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Paolo Foschi∗, Stefano Pagliarani† and Andrea Pascucci‡

July 29, 2011

Abstract

We develop approximate formulae expressed in terms of elementary
functions for the density, the price and the Greeks of path dependent
options of Asian style, in a general local volatility model. An algo-
rithm for computing higher order approximations is provided. The
proof is based on a heat kernel expansion method in the framework of
hypoelliptic, not uniformly parabolic, partial differential equations.

1 Introduction

Asian options are path dependent derivatives whose payoff depends on
some form of averaging prices of the underlying asset. Asian-style deriva-
tives are widely traded in both exchanges and over-the-counter markets and
constitute an important family of contracts with several applications.

From the theoretical point of view, arithmetically-averaged Asian op-
tions have attracted an increasing interest in the last decades due to the
awkward nature of the related mathematical problems. Indeed, even in the
standard Black & Scholes (BS) model, when the underlying asset is a geo-
metric Brownian motion, the distribution of the arithmetic average is not
lognormal and it is quite complex to analytically characterize it. An integral
representation was obtained in the pioneering work by Yor [46, 47], but with
limited practical use in the valuation of Asian options.

Later on, Geman and Yor [21] gave an explicit representation of the
Asian option prices in terms of the Laplace transform of hypergeometric
functions. However, several authors (see Shaw [38], Fu, Madan and Wang
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Università di Bologna, Via Belle Arti 41, 40126 Bologna, Italy

†Email: stefanop@math.unipd.it, Dipartimento di Matematica, Università di Padova,
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[19], Dufresne [17]) noticed the greater difficulty of pricing Asian options
with short maturities or small volatilities using the analytical method in
[21]. This is also a disadvantage of the Laguerre expansion proposed by
Dufresne [15]. In [39] Shaw used a contour integral approach based on
Mellin transforms to improve the accuracy of the results in the case of low
volatilities, albeit at a higher computational cost.

Several other numerical approaches to price efficiently Asian options in
the BS model have been attempted. Monte Carlo simulation techniques
were discussed by Kemna and Vorst [31], Boyle, Broadie and Glasserman
[6], Fu, Madan and Wang [19], Jourdain and Sbai [29] and Guasoni and
Robertson [24]. Takahashi and Yoshida [42] used Monte Carlo simulation
combined with an asymptotic method based on Malliavin-Watanabe calcu-
lus. Linetsky [34] analyzed the problem using the spectral theory of singular
Sturm-Liouville operators and obtained an eigenfunction expansion of the
Asian option pricing function in the basis of Whittaker functions: Linetsky’s
series formula gives very accurate results, however it may converge slowly
in the case of low volatility becoming computationally expensive.

Concerning the PDE approach, the averaging price for an Asian op-
tion is usually described by introducing an additional stochastic process
(cf. Dewynne and Wilmott [13]): state augmentation converts the path-
dependent problem into an equivalent path-independent and Markovian
problem. Increasing the dimension causes the resulting pricing PDE to
be degenerate and not uniformly parabolic: theoretical results for a class of
hypoelliptic PDEs, which includes Asian equations of European and Amer-
ican style as particular cases, were proved by Barucci, Polidoro and Vespri
[4], Di Francesco, Pascucci and Polidoro [14], Pascucci [35] and Bally and
Kohatsu-Higa [3]. We recall that, in the BS model and for special homoge-
neous payoff functions, it is possible to reduce the study of Asian options to
a PDE with only one state variable: PDE reduction techniques were initi-
ated by Ingersoll [28] and developed by Rogers and Shi [37] and Zhang [48].
Similarly, Vecer [44], [45] used a change of numeraire technique to reduce the
Asian pricing problem to a single spatial variable PDE that can be solved
numerically by standard schemes; moreover, Glasgow and Taylor [22], Tay-
lor [43] and Caister, O’Hara and Govinder [8] proposed a general study of
symmetries for the Asian PDE and found other nontrivial reductions of the
pricing equation.

The reduced PDE formulation was used by Dewynne and Shaw [12]
to derive accurate approximation formulae for Asian-rate Call options in
the BS model by a matched asymptotic expansion. In general, analytical
approaches based on perturbation theory and asymptotic expansions have
several advantages with respect to standard numerical methods: first of all,
analytical approximations give closed-form solutions that exhibit an explicit
dependency of the results on the underlying parameters. Moreover ana-
lytical approaches produce much better and much faster sensitivities than
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numerical methods, although often accurate error estimates are not trivial
to obtain. Asymptotic methods for Asian options with explicit error bounds
were studied by Corielli, Foschi and Pascucci [9] by PDEs techniques, and by
Kunitomo and Takahashi [32], Shiraya and Takahashi [40], Shiraya, Taka-
hashiand and Toda [41], Gobet [23] by Malliavin calculus techniques.

While most of the literature focuses on the log-normal dynamics and
provides ad-hoc methods for pricing Asian options in the special case of
the BS model, there are some notable exceptions given by the very recent
papers by Bayraktar and Xing [5], Cai and Kou [7] where models with jumps
are considered. Moreover Dufresne [16], Dassios and Nagaradjasarma [11]
consider the square-root dynamics.

In this paper we consider the pricing problem for Asian options un-
der a local volatility (LV), possibly time-dependent, model. In this general
framework, dimension reduction is not possible anymore: then our idea is
to use the natural geometric-differential structure of the pricing operator
regarded as a hypoelliptic (not uniformly parabolic) PDE of Kolmogorov
type in R3. Our main results are explicit, BS-type approximation formulae
not only for the option price, but also for the the terminal distribution of the
asset and the average; further we also get explicit approximation formulae
for the Greeks that appear to be new also in the standard log-normal case.
Under the BS dynamics, our formulae are extremely accurate if compared
with other results in the literature. In a general LV model, we have only a
comparison with Monte Carlo simulations and in this case the results are
effectively exact under standard parameter regimes. An interesting feature
of our methodology is that, in the case of linear payoff functions of the form

ϕ(S,A) = ϕ1 + ϕ2S + ϕ3A,

with ϕ1,ϕ2,ϕ3 ∈ R, the resulting approximation formula is exact at order
zero and all the higher order terms are null (cf. Remark 2.4): this seems a
significant consistency result. Since the approximation formulae for a general
LV model are rather long, in this paper we only give the explicit expression in
the first order case and provide a general iterative algorithm for computing
the higher order approximations, which can be easily implemented in any
symbolic computational software: the Mathematica notebook containing the
general formulae and the experiments reported in Section 3 is available in the
web-site of the authors. The theoretical problem of the convergence and the
error estimates for the expansion will not be addressed here: Corielli, Foschi
and Pascucci [9] recently found global error bounds, based on Schauder
estimates, for a similar expansion for degenerate PDEs of Asian type. It
turns out that theoretical error estimates are generally very conservative
and experimental results show that the explicit formulae have very good
precision even in extreme cases; further, the assumptions needed to prove
the theoretical results rule out models of practical interest such as the CEV
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model. Finally, we mention that our method can also be applied to other
path-dependent models driven by hypoelliptic degenerate PDEs, namely the
models proposed by Hobson and Rogers [26] and Foschi and Pascucci [18].
Moreover, jump-diffusion models can be considered as well. We aim to come
back to these and other topics in a forthcoming paper.

The remainder of the paper is organized as follows. Section 2 describes
arithmetic and geometric Asian options, sets up the valuation problem by
PDE methods and introduces our notations. Subsection 2.1 presents the
approximation methodology and Subsection 2.2 states some preliminary re-
sult on linear SDEs. Subsection 2.3 contains the main results of the paper
and in Subsection 2.4 the first order approximation formulae are derived in
the case of time-independent coefficients. Section 3 presents computational
results.

2 Asian options and linear SDEs

We consider a standard market model where there is a risky asset S
following the stochastic differential equation

dSt = (r(t)− q(t))Stdt+ σ(t, St)StdWt (2.1)

under the risk-neutral measure. In (2.1), r(t) and q(t) denote the risk-free
rate and the dividend yield at time t respectively, σ is the local volatility
function and W is a standard real Brownian motion.

The averaging prices for an Asian option are usually described by the
additional state process

dAt = f(t, St)dt. (2.2)

In particular, for the continuously sampled Asian options we typically have

f(t, s) = g(t)s (arithmetic average option),

f(t, s) = g(t) log s (geometric average option),

where g is some weight function. In the sequel, for simplicity, we shall
only consider the case g ≡ 1 even if our methodology can include a generic
positive weight g. By usual no-arbitrage arguments, the price of a European
Asian option with payoff function ϕ is given by

V (t, St, At) = e−
∫ T
t

r(τ)dτu(t, St, At)

where
u(t, St, At) = E [ϕ (ST , AT ) | St, At] . (2.3)
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Typical payoff functions are given by

ϕ(S,A) =

(

A

T
−K

)+

(fixed strike arithmetic Call),

ϕ(S,A) =

(

S − A

T

)+

(floating strike arithmetic Call),

ϕ(S,A) =
(

e
A
T −K

)+
(fixed strike geometric Call),

ϕ(S,A) =
(

S − e
A
T

)+
(floating strike geometric Call).

Clearly, Asian Puts can be considered as well: we recall that symmetry
results, analogous to the standard Put-Call parity, between the floating and
fixed-strike Asian options were proved by Henderson and Wojakowski [25].

By Feynman-Kac representation, the price function u in (2.3) is the
solution to the Cauchy problem

{

Lu(t, s, a) = 0, t < T, s, a ∈ R+,

u(T, s, a) = ϕ(s, a), s, a ∈ R+,

where L is the ultra-parabolic1 pricing operator:

L =
σ2(t, s)s2

2
∂ss + (r(t)− q(t))s∂s + f(t, s)∂a + ∂t. (2.4)

Under suitable regularity and growth conditions, existence and uniqueness of
the solution to the Cauchy problem for L were proved by Barucci, Polidoro
and Vespri [4].

Remark 2.1. Consider the geometric Asian option under the BS dynamics:
by the standard log-change of variable

Xt = (log St, At)

equations (2.1)-(2.2) are transformed into the system of linear SDEs

dX1
t =

(

r(t)− q(t)− σ2(t)

2

)

dt+ σ(t)dWt,

dX2
t = X1

t dt.

(2.5)

Thus X is a Gaussian process with 2-dimensional normal transition density
Γ that is the fundamental solution of the differential operator

K :=
σ2(t)

2
(∂x1x1 − ∂x1) + (r(t)− q(t)) ∂x1 + x1∂x2 + ∂t, x ∈ R

2.

1
L is defined on R

3 but contains only the second order derivative w.r.t the variable s:
thus L is not a uniformly parabolic operator.
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The expression of Γ is given in Subsection 2.2 and explicit formulae for fixed
and floating strike geometric Asian options can be easily found: Kemna and
Vorst [31] have derived the first exact valuation formula for the geometric
average Asian option. We also mention Angus [2] who considered more
general payoffs.

2.1 Approximation methodology

In this subsection we briefly recall the approximation technique proposed
by Pagliarani and Pascucci in [36] and adapt it to Asian options. This
allows us to get a new expansion formula for the fundamental solution of
the arithmetic Asian operator (cf. (2.4) with f(t, s) = s). The coefficients
of the expansion will be computed explicitly in Subsection 2.3.

We consider the operator

L =
α(t, s)

2
∂ss + (r(t)− q(t))s∂s + s∂a + ∂t (2.6)

where
α(t, s) = σ2(t, s)s2 (2.7)

We assume that α is a suitably smooth, positive function and we take the
Taylor expansion of α(t, ·) about s0 ∈ R+: then formally we get

L = L0 +
∞
∑

k=1

(s− s0)
kαk(t)∂ss (2.8)

where, setting α0(t) = α(t, s0),

L0 =
α0(t)

2
∂ss + (r(t)− q(t))s∂s + s∂a + ∂t, (2.9)

is the leading term in the approximation of L and

αk(t) =
1

2k!
∂k
sα(t, s0), k ≥ 1.

Notice that L0 in (2.9) is the Kolmogorov operator associated to the system

dSt = (r(t)− q(t))Stdt+
√

α0(t)dWt,

dAt = Stdt.
(2.10)

Remark 2.2. As in the geometric case, (2.10) is a system of linear SDEs
whose solution (S,A) has a 2-dimensional normal transition density Γ0.
Moreover Γ0 is the Gaussian fundamental solution of L0 in (2.9) and its
explicit expression will be given in Subsection 2.2.
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Following [36], the fundamental solution Γ of the pricing operator L in
(2.6) admits an expansion of the form

Γ(t, s, a;T, S,A) =
∞
∑

n=0

Gn(t, s, a;T, S,A) (2.11)

where

G0(t, s, a;T, S;A) = Γ0(t, s, a;T, S;A), t < T, s, a, S,A ∈ R,

and Gn (·;T, S,A), for any n ≥ 1 and T, S,A, is defined recursively in terms
of the following sequence of Cauchy problems posed on ]−∞, T [×R2:







L0Gn(t, s, a;T, S;A) = −
n
∑

k=1
(s− s0)kαk(t)∂ssGn−k(t, s, a;T, S;A),

Gn(T, s, a;T, S;A) = 0, s, a ∈ R.

(2.12)
For instance, G1 (·;T, S,A) is defined by

{

L0G1(t, s, a;T, S;A) = −(s− s0)α1(t)∂ssG0(t, s, a;T, S;A),

G1(T, s, a;T, S;A) = 0, s, a ∈ R,
(2.13)

and for n = 2 we have










L0G2(t, s, a;T, S;A) = −(s− s0)α1(t)∂ssG1(t, s, a;T, S;A)

−(s− s0)2α2(t)∂ssG0(t, s, a;T, S;A),

G2(T, s, a;T, S;A) = 0, s, a ∈ R.

(2.14)

Remark 2.3. Under the BS dynamics, the diffusion coefficient in (2.7) is
of the form

α(t, s) = σ(t)s2

where t '→ σ(t) is a deterministic function. Thus

αn ≡ 0, n ≥ 3,

and in this particular case, the sequence of Cauchy problems in (2.12) reduces
to











L0Gn(t, s, a;T, S;A) = −(s− s0)α1(t)∂ssGn−1(t, s, a;T, S;A)

−(s− s0)2α2(t)∂ssGn−2(t, s, a;T, S;A),

Gn(T, s, a;T, S;A) = 0, s, a ∈ R,

for n ≥ 2. A similar reduction holds for any diffusion coefficient of polyno-
mial type in the variable s.
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In general, the sequence (Gn)n≥1 defined by (2.12) can be computed
explicitly by an iterative algorithm: this will be detailed in Subsection 2.3 by
using the results on linear SDEs presented in Subsection 2.2. In particular,
it turns out that

Gn(t, s, a;T, S;A) = Jn
t,T,s,aG

0(t, s, a;T, S;A), n ≥ 0,

where J0
t,T,s,a is the identity operator and, for n ≥ 1, Jn

t,T,s,a is a differential
operator, acting in the variables s, a, of the form

Jn
t,T,s,a =

n
∑

k=0

sk
3n
∑

i=2

i
∑

j=0

fn
i−j,j,k(t, T )

∂i

∂si−j∂aj
,

and the coefficients fn
i−j,j,k are deterministic functions whose explicit expres-

sion can be computed iteratively as in Theorem 2.7 and Remark 2.8 below.
Thus, by (2.11), the N -th order approximation of Γ is given by

Γ(t, s, a;T, S,A) ≈
N
∑

n=0

Jn
t,T,s,aG

0(t, s, a;T, S,A).

Moreover we have the following N -th order approximation formula for the
price of an arithmetic Asian option with payoff function ϕ:

u(t, St, At) =

∫∫

Γ(t, s, a;T, S,A)ϕ(S,A)dSdA

≈
∫∫

ΓN (t, s, a;T, S,A)ϕ(S,A)dSdA

=
N
∑

n=0

Jn
t,T,s,aC0(t, s, a) =: uN (t, St, At) (2.15)

where

C0(t, s, a) =

∫∫

Γ0(t, s, a;T, S,A)ϕ(S,A)dSdA. (2.16)

Notice that C0 is the price of a geometric Asian option under the BS dynam-
ics and therefore for typical payoff functions it has a closed form expression.
Similarly we obtain explicit approximation formulae for the Greeks and for
any other payoff which admits an explicit pricing formula in the geometric
case.

Remark 2.4. Let us consider an affine payoff function of the form

ϕ(S,A) = ϕ1 + ϕ2S + ϕ3A,

with ϕ1,ϕ2,ϕ3 ∈ R. Then a direct computation shows that

C0(t, s, a) = ϕ1 + 〈(ϕ2,ϕ3),mt,s,a(T )〉
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with mt,s,a(T ) as in (2.30). Since C0(t, s, a) is again an affine function of
(s, a), we have that

Jn
t,T,s,aC0(t, s, a) = 0, ∀n ≥ 1,

and therefore uN ≡ u0 in (2.15), for any N ∈ N. Moreover, by the unique-
ness of the solution of the Cauchy problem for L, we also have u0 = u, that
is when the payoff is an affine function of S and A, then the first approxima-
tion is exact and all the higher order terms are null. Roughly speaking, this
property follows from the fact that the differential operators L and L0 have
the same first order part and only differ in the coefficient of their second
order derivative.

2.2 Non-degeneracy conditions for linear SDEs

In this subsection we collect some preliminary results on linear SDEs
that will be used in the derivation of the approximation formulae for the
arithmetic density. First notice that equations (2.5) and (2.10) belong to
the general class of linear SDEs

dXt = (B(t)Xt + b(t)) dt+ σ(t)dWt, (2.17)

where b,B and σ are L∞
loc-functions with values in the space of (N×1), (N×

N) and (N×d)-dimensional matrices respectively and W is a d-dimensional
uncorrelated Brownian motion, with d ≤ N . The solution X = Xt,x to
(2.17) with initial condition x ∈ RN at time t, is given explicitly by

XT = Φ(t, T )

(

x+

∫ T

t
Φ−1(t, τ)b(τ)dτ +

∫ T

t
Φ−1(t, τ)σ(τ)dWτ

)

,

where T '→ Φ(t, T ) is the matrix-valued solution to the deterministic Cauchy
problem

{

d
dT Φ(t, T ) = B(T )Φ(t, T ),

Φ(t, t) = IN .

Moreover Xt,x is a Gaussian process with expectation

mt,x(T ) := E
[

Xt,x
T

]

= Φ(t, T )R(x, t, T ), (2.18)

where

R(x, t, T ) = x+

∫ T

t
Φ−1(t, τ)b(τ)dτ (2.19)

and covariance matrix

C(t, T ) = cov
(

Xt,x
T

)

= Φ(t, T )M(t, T )Φ(t, T )∗, (2.20)
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where

M(t, T ) =

∫ T

t
Φ−1(t, τ)σ(τ)

(

Φ−1(t, τ)σ(τ)
)∗

dτ. (2.21)

The Kolmogorov operator associated with X is

K =
1

2

N
∑

i,j=1

cij(t)∂xixj + 〈b(t) +B(t)x,∇〉+ ∂t (2.22)

=
1

2

N
∑

i,j=1

cij(t)∂xixj +
N
∑

i=1

bi(t)∂xi +
N
∑

i,j=1

Bij(t)xi∂xj + ∂t,

where (cij) = σσ∗.
Now we assume the following crucial condition:

[H.1] the matrix C(t, T ) (or equivalently, the matrix M(t, T )) is positive
definite for any T > t.

Under this condition, Xt,x
T has a transition density given by

ΓK(t, x, T, y) =
1

√

(2π)N detC(t, T )
e−

1
2 〈C

−1(t,T )(y−mt,x(T )),y−mt,x(T )〉.

(2.23)
ΓK is also the fundamental solution of K in (2.22). Condition [H.1] can be
expressed in geometric-differential terms: in fact, it is known that [H.1] is
equivalent to the following condition due to Hörmander [27]

[H.2] rank L(Y1, · · · , Yd, Y )(t, x) = N + 1, (t, x) ∈ RN+1,

where L(Y1, · · · , Yd, Y ) denotes the Lie algebra generated by the vector fields
in RN+1

Yi =
N
∑

j=1

σji∂xj , i = 1, . . . , d

and
Y = 〈B(t)x+ b(t),∇〉+ ∂t. (2.24)

In other terms, L(Y1, · · · , Yd, Y )(t, x) is the vector space spanned by the vec-
tor fields Y1, · · · , Yd, Y , by their first order commutators [Yk, Y ], k = 1, . . . , d,
where [Yk, Y ]u := YkY u − Y Yku and by their higher order commutators
[Yj, ..., [Yk , Y ]...], evaluated at the point (t, x).

Hörmander’s condition and [H.1] are also equivalent to another condition
from control theory: for any T > 0, a curve x : [0, T ] '−→ RN is called K-
admissible if it is absolutely continuous and satisfies

x′(t) = B(t)x(t) + b(t) + σ(t)w(t), a.e. in [0, T ], (2.25)
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for a suitable function w with values in Rd (notice the close analogy with
the SDE (2.17)). The function w is called the control of the path x. A
fundamental result by Kalman, Ho and Narendra [30] states that [H.1] is
equivalent to the following condition:

[H.3] for every x0, x1 ∈ RN and T > 0, there exists a K-admissible path
such that x(0) = x0 and x(T ) = x1.

When B and σ are constant matrices, then [H.3] is equivalent to the well
known Kalman’s rank condition (we also refer to LaSalle [33] where this
result first appeared)

rank
(

σ Bσ . . . BN−1σ
)

= N.

An analogous condition for time-dependent matrices σ(t) and B(t) was given
by Coron [10], Agrachev and Sachkov [1].

The following simple result will be crucial in the sequel.

Proposition 2.5. Under assumption [H.1], we have

∇yΓK(t, x, T, y) = −
(

Φ−1(t, T )
)∗ ∇xΓK(t, x, T, y), (2.26)

yΓK(t, x, T, y) = Φ(t, T ) (R(x, t, T ) +M(t, T )∇x)ΓK(t, x, T, y), (2.27)

for any x, y ∈ RN and t < T .

Proof. The density ΓK in (2.23) can be rewritten in the equivalent form

ΓK(t, x, T, y) =
e−

1
2 〈M

−1(t,T )(Φ−1(t,T )y−R(x,t,T )),Φ−1(t,T )y−R(x,t,T )〉

√

(2π)N detC(t, T )
.

By differentiating, we get

∇xΓK(t, x, T, y)

ΓK(t, x, T, y)
= M−1(t, T )

(

Φ−1(t, T )y −R(x, t, T )
)

(2.28)

and

∇yΓK(t, x, T, y)

ΓK(t, x, T, y)
= −

(

Φ−1(t, T )
)∗

M−1(t, T )(Φ−1(t, T )y −R(x, t, T )) =

(by (2.28))

= −
(

Φ−1(t, T )
)∗ ∇xΓK(t, x, T, y)

ΓK(t, x, T, y)
,

and this proves (2.26). Formula (2.27) follows immediately from (2.28).
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2.3 Approximation formulae for the density

We consider the operator

L0 =
α0(t)

2
∂ss + µ(t)s∂s + s∂a + ∂t, (t, s, a) ∈ R

3, (2.29)

that is the leading term in the approximation of arithmetic Asian options,
as in (2.9) with

µ = r − q.

According to notations of Subsection 2.2, we have b = 0 and

B(t) =

(

µ(t) 0
1 0

)

.

Hence we have

Φ(t, T ) =

(

e
∫ T
t µ(τ)dτ 0

∫ T
t e

∫ τ1
t µ(τ2)dτ2dτ1 1

)

,

mt,s,a(T ) =

(

s e
∫ T
t µ(τ)dτ

a+ s
∫ T
t e

∫ τ1
t µ(τ2)dτ2dτ1

)

,

M(t, T ) =

∫ T

t
α0(τ)e

−2
∫ τ
t
µ(τ1)dτ1

·





1 −
∫ τ
t e

∫ τ1
t µ(τ2)dτ2dτ1

−
∫ τ
t e

∫ τ1
t µ(τ2)dτ2dτ1

(

∫ τ
t e

∫ τ1
t µ(τ2)dτ2dτ1

)2



 dτ.

(2.30)

It is easy to verify that M(t, T ) (and the covariance matrix C(t, T )) is posi-
tive definite by checking Hörmander’s condition [H.2]: indeed, the commu-
tator of the vector fields

Y1 =
√

α0(t)∂s, Y = µ(t)s∂s + s∂a + ∂t

is equal to
[Y1, Y ] =

√

α0(t) (µ(t)∂s + ∂a)

and therefore, assuming that α0 > 0, then the rank of the Lie algebra
generated by Y1 and Y is equal to three.

If µ and α0 are constant, all computations can be carried out more
explicitly and we have

Φ(t, T ) = e(T−t)B =

(

eµ(T−t) 0
eµ(T−t)−1

µ 1

)

mt,s,a(T ) =

(

eµ(T−t)s

a+
(eµ(T−t)−1)s

µ

)

M(t, T ) = α0





1−e−2µ(T−t)

2µ −(1−e−µ(T−t))2

2µ2

−(1−e−µ(T−t))2

2µ2
4e−µ(T−t)−e−2µ(T−t)+2µ(T−t)−3

2µ3



 .

(2.31)
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In particular, for µ = 0 we get

Φ(t, T ) =

(

1 0
T − t 1

)

, M(t, T ) = α0

(

T − t − (T−t)2

2

− (T−t)2

2
(T−t)3

3

)

.

Now let us recall the notation Γ0(t, s, a;T, S,A) for the fundamental so-
lution of L0 in (2.29). In Corollary 2.6 below we reformulate more explicitly
the properties of Γ0 stated in Proposition 2.5. To this end and to shorten
notations, we introduce the operator

Vt,T,s,a =

(

Φ(t, T )

((

s
a

)

+M(t, T )∇s,a

))

1

, (2.32)

where in general, for a given vector Z, we use the subscript Z1 to denote its
first component. Moreover, we define the differential operator W i,j

t,T as the
composition

W i,j
t,T,s,a = W i

1,t,T,s,aW
j
2,t,T,s,a (2.33)

of the first order operators

Wk,t,T,s,a =
(

(

Φ−1(t, T )
)∗ ∇s,a

)

k
k = 1, 2. (2.34)

As a direct application of Proposition 2.5, we have the following results which
shows how the product and the derivatives with respect to the second set of
variables of Γ0(t, s, a;T, S,A) can be expressed in terms of the operators V
in (2.32) and W and (2.33), acting in the first set of variables (i.e. t, s, a).

Corollary 2.6. For any t < T , s, a, S,A ∈ R and i, j ∈ N ∪ {0} we have

SiΓ0(t, s, a;T, S,A) = V i
t,T,s,a Γ

0(t, s, a;T, S,A), (2.35)

∂i+j

∂Si∂Aj
Γ0(t, s, a;T, S,A) = (−1)i+jW i,j

t,T,s,a Γ
0(t, s, a;T, S,A). (2.36)

Next we prove our main result.

Theorem 2.7. For any n ≥ 0, the solution Gn of problem (2.12) is given
by

Gn(t, s, a;T, S,A) = Jn
t,T,s,aΓ

0(t, s, a;T, S,A) (2.37)

where Γ0 is the fundamental solution of L0 in (2.29), J0
t,T,s,a is the identity

operator and, for n ≥ 1, Jn
t,T,s,a is a differential operator of the form

Jn
t,T,s,a =

n
∑

k=0

sk
3n
∑

i=2

i
∑

j=0

fn
i−j,j,k(t, T )

∂i

∂si−j∂aj
. (2.38)
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The coefficients fn
i−j,j,k(t, T ) in (2.38) are deterministic functions that can

be determined iteratively by using the following alternative expression of Jn,
n ≥ 1, given in terms of the operators V and W in (2.32)-(2.33):

Jn
t,T,s,a =

n
∑

i=1

∫ T

t

αi(τ)(Vt,τ,s,a − s0)
iW 2,0

t,τ,s,aĴ
n−i
t,τ,T,s,adτ (2.39)

where Ĵ0
t,τ,T,s,a is the identity operator and

Ĵn
t,τ,T,s,a =

n
∑

k=0

3n
∑

i=2

i
∑

j=0

fn
i−j,j,k(t, T )V

k
t,τ,s,aW

i−j,j
t,τ,s,a. (2.40)

Proof. We first remark that, if we assume Jn
t,T,s,a and Ĵn

t,τ,T,s,a as in (2.38)
and (2.40) respectively, then by Corollary 2.6, for any τ ∈]t, T [, we have

∫

R2
Γ0(t, s, a; τ, ξ, η)Jn

τ,T,ξ,ηΓ
0(τ, ξ, η;T, S,A)dξdη

=

∫

R2
Ĵn
t,τ,T,s,aΓ

0(t, s, a; τ, ξ, η)Γ0(τ, ξ, η;T, S,A)dξdη =

(here Ĵn
t,τ,T,s,a plays the role of the “adjoint” operator of Jn

τ,T,ξ,η)

= Ĵn
t,τ,T,s,a

∫

R2
Γ0(t, s, a; τ, ξ, η)Γ0(τ, ξ, η;T, S,A)dξdη =

(by the semigroup property of Γ0)

= Ĵn
t,τ,T,s,aΓ

0(t, s, a;T, S,A). (2.41)

Next we prove the thesis by induction. For n = 1, by the representation
formula for the non-homogeneous parabolic Cauchy problem (2.13) with null
final condition, we have

G1(t, s, a;T, S,A) =

=

∫ T

t

∫

R2
Γ0(t, s, a; τ, ξ, η)α1(τ)(ξ − s0)∂ξξΓ

0(τ, ξ, η;T, S,A)dξdηdτ =

(by (2.35))

=

∫ T

t

α1(τ)(Vt,τ,s,a − s0)

∫

R2
Γ0(t, s, a; τ, ξ, η)∂ξξΓ

0(τ, ξ, η;T, S,A)dξdηdτ =

(by parts and by (2.36))

=

∫ T

t
α1(τ)(Vt,τ,s,a − s0)W

2,0
t,τ,s,a

∫

R2
Γ0(t, s, a; τ, ξ, η)Γ0(τ, ξ, η;T, S,A)dξdηdτ =

14



(by the semigroup property of Γ0)

=

∫ T

t
α1(τ)(Vt,τ,s,a − s0)W

2,0
t,τ,s,aΓ

0(t, s, a;T, S,A)dτ.

This proves (2.37)-(2.39) for n = 1, that is

G1(t, s, a;T, S,A) = J1
t,T,s,aΓ

0(t, s, a;T, S,A),

where

J1
t,T,s,a =

∫ T

t
α1(τ)(Vt,τ,s,a − s0)W

2,0
t,τ,s,adτ. (2.42)

Using (2.42) and the explicit expression of the operators V,W in (2.32)-
(2.33)-(2.34) given in terms of Φ,M in (2.30), we can easily rewrite J1

t,T,s,a

in the form (2.38): we refer to Remark 2.8 below for the details and the
derivation of the explicit expression of the coefficients f1

i−j,j,k.

Now we assume that (2.37), (2.38) and (2.39) are valid for a generic but
fixed n and we prove them for n+1. Using again the standard representation
formula for non-homogeneous parabolic Cauchy problem (2.12) with null
final condition, we have

Gn+1(t, s, a;T, S,A) =
n+1
∑

i=1

∫ T

t
αi(τ)Ii(t, s, y, τ, T, S,A)dτ, (2.43)

where

Ii(t, s, y, τ, T, S,A) =
∫

R2
Γ0(t, s, a; τ, ξ, η)(ξ − s0)

i∂ξξG
n+1−i(τ, ξ, η;T, S,A)dξdη =

(by Corollary 2.6)

= (Vt,τ,s,a − s0)
iW 2,0

t,τ,s,a

∫

R2
Γ0(t, s, a; τ, ξ, η)Gn+1−i(τ, ξ, η;T, S,A)dξdη =

(by the inductive hypothesis)

= (Vt,τ,s,a − s0)
iW 2,0

t,τ,s,a

∫

R2
Γ0(t, s, a; τ, ξ, η)Jn+1−i

τ,T,ξ,ηΓ
0(τ, ξ, η;T, S,A)dξdη

(by (2.41))

= (Vt,τ,s,a − s0)
iW 2,0

t,τ,s,aĴ
n+1−i
t,τ,T,s,a Γ

0(t, s, a;T, S,A). (2.44)

Plugging (2.44) into (2.43), we obtain formulae (2.37)-(2.39) and this con-
cludes the proof.
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Remark 2.8. Starting from formula (2.42)

J1
t,T,s,a =

∫ T

t

α1(τ)(Vt,τ,s,a − s0)W
2,0
t,τ,s,adτ,

we find the more explicit representation of J1
t,T,s,a in the form (2.38), that is

J1
t,T,s,a =

1
∑

k=0

sk
3
∑

i=2

i
∑

j=0

f1
i−j,j,k(t, T )

∂i

∂si−j∂aj
. (2.45)

We first remark that, by the definition (2.32), (2.33) and (2.34) of the op-
erators V and W , we have

Vt,τ,s,a = sΦ11(t, τ) +M11(t, τ)Φ11(t, τ)∂s +M21(t, τ)Φ11(t, τ)∂a

W 2,0
t,τ,s,a =

1

Φ11(t, τ)2
∂ss −

2Φ21(t, τ)

Φ11(t, τ)2
∂sa +

Φ21(t, τ)2

Φ11(t, τ)2
∂aa,

where Φij and Mij denote the components of the matrices Φ and M in (2.30)
respectively. Thus we get

(Vt,τ,s,a − s0)W
2,0
t,τ,s,a =

sΦ11(t, τ) − s0
Φ11(t, τ)2

∂ss +
2(s0 − sΦ11(t, τ))Φ21(t, τ)

Φ11(t, τ)2
∂sa

+
(sΦ11(t, τ)− s0)Φ21(t, τ)2

Φ11(t, τ)2
∂aa +

M11(t, τ)

Φ11(t, τ)
∂sss

+
M21(t, τ) − 2M11(t, τ)Φ21(t, τ)

Φ11(t, τ)
∂ssa

+
Φ21(t, τ)(M11(t, τ)Φ21(t, τ)− 2M21(t, τ))

Φ11(t, τ)
∂saa

+
M21(t, τ)Φ21(t, τ)2

Φ11(t, τ)
∂aaa.

Reordering all terms, we obtain the following expression for the coefficients
f1
i−j,j,k in (2.45):

f1
2,0,0(t, T ) = −s0

∫ T

t

α1(τ)

Φ11(t, τ)2
dτ,

f1
1,1,0(t, T ) = 2s0

∫ T

t

α1(τ)
Φ21(t, τ)

Φ11(t, τ)2
dτ,

f1
0,2,0(t, T ) = −s0

∫ T

t

α1(τ)
Φ21(t, τ)2

Φ11(t, τ)2
dτ,

f1
3,0,0(t, T ) =

∫ T

t
α1(τ)

M11(t, τ)

Φ11(t, τ)
dτ,

f1
2,1,0(t, T ) =

∫ T

t
α1(τ)

M21(t, τ)− 2M11(t, τ)Φ21(t, τ)

Φ11(t, τ)
dτ,
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f1
1,2,0(t, T ) =

∫ T

t

α1(τ)
Φ21(t, τ)(M11(t, τ)Φ21(t, τ)− 2M21(t, τ))

Φ11(t, τ)
dτ,

f1
0,3,0(t, T ) =

∫ T

t
α1(τ)

M21(t, τ)Φ21(t, τ)2

Φ11(t, τ)
dτ,

f1
2,0,1(t, T ) =

∫ T

t

α1(τ)

Φ11(t, τ)
dτ,

f1
1,1,1(t, T ) = −2

∫ T

t
α1(τ)

Φ21(t, τ)

Φ11(t, τ)
dτ,

f1
0,2,1(t, T ) =

∫ T

t
α1(τ)

Φ21(t, τ)2

Φ11(t, τ)
dτ,

f1
3,0,1(t, T ) = f1

2,1,1(t, T ) = f1
1,2,1(t, T ) = f1

0,3,1(t, T ) = 0.

Having the explicit representation of J1
t,T,s, from (2.40) we directly get the

expression of Ĵ1
t,τ,T,s,a:

Ĵ1
t,τ,T,s,a =

1
∑

k=0

3
∑

i=2

i
∑

j=0

f1
i−j,j,k(t, T )V

k
t,τ,s,aW

i−j,j
t,τ,s,a. (2.46)

Plugging (2.46) into (2.39) with n = 2, we can easily find J2
t,T,s,a and

Ĵ2
t,τ,T,s,a. By an analogous iterative procedure, we can compute the higher

order approximation formulae. In Section 3, we present some experiment
where we computed explicitly the operators Jn

t,T,s,a up to the third order for
r 0= q and up to the fifth order for r = q, to get very accurate results.

2.4 Time-independent coefficients

As an illustrative example, we work out the approximation formulae for
the density and the fixed-strike arithmetic Asian Call in a local volatility
model with time-independent coefficients: the BS and the Constant Elas-
ticity of Variance (CEV) models are meaningful particular cases. Hence we
assume the following risk-neutral dynamics for the asset

dSt = (r − q)Stdt+ σ(St)StdWt. (2.47)

We set
α(s) = σ2(s)s2, µ = r − q,

and consider the pricing operator

L =
α(s)

2
∂ss + µs∂s + s∂a + ∂t.

We also fix s0 > 0 and put

α0 = α(s0), αk =
1

2k!
∂k
sα(s0), k ≥ 1. (2.48)
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Then
L0 =

α0

2
∂ss + µs∂s + s∂a + ∂t (2.49)

is the leading term in the approximation of L. Since the parameters are
time independent, it is not restrictive to assume t = 0: accordingly, we
simplify the notations and we write Γ(s, a;T, S,A) and J1

T,s,a instead of

Γ(0, s, a;T, S,A) and J1
0,T,s,a respectively. The fundamental solution of L0

is given by

Γ0(s, a;T, S,A) =
1

2π
√

detC(T )
e−

1
2 〈C

−1(T )((S,A)−ms,a(T )),(S,A)−ms,a(T )〉,

(2.50)
with ms,a(T ) ≡ m0,s,a(T ) as in (2.31) and C(T ) ≡ C(0, T ) as in (2.20)-
(2.31).

For simplicity, we assume µ 0= 0 and report only the first order formulae:
the Mathematica notebook of higher order approximations is available in
the web-site of the authors.

By Theorem 2.7 the 1-st order approximation for the density is given by

Γ1(s, a;T, S,A) = Γ0(s, a;T, S,A) + J1
T,s,aΓ

0(s, a;T, S,A)

where

J1
T,s,a =

1
∑

k=0

sk
3
∑

i=2

i
∑

j=0

f1
i−j,j,k(T )

∂i

∂si−j∂aj
,

and f1
i−j,j,k(T ) ≡ f1

i−j,j,k(0, T ) are the deterministic functions defined in
Remark 2.8: specifically, in the case of time-independent coefficients, we
have

f1
i−j,j,k(T ) = α1αi−3gi−j,j,k(T )

with α−1 = 1, αi as in (2.48) for i = 0, 1 and where

g2,0,0 =

(

e−2Tµ − 1
)

s0

2µ
, g1,1,0 =

e−2Tµ
(

eTµ − 1
)2

s0

µ2
,

g0,2,0 =
s0
(

3 + e−2Tµ − 4e−Tµ − 2Tµ
)

2µ3
, g2,0,1 =

(

1− e−Tµ
)

µ
,

g1,1,1 = −
2
(

−1 + e−Tµ + Tµ
)

µ2
, g0,2,1 = −2(Tµ− sinh(Tµ))

µ3
,

g3,0,0 =

(

2 + e−3Tµ − 3e−Tµ
)

6µ2
,

g2,1,0 =

(

1− Tµ+ e−2Tµ(−1− sinh(Tµ))
)

µ3
,

g1,2,0 =
e−3Tµ

(

1− eTµ
)4

2µ4
,

g0,3,0 = −
(

−e−3Tµ + 6e−2Tµ − 18e−Tµ + 3eTµ + 2(5 − 6Tµ)
)

6µ5
,

(2.51)
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and gi−j,j,k = 0 when i+k = 4. Notice that the functions in (2.51) are model
independent: the particular form of the volatility enters in the approximation
formula only through Γ0 and the coefficients αn of the Taylor expansion of
the volatility function.

Accordingly, the first order approximation for the fixed-strike Asian Call
is given by

e−rTu(s, a, T ),

where

u(s, a, T ) = CBS(s, a, T ) +
1
∑

k=0

sk
3
∑

i=2

i
∑

j=0

f1
i−j,j,k(T )

∂i

∂si−j∂aj
CBS(s, a, T ),

and

CBS(s, a, T ) =

∫

R

∫

R

Γ0(s, a;T, S,A)

(

A

T
−K

)+

dSdA

=
e
−µβ(s,a,T )2

γ(T )
√

µ3γ(T )

2Tµ3
√
π

− µ2β(s, a, T )

Tµ3

(

1−N
(

β(s, a, T )

√

2µ

γ(T )

))

with

β(s, a, T ) = s− seTµ − aµ+KTµ, γ(T ) = α0
(

3− 4eµT + e2µT + 2µT
)

.

In the above formula, numerical errors due to cancellations for short maturi-
ties can be corrected by using the resulting series expansion. We also remark
that a suitable choice of s0 may improve the accuracy of the approximation
formula: as we shall see in Section 3, in most cases s0 = s is a convenient
choice that allows to get very accurate results.

3 Numerical experiments

In this section our approximation formulae are tested and compared
with method proposed by Linetsky [34], the Mellin transform based method
(Mellin500) of Shaw [39], the PDE method of Vecer [45], the matched asymp-
totic expansions of Dewynne and Shaw [12] (MAE3 and MAE5) and the
method of Dassios and Nagaradjasarma [11] (DN). Our 2nd, 3rd and 5th
order approximations will be denoted by FPP2, FPP3 and FPP5. In the
first part of this section a set of experimental results under BS dynamics are
reported, then in the second part the CEV dynamics is considered.
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3.1 Tests under Black & Scholes dynamics

In order to assess the performances of our approximations for pricing
arithmetic Call options under a BS model, we used the family of tests in-
troduced in [20], and later used in [11, 12, 15, 19, 34, 45] as a standard for
this task. Table 1 reports the interest rate r, the volatility σ, the time to
maturity T , the strike K and the initial asset price S0 for the seven cases.
In this set of tests a null dividend rate is assumed: q = 0. Table 2 reports

Case S0 K r σ T

1 2 2 0.02 0.1 1
2 2 2 0.18 0.3 1
3 2 2 0.0125 0.25 2
4 1.9 2 0.05 0.5 1
5 2 2 0.05 0.5 1
6 2.1 2 0.05 0.5 1
7 2 2 0.05 0.5 2

Table 1: Parameter values for seven test cases

Case Linetsky FPP3 FPP2 Mellin500 Vecer MAE3
1 0.05598604 0.05598604 0.05598602 0.05603631 0.055986 0.05598596
2 0.21838755 0.21838706 0.21838375 0.21835987 0.218388 0.21836866
3 0.17226874 0.17226694 0.17226600 0.17236881 0.172269 0.17226265
4 0.19317379 0.19316359 0.19320627 0.19297162 0.193174 0.19318824
5 0.24641569 0.24640562 0.24640056 0.24651870 0.246416 0.24638175
6 0.30622036 0.30620974 0.30615763 0.30649701 0.306220 0.30613888
7 0.35009522 0.35003972 0.35001419 0.34892612 0.350095 0.34990862

Table 2: Asian Call Option Prices when q = 0 (parameters as in Table 1)

the results of methods Linetsky, FPP3, FPP2, Mellin500, Vecer and MAE3.
The results of Linetsky, Vecer and MAE3 are taken from [34], [45] and [12],
respectively.

Following [12] we repeated the same seven tests with a dividend rate
equal to the interest rate (see Table 3). The results of Linetsky and Vecer
are not reported: the former because these tests were not considered in his
paper; the latter because Vecer’s code cannot deal with that special case.
In that case, the discrepancies between FPP3 and MAE5 can be found only
at the 5th decimal place. Furthermore, FPP5 and MAE5 columns show
that the contribution of the 5th order approximations to the accuracy of the
methods is not substantial.

Next, in order to address the issues raised in Shaw [38], Fu, Madan and
Wang [19] and Dufresne [17], we tested our method with a low-volatility
parameter σ = 0.01. Table 4 shows the performances of the approximations
against Monte Carlo 95% confidence intervals. These intervals are computed
using 500 000 Monte Carlo replication and an Euler discretization with 300
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Case FPP5 FPP3 FPP2 MAE3 MAE5
1 0.045143 0.045143 0.045143 0.045143 0.045143
2 0.115188 0.115188 0.115188 0.011518 0.115188
3 0.158380 0.158378 0.158378 0.158378 0.158380
4 0.169201 0.169192 0.169238 0.169238 0.169201
5 0.217815 0.217805 0.217805 0.217805 0.217815
6 0.272924 0.272914 0.272868 0.272869 0.272925
7 0.291316 0.291263 0.291263 0.291264 0.291316

Table 3: Asian Call Option Prices when q = r (parameters as in Table 1).

time-steps for T = 0.25 and T = 1 and 1500 time-steps for T = 5. In these
experiments the initial asset level is S0 = 100, the interest rate is r = 0.05
and the dividend yield is null q = 0.

The methods considered are Vecer, Mellin500, FPP3 and MAE3. Here,
we used the Mathematica implementations of Vecer and Mellin500 provided
by the authors, whereas MAE3 formula was coded by ourself. Mellin500
implementation requires a numerical integration on an unbounded domain
which needs to be truncated. We have set the length of the truncated domain
to 109 and fixed the number of recursion in Mathematica NIntegrate func-
tion to 100. The execution time of the Monte Carlo , Vecer and Mellin500
methods is also reported. Also here, FPP3 and MAE3 methods are almost
identical and both always fall very close to Monte Carlo results: the worst
case has an error of 5 × 10−3. Notice that the Euler discretization may
induce a little bias in Monte Carlo results.

We remark that, although the proposed approximations have a perfor-
mance very similar to the method of Dewynne and Shaw, our approach is
more flexible and capable of dealing with local volatility dynamics; more-
over, our method can also produce explicit approximation formulae for the
Greeks and the asset-average density.
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T K Euler - Monte Carlo method Vecer Mellin500 FPP3 MAE3
95% c.i. ex. time value ex. time value ex. time

0.25 99 1.60849 × 100 1.61008 × 100 70.52 −4.18937 × 101 0.022 1.51718 × 100 4.09 1.60739 × 100 1.60739 × 100

0.25 100 6.22333 × 10−1 6.23908 × 10−1 70.64 5.40466 × 10−1 0.022 6.96855 × 10−1 4.08 6.21359 × 10−1 6.21359 × 10−1

0.25 101 1.39301 × 10−2 1.42436 × 10−2 71.02 −3.96014 × 10−2 0.022 1.60361 × 10−1 4.09 1.37618 × 10−2 1.37615 × 10−2

1.00 97 5.27670 × 100 5.27985 × 100 70.91 −9.73504 × 100 0.019 5.27474 × 100 4.38 5.27190 × 100 5.27190 × 100

1.00 100 2.42451 × 100 2.42767 × 100 70.89 2.37512 × 100 0.020 2.43303 × 100 4.26 2.41821 × 100 2.41821 × 100

1.00 103 7.44026 × 10−2 7.54593 × 10−2 70.61 7.25478 × 10−2 0.020 8.50816 × 10−2 4.24 7.26910 × 10−2 7.24337 × 10−2

5.00 80 2.61775 × 101 2.61840 × 101 316.62 2.52779 × 101 0.018 2.61756 × 101 4.40 2.61756 × 101 2.61756 × 101

5.00 100 1.06040 × 101 1.06105 × 100 319.28 1.05993 × 101 0.018 1.05993 × 101 4.33 1.05996 × 101 1.05996 × 101

5.00 120 1.41956 × 10−6 1.38366 × 10−5 284.00 1.07085 × 10−5 0.017 1.42235 × 10−3 2.62 2.06699 × 10−5 5.73317 × 10−6

Table 4: Tests with low volatility: σ = 0.01, S0 = 100, r = 0.05 and q = 0
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3.2 Tests under CEV dynamics

In this section we test the performances of our approximation when the
volatility is not constant. More specifically, we consider the CEV dynamics

dSt = (r − q)dStdt+ σSβdWt, β ∈]0, 1[,

which corresponds to a local volatility model with σ(t, S) = σSβ−1. Al-
though this is a “degenerate” case, as σ(t, S) is not bounded, the following
experiments confirm that the approximation is still precise enough.

Firstly, we performed the experiments proposed by Dassios and Nagarad-
jasarma in [11] for the square-root model, β = 1

2 . The results on these tests
are reported in Tables 5 and 6, where the 2-nd and 3-rd order approxima-
tions are compared with the results of a Monte Carlo method. The same
number of Monte Carlo replications and time-steps of previous experiments
was used. Here again, both FPP2 and FPP3 approximations show good
performances.

Case S0 K r σ T DN FPP3 FPP2 MC 95% c.i.
1$ 2 2 0.02 0.14 1 0.0197 0.055562 0.055562 0.055321 – 0.055732
2$ 2 2 0.18 0.42 1 0.2189 0.217874 0.217875 0.218319 – 0.219678
3$ 2 2 0.0125 0.35 2 0.1725 0.170926 0.170926 0.171126 – 0.172555
4$ 1.9 2 0.05 0.69 1 0.1902 0.190834 0.190821 0.190303 – 0.192121
5$ 2 2 0.05 0.72 1 NA 0.251121 0.251123 0.250675 – 0.252807
6$ 2.1 2 0.05 0.72 1 0.3098 0.308715 0.308730 0.308791 – 0.311150
7$ 2 2 0.05 0.71 2 0.3339 0.353197 0.353206 0.352269 – 0.355313

Table 5: Tests proposed by Dassios and Nagardjasarma [11] for the CEV
model.

σ T DN FPP3 FPP2 MC 95% c.i.
0.71 0.1 0.0751 0.075387 0.075387 0.075068 – 0.075689
0.71 0.5 0.1725 0.173175 0.173175 0.173265 – 0.174717
0.71 1.0 0.2468 0.248018 0.248019 0.247738 – 0.249841
0.71 2.0 0.3339 0.353197 0.353206 0.351111 – 0.354146
0.71 5.0 0.3733 0.545714 0.545800 0.545812 – 0.550679

0.1 1 0.0484 0.061439 0.061439 0.061329 – 0.061674
0.3 1 0.1207 0.120680 0.120680 0.120596 – 0.121494
0.5 1 0.1827 0.182723 0.182724 0.182814 – 0.184285
0.7 1 0.2446 0.244913 0.244914 0.244959 – 0.247030

Table 6: Second set of tests proposed by Dassios and Nagardjasarma [11].
The remaining parameters are set to S0 = K = 2, r = 0.05, q = 0 and β = 1

2

Figure 1 and 2 show the cross-sections of absolute (left) and relative
(right) errors of the 3-rd order approximation when β = 2

3 and β = 1
3 ,

respectively. The errors are computed against prices computed by means of
an Euler Monte Carlo method with 300 time-steps and 500 000 replications.
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The shaded bands show the 95% and 99% Monte Carlo confidence intervals
for each strike. The initial stock price is S0 = 1, the risk-free rate is r = 5%,
the dividend yield is q = 0 and the maturity is T = 1. Two levels for the
volatility parameter are considered σ = 10% and σ = 50%. The two figures
show that the approximations have good global performances for both the
CEV exponents and both the volatility levels.

Finally, since the approach here proposed is capable of approximating
analytically also the sensitivities of option prices, we show in Figure 3 the
graphs of the Delta, the Gamma and the Vega of an arithmetic Asian Call,
with fixed strike, under the CEV model. Notice that, usual no-arbitrage
bounds, like having the Delta in the interval [0, 1] or positive Gamma, are
not violated by the approximation formulae.
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