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Incorporating Safety-First
Constraints in Linear Programming

Production Models

J. A. Atwood, M. J. Watts, G. A. Helmers, and L. J. Held

A recent survey indicated that many producers view risk in a safety-first context.
Traditional methods used to impose safety-first constraints in optimization models
have often been difficult to implement. This is particularly true when endogenous
decisions affect the distribution of the chance-constrained random variable. This
paper presents a method whereby probabilistic constraints can be easily imposed upon
finitely discrete random variables. The procedure uses a linear version of the lower
partial moment stochastic inequality. The resulting solutions are somewhat
conservative but are less so than the results-using the previously published mean

income-absolute deviation stochastic inequality.
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inequalities.

Identifying and modeling the processes that
decision makers use to address and control risk
continue to stimulate the research efforts of
agricultural economists. Several models have
been commonly employed including the ex-
pected utility model and the safety-first models.
The expected utility model is widely accepted
as a risk model due, at least in part, to its
axiomatic choice foundations. Recently sev-
eral researchers have noted consistent viola-
tions of one or more of the choice axioms,
which has led to reexamination of alternative
or modified models of risky decision making
(Machina).

The safety-first model is an alternative mod-
el in which the decision maker is concerned
with (or constrained by) the probability of fail-
ing to achieve his income goals. The safety-
first model, in general, is not consistent with
the expected utility model (Pyle and Turnov-
sky). However, as reported by Patrick et al.,
the results of a recent producer survey indicate
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that safety-first-type concerns may be impor-
tant in firm decisions.

To identify the risk perceptions and re-
sponses of producers, Patrick et al. coordinat-
ed a survey of 149 agricultural producers in
twelve states. Patrick et al. report that many
producers “indicated what could be interpret-
ed as substantial ‘safety-first’ considerations in
their decision making” (pp. 237-238). Such
results indicate that the safety-first model may
be worth further investigation.

Safety-first-type concepts have long been
discussed as a method of decision making un-
der uncertainty (see Shackle, Roy, Telser, Ka-
taoka). Various safety-first criteria have been
discussed. Roy proposed that the probability
of income falling below critical values or goal
be minimized. Telser proposed that expected
income be maximized subject to satisfying
probabilistic constraints upon the likelihood
of low income levels. Kataoka discussed find-
ing the maximum income level g for which the
probability of income falling below g is below
a prespecified level. Both Telser’s and Katao-
ka’s criterion involve enforcing probabilistic
constraints of the form,

Pr(Z < g) < 1/L*,
where Pr (-) is the probability of event (-), Z
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is a random variable (income), g is a goal as-
sociated with Z, and 1/L* is an upper limit on
Pr(Z < g). Enforcing such probabilistic con-
straints in an optimization model can be dif-
ficult if (@) the income distribution is nonnor-
mal or () the realized values of the income
distribution are affected by endogenous model
decisions. These and other difficulties are dis-
cussed by Sengupta. \

This paper presents a method whereby prob-
abilistic constraints can be enforced easily in
a slightly modified Target MOTAD model. The
method uses the linear lower partial moment
(LPM) stochastic inequality recently presented
by Atwood. The procedure is flexible in that
it requires only that the random variable be
finitely discrete (or approximated as such). The
random variable can be a linear combination
and/or transformation of finitely discrete
multivariate random variables.

This paper will briefly review alternative
methods of imposing probabilistic or safety-
first-type constraints including the use of the
lower partial moment (LPM) stochastic in-
equality. Modified Target MOTAD models are
then presented which implement Telser’s and
Kataoka’s criterion. An example using data
from Hazell’s MOTAD article is then pre-
sented and contrasted to the results of the lin-
ear stochastic inequality model discussed by
Anderson, Dillon, and Hardaker. A discussion
of model weaknesses and possible extensions
concludes the paper.

Imposing Probabilistic Constraints

Methods to enforce safety-first or probabilistic
constraints vary depending upon model as-
sumptions.. In chance-constrained program-
ming, a common approach is to convert the
probabilistic constraint into a deterministi-
cally equivalent constraint (Charnes and Coo-
per). However, in many applications, the dis-
tribution of the random variable is endoge-
nously determined by the choice of activities,
making the derivation of a deterministically
equivalent constraint difficult or impossible.
A second approach requires the assumption of
multivariate normality and the ability to gen-
erate a mean-variance (E-V)-efficient set of so-
lutions. Pyle and Turnovsky use this assump-
tion and method to contrast expected utility
maximization and safety-first solutions.

A third approach to imposing probabilistic
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constraints involves the use of stochastic in-
equalities to generate sharp upper bounds upon
probabilities. The use of such inequalities re-
quires the knowledge of certain population pa-
rameters such as the mean and variance and
usually generates conservative probability
bounds. Several authors have discussed the use
of stochastic inequalities. Examples include
papers by Roy; Telser; Kennedy and Francis-
co; Anderson, Dillon, and Hardaker; Gabriel
and Baker; Sengupta; and Berck and Hihn.
These studies (with the exception of Berck and
Hihn) use the well-known Chebychev inequal-
ity to impose probabilistic constraints upon
random variables. Berck and Hihn use a non-
linear version of the lower partial moment in-
equality to be discussed below.

Commonly known stochastic inequalities,
such as Chebychev’s mean-standard—error in-
equality, usually generate conservative prob-
ability bounds. Being nonlinear, directly im-
plementing probabilistic constraints with
Chebychev’s inequality can be difficult (see
Sengupta).! Alternative linear Chebychev-type
inequalities are available which generate less
conservative probability bounds than the gen-
eral Chebychev inequality. One such inequal-
ity using lower partial moments was recently
presented by Atwood using continuous distri-
butions.

The stochastic inequality presented by At-
wood uses a parameter which has been termed
alower partial moment (see Nantell, Price, and
Price). For discrete populations the lower par-
tial moment LPM can be denoted as R(a, ?),
where

ey R(a, 1) =2 (t — z)F.

zp=t

In (1), R(a, ?) is the lower partial moment,  is
a reference level below which deviations are
measured, z; is the value of Z should state i
occur, a > 0 is the power to which deviations
below ¢ are raised, and f; is the probability that
state i occurs. The above LPM can be used to
generate the following stochastic inequality
(Atwood):

) Pr(Z =<t — pQ(a, 1)) = (1/p),

! Linear versions of Chebychev’s inequality exist. Anderson,
Dillon, and Hardaker use a mean-absolute deviation version to
impose probabilistic constraints upon solutions. Although the
E-A inequality can be used in a linear model, the resulting solutions
tend to be quite conservative.
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where Q(a, t) = [R(a, £)]V* > 0 and p is a
constant greater than zero. If p is defined as p
=(t — 2)/0(a, t) witht > gand Q(a, t) > 0,
then (2) can be written as

3) Pr(Z < g)=Pr(Z <t — pQa, 1)
= [Qa, )/t — g

If either Q(a, t) = 0 or ¢t = g, the stochastic
inequality is inapplicable as p in (2) or Q(a, t)/
(t — g in (3) is undefined.

The reader will note that any power of a >
0 (in particular, a = 1) can be used in the above
inequality. For the remainder of this paper,
the linear lower partial moment (¢ = 1) will
be used and denoted as Q(t) = Q(1, 1) = R(1,
£). This allows (3) to be rewritten as

(4) Pr(Z < g)=Pr(Z =t — pQ®) = QW)/(t — 8)

if Q(t) > 0 and ¢ > g. Using (4), Atwood stated
that enforcing the following constraint in an
optimization model is sufficient to guarantee
Pr(Z < g) = 1/L* with discrete populations.
The sufficiency constraint is

5) t - L*Q(t) = g

A demonstration that (5) is only sufficient for
Pr(Z < g) = I/L* and not Pr(Z = g) = l/L*
is presented in appendix 1.

The LPM and the Linear Model

The above sufficiency constraint (5) can be eas-
ily enforced with a set of linear constraints by
slightly modifying the linear LPM model
known as Target MOTAD (see Held, Watts,
and Helmers; Tauer; and Watts, Held, and
Helmers). To demonstrate this, note that the
Target MOTAD model can be written as

6) maximize E(Z)=E/x
(6a) subject to: Ax < b,
(6b) Yx - 1t+1d=0,
(6¢) r'd <k,
(6d) t=g,
x,d, =0,

where E(Z) is expected aggregate income; E,’
is a transposed vector of per-unit expected in-
come levels; x is a vector of activity levels; 4
is a matrix of technical coefficients; b is a vector
of right-hand-side coefficients; Y = [y;] is a
matrix of possible per-unit income levels with
y; the income of activity j should outcome i
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occur. Yx is thus a vector of possible aggregate
income states;> 1 is a vector of ones; ¢ is a
reference level for aggregate income; / is an
identity matrix; d is a vector with the ith ele-
ment equal to the deviation below ¢ if aggregate
income in state i falls below ¢ and zero if in-
come exceeds f; v’ is a transposed vector of
probability levels with 'd equal to Q(¢); k is
an upper limit on Q(f) = r'd; and g is the ag-
gregate income goal of concern. The Target
MOTAD model determines a feasible choice
vector x, which maximizes expected aggregate
income while requiring that probability-
weighted deviations below ¢ = g not exceed k.
Tauer demonstrated that solutions to system
(6), if unique, are second-degree stochastically
efficient. The inequalities in (6) can be easily
modified to compute Q(1, ¢) for any ¢-level
and to impose sufficiency constraint (5) on the
system. The following system maximizes ex-
pected aggregate income subject to Pr(Z < g)
< 1/L*. The system is

N maximize E(Z)=E/x

(7a) subject to: Ax =< b,

(7b) Yx — 1t + Id = 0,

(70) rd — Q@) =0,

(7d) t— L*Q®) = g,
x,d = 0.

System (7) differs from (6) in several ways. An
activity (column) has been included in (7) to
compute and transfer Q(f) = #'d from (7¢) and
subtract L*Q(¢) from (7d). The deviation ref-
erence level ¢ is no longer required to equal g
but is allowed to be endogenously set at any
level which satisfies (7d) [or (5)]. Simulta-
neously, (7b) and (7¢) compute the corre-
sponding Q(?) level. If (7d) is constraining, the
level of ¢ selected will be the least constraining
level possible while satisfying (7d). As stated
earlier, this corresponds to the endogenous se-
lection of the least constraining linear lower
partial moment from the set of lower partial
moments for which ¢t — L*Q(t) = g

System (7) selects an activity mix x which
maximizes E(Z) while simultaneously enforc-
ing probabilistic constraints upon the possible
outcomes with the least constraining linear

;

2 The vector Yx can be viewed as a univariate vector z upon
which deviations are computed and probabilistic constraints im-
posed. The univariate vector z may not be aggregate income. The
methods presented can thus be used to impose probabilistic con-
straints upon non-income random variables.
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2 To implement Kataoka’s criterion, the coefficient in this cell is —1.
b To implement Kataoka’s criterion, the entry in this cell is 0.
< To implement Kataoka’s criterion, the entry in this cell is 0.
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LPM stochastic inequality. By redefining the
vector Yx = z, (see footnote 2), the above sys-
tem can be used to constrain any finitely dis-
crete univariate random variable. The random
variables so constrained can be a linear trans-
formation and/or combination of one or more
finitely discrete random variables. In the above
case (Telser’s criterion), the random variable
Z (aggregate income) is a linear combination
of k multivariate income random variables. As
will be noted later, the random variables need
not be income.

The above system can easily be modified to
directly solve Kataoka’s safety-first criterion.
Since t — L*Q(¢) = gis equivalent to requiring
t — L*Q(t) — g = 0, a system which imple-
ments Kataoka’s criterion can be written as

®) maximize g

(8a) subject to: Ax < b,

(8b) Yx—1t+1d=0,

(8c) rd — Q@) =0,

®8d) t—L*Q@) —g=0,
x, d, = 0.

Numerical Example

Data from Hazell’s original MOTAD article
will now be used to demonstrate the imple-
mentation of Telser’s and Kataoka’s criteria.’
Table 1 presents the tableau which implements
Telser’s criterion. (The footnotes indicate
changes required for Kataoka’s criterion.) The
system in table 1 is identical to system (7)
except that an accounting row and transfer col-
umn have been added to compute and transfer
expected aggregate income into the objective
function.* In table 1, the selection of carrot (x,),
celery (x,), cucumber (x,), and pepper (x,) ac-
tivity levels are constrained by the land, labor,
and rotational constraints of Hazell’s example.
The y;, entries under the X; activities corre-
spond to gross income levels in state i for crop
j and are obtained from Hazell’s table 1.

3 Hazell’s data has now been used in several risk models. The
reader may wonder which is “best” for risky decision models. The
answer will likely depend upon the objectives of the study. Should
the researcher feel that the E-V model is appropriate, the original
MOTAD model may be appropriate. The Target MOTAD model
can be used to generate stochastically efficient solutions. The model
of this paper enforces safety-first decisions. Tt is likely that no single
model can be used exclusively in modeling risky decision making.

4 The income accounting row and transfer column simplify the
changes required in the tableau to implement Kataoka’s criterion.
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Table 2. Lower Partial Moment Safety-First Solutions —Telser’s Criterion

Prp_ba-

Income Ig(l;;y Mean Actual Probabilities gfrﬁ)dlfs-ly

Goal straint Income Activity Lovels Pr Pr Selected
g 1/L* E,($) X X, X X, Z<gp “Z=9 t o0
50,000 0 74,054 100 39 0 61 0 167 50,000 0
.25 77,9967 0 27 100 73 1667 1667 NA® NA
.30 77,9967 0 27 100 73 .1667 1667 NA NA
35 77,9962 0 27 100 73 .1667 1667 NA NA
55,000 0 71,003 111 41 0 48 0 333 55,000 0
.25 73,526 33 28 81 57 1667 1667 73,497 4,624
.30 77,9967 0 27 100 73 1667 1667 NA NA
.35 77,9962 0 27 100 73 1667 .1667 NA NA
60,000 0 65,818 89 31 50 29 0 5 60,000 0
.25 66,002 82 30 58 30 1667 1667 61,546 386
.30 66,895 76 30 61 33 1667 1667 62,963 889
35 77,9967 0 27 100 73 1667 .1667 NA NA

» Sufficiency constraint nonbinding.
b Non-constraining with multiple ¢ and Q(¢) feasible.

Tables 2, 3, and 4 present solutions for the
example problem. Table 2 presents the solu-
tions with glevels (income goals) set at $50,000,
$55,000, and $60,000, and probability limits
of 0, .25, .3, and .35. The reader will note that
for all solutions presented, the probability con-
straint Pr(Z < g) is satisfied. As stated above,
however, the use of the LPM stochastic in-
equality often results in conservative solu-
tions. As an example, when g = $60,000 and
1/L* = .25, the optimal activity mix has an
expected income of $66,002 with Pr(Z <
60,000) = .1667. The non-risk-constrained ex-
pected profit-maximizing solution has an ex-
pected return of $77,996 but also only has Pr(Z
< 60,000) = .1667.5 Should the researcher not
be willing to tolerate such conservative solu-
tions, he may be required to attempt other
chance-constrained methods as discussed
above.

The solutions presented in table 2 demon-
strate that (5) or (7d) does not guarantee Pr(Z
< @) < 1/L* when Q(t = g) = 0. All solutions
for which 1/¢* = 0 generated Q(f) = 0 with ¢
= g. With g = 50,000, (74d) is satisfied with ¢
= 50,000, and Q(t) = 0. Although Pr(Z <
50,000) = 0, Pr(Z =< 50,000) = .167 > 0. Sim-
ilarly Pr(Z < g = 55,000) and Pr(Z = g =
60,000) are .333 and .5 which exceed 1/L* =

5 Although such solutions remain conservative, they are gen-
erally much less so than those generated with the E-A stochastic
inequality method as will be discussed shortly.

0. These results are consistent with the dis-
cussion of inequality (5) presented in appendix
1. Also consistent with these discussions is the
fact that if Pr(Z < g) > 0, (7d) is satisfied only
with Q(t) > 0 and t > g.

Table 3 presents solutions of Kataoka’s cri-
terion obtained with system (7) and the E-A
stochastic inequality approach. (Appendix 2
presents the required modifications of the An-
derson, Dillon, and Hardaker E-A safety-first
method.) The goal obtained with the LPM
method equals $60,456 for all probability levels
examined. The increased conservativeness of
the solutions obtained with the E-A stochastic
inequality is apparent from table 3. If 1/L* =
0, the only feasible solution is the origin for
which Pr(Z = 0) = 1. This results from the
fact that with MOTAD models the risk ref-
erence point is mean income. With Hazell’s
example, no solutions existed with E(Z) > 0
and A = 0. When 1/L* = .25, .30, or .35, the
E-A method generated the solution (x,, X, X,
x,) = (72, 27, 84, 17). For this solution E(Z)
= $62,769, which is lower than that obtained
with the LPM inequality. In all cases, the re-
ported goal g was also lower than that obtained
with the linear LPM inequality.

Table 4 contrasts the results of us1ng the
LPM versus the E-A inequalities when imple-
menting Telser’s criterion. In all cases, the re-
sults obtained with the LPM method generate
higher expected incomes than with the E-A
method. As an example, when g = $52,000,
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Table 3. Lower Partial Moment and E-A Safety-First Solutions —Kataoka’s Criterion

Actual Probabilities

Probability = Maximum Mean ‘o i
Constraint Goal Income Activity Levels Pr Pr
1/L* 8 E, X, X X3 X4 Z<g (Z=p
LPM method
0 60,456 65,316 86 31 56 27 0 2/3
.25 60,456 65,316 86 31 56 27 0 2/3
.30 60,456 65,316 86 31 56 27 0 2/3
35 60,456 65,316 86 31 56 27 0 2/3
E-A method
0 0 0 0 0 0 0 0 1
.25 51,755 62,769 72 27 84 17 0 0
.30 53,590 62,769 72 27 84 17 0 0
.35 54,902 62,769 72 27 84 17 0 0

the LPM method generates E(Z) = $73,201
and $77,896 when 1/L* = 0 and .25, respec-
tively. At these probability levels, no feasible
solutions are available with g = $52,000 for
the E-A method. When 1/L* is increased to
.3, the mean income levels are $77,996 and
$64,328 for the LPM and E-A methods, re-
spectively. In all solutions reported in table 4,
the excess conservatism of the E-A Chebychev
inequality results in relatively large sacrifices
of expected income when contrasted to the cor-
responding LPM solution.

Summary and Conclusions

Results recently reported by Patrick et al. in-
dicate that the safety-first model may be useful
in explaining producer behavior. Traditional
methods to impose safety-first or probabilistic
constraints in an optimization model may be
difficult to implement when producer deci-
sions influence outcome distributions.

This paper has demonstrated that a linear
version of the lower partial moment inequality
presented by Atwood can be used to enforce
probabilistic or safety-first constraints in linear
models.¢ The methods presented require that
the constrained distributions be finitely dis-
crete. The procedures are flexible and require
only that the vector of potential events can be
computed with linear operations. If a vector
of potential events can be so computed, then
linear inequalities can be used to impose safe-

¢ Modifications of the above system can be used in general chance-
constrained applications as well. Interested readers can contact the
authors for a more detailed discussion of general chance-con-
strained applications.

ty-first upon solutions. This is accomplished
while simultaneously allowing the model to
select the least constraining linear lower partial
moment which satisfies the stochastic inequal-
ity. While the resulting solutions are often con-
servative, they are usually much less conser-
vative than when using the linear mean
income-absolute deviation inequality dis-
cussed by Anderson, Dillon, and Hardaker.

In conclusion, the safety-first model has been
theoretically discussed for a number of years.
The linear lower partial moment methods pre-
sented in this paper enable the researcher to
impose probabilistic constraints in a more
complex decision setting and with less con-
servative probability limits than was previ-
ously possible. As a result, the agricultural re-
searcher should be able to investigate more
thoroughly and analyze the potential of the
safety-first model.

[Received April 1987, final revision
received January 1988.]
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Appendix 1
A Discussion of Inequality (5)

To demonstrate that ¢ — L*Q(f) = g (5) guarantees only
Pr(Z < g) = 1/L*and not Pr(Z < g) < 1/L*, two situations
must be examined. First, assume that Pr(Z < g) > 0. In
this case, since (5) requires ¢t = g, Q( = g) > 0 and (5)
can be satisfied only if > g. Hence, if Pr(Z < g) > 0, (5)
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implies Q(t)/(t — g) = 1/L* with ¢t > gand Q(¢) > 0. Thus,
(4) and (5) imply Pr(Z =< g) = Q@t)/(t — g) = L/L*, which
implies Pr(Z < g) = 1/L*.

A second condition can exist if Pr(Z < g) = 0. In this
situation, ¢ can equal g with Q(t = g) = 0 [even if Pr(Z =
2) should be as high as 1] and thus satisfy (5). However,
if (5) is satisfied with Q(t = g) = 0, it is obvious that Z
never falls below ¢ or Pr(Z < ) = 0 and hence Pr(Z < g)
=0 =< 1/L*. Thus, when a population is discrete, enforcing
(5) as a constraint in an optimization model is only suf-
ficient for Pr(Z < g) < 1/L*,

Appendix 2

Chance-Constraints and the E-A Chebychey
Inequality

Anderson, Dillon, and Hardaker (ADH) discuss the use
of a mean income-absolute deviation version of Cheby-
chev’s inequality to impose probabilistic constraints. The
inequality is

(B.1) Pr{lZ — E(Z)] = M/K,

where M is the mean absolute deviation about £, and K
is a positive constant. If g is a goal level for the random
variable, ADH show that (B.1) can be used to obtain the
following inequality:

(B.2) Pr(Z = g) = M/[E(Z) — g].

ADH imply that the modeler can guarantee Pr(Z < g) <
1/L* by enforcing

(B.3) MIE(Z) - g] = 1/L*,

which can be rearranged to give

(B.4) E@Z) - I*M = g

[By a process similar to that of appendix 1, it can be shown
that B.4 actually guarantees only Pr(Z < g) = 1/L* and
not Pr(Z = g).] A system which implements Telser’s cri-
terion while using (B.4) can be written as

(B.5) maximize = E(Z) = ¢
(B.52) subject to: Ax =< b,
(B.5b) Yx— Lt +Id =0,
(B.5¢) rd— M =0,
(B.5d) t— L¥R2M = g,
(B.5¢e) E/x—1t=0,

x,d, =0,

where M~ is the mean absolute deviation below ¢ = E(Z)
and the remaining parameters and variables are as defined
in the text. In (B.5¢), the reference level ¢ must now equal
the mean since the risk parameter used in (B.1) is M (the
average absolute deviation about the mean). Since M~ (or
average deviations below the mean) is equal to Y2 M and
(B.4) requires the use of M, M~ is modified in a manner
similar to the modifications between systems (7) and (8)
in the text.



