty equivalence
results. This is a consequence of the fact that the current policy variable, x,,
affects current income subject to a multiplicative error.®

It can also be shown—once more at some length-—that

0oy 8
081l =0

[g2=0

, where ~ means *‘of the same sign as.”
do !
1

ag.’.!g,=0
ig2=0

That is, the use of weak proportional or derivative controls is bound to be
stabilizing relative to CGRR if 8 is positive—whatever the variability and length
of the lags.

* This explanation requires the first autocovariance of income 1o be small, which it is a1 g2 = 0
and with optimal control. (In fact, there is zero autocovariance at this point.)

® See Brainard {1] for a fuller discussion of circumstances under which cerlainty equivalence is
obtained. Our rules which give perfect control in the CC model are certainly equivalence rules. Also,
if in (11), we had made the first A (thal multiplying y,_ 1) stochastic, and had otherwise had constant
coefiicients, we would have obtained the same rules for the RC model as for the CC—which itlustrates
the certainty equivalence principle.
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it is, unfortunately, difficult to minimize {19) analytically with respect to

v, and y, to study the behavior of the system. Accordingly, we have used (19)
te compute optimal rules, stability regions and isovariance loci numerically for

a number of combinations of A. f and a*. In Figure 2 we present a typical diagram

—-for thecase 4 = 0.8, = 0.5, 6% = 0.0278--produced in our numerical analysis :
the large shaded area is the stability region in that values of g, and g, outside
that area make the system completely unstable; the inner drawn locus is the
CGRR isovariance locus—values of g, and g, within this region reduce vartance
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below that obtained under CGRR ; plus signs ( + ) and asterisks (*) trace the loci
on which the first-order conditions for g, and g,, respectively, are satisfied ; the
optimal values of g, and g, are, of course, at the intersection of these two loci.

We produced such diagrams for values of 4 and f# of 0.2. 0.5, and 0.8. and
six values of o2 for each of the nine combinations of 4 and §. In each case we took
B, as belonging to the beta distribution, and computed the variance of f, for a
number of integer-valued parameters of that distribution.” It is perhaps worth
emphasizing that the results presented below are not simulation results—we use
the analytical expression (19) for the asymptotic variance of output to compute
optimal rules numerically.

Our major results are presented in Tables 1 and 2. Table 1 contains results
for r = 1, Table 2 results for r = 2. The four entries in a row for each comnbination
of 4, B and o? are, in order, the optimal g, (g}), the optimal g, (g3), the value of
the variance of output at the optimum (ai), and the value of the variance under
CGRR (o). In addition to the results of the tables, we shall mention results
based on examination of the diagrams such as Figure 2 for the cases presented.
We consider now in turn the eftects of changes in (A) the variability of lags, (B) the
length of the policy lag, (C) the length of the system lag.

TABLE 2
OpriMaL CONTROLS AND VARIANCES FOR » = 2, 4 = 0.8, f = 0.5

;=08

g g} a; 73

B=05 o? = 00278 ~05 ~275 1.32 1.39
0.0147 ~06 -45 1.26 1.36

0.0076 ~0.7 -6.75 121 1.35

0.0035 ~06 ~90 117 1.34

0.00031 04 ~135 112 1.34

0 ~0.36 —144 L1 1.33

A. Variability of Lags

Most of these results are in accord with intuition.

(i) The minimal attainable variance increases with a°.

(i) For small 62, increases in 67 increase the relative strength of the propor-
tional control and decrease absolutely that of the derivative control; as ¢?
continues to increase both controls are reduced absolutely. This result has been
explained above. Note that the controls 7, and y, (equation (7)) both decrease in
strength with o2,

(i) The area of the outer stability region shrinks with o>—the larger is ¢°
the more likely is any particular pair of controls to destabilize the system.

" We used those inleger paramelers of the bela disiribution which produced the maximum
variance for each value of the mean (8 = 0.2 and 0.8), and then increased these paramelers 1o reduce
the variance of 8,. The maximum variance for § = 0.5 is much larger than thai for the other 1wo cases :
this larger variance, 0.0833, resulls from the degeneralion of the bela dislribution inlo the uniform
distribution. We do nol present 1his case in Table | or Table 2.
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