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A Fully Calibrated Generalized CES Programming
Model of Agricultural Supply

Pierre Mérel, Leo Simon and Fujin Yi

Abstract

The use of prior information on supply elasticities to calibrate programming models of agricul-

tural supply has been advocated repeatedly in the recent literature (Heckelei and Britz 2005). Yet,

Mérel and Bucaram (2009) have shown that the dual goal of calibrating such models to a refer-

ence allocation while replicating an exogenous set of supply elasticities is not always feasible.

This article lays out the methodological foundation to exactly calibrate programming models of

agricultural supply using generalized CES production functions. We formally derive the neces-

sary and sufficient conditions under which such models can be calibrated to replicate the ref-

erence allocation while displaying crop-specific supply responses that are consistent with prior

information. When it exists, the solution to the exact calibration problem is unique. From a

microeconomic perspective, the generalized CES model is preferable to quadratic models that

have been used extensively in policy analysis since the publication of Howitt’s (1995) Positive

Mathematical Programming. The two types of specifications are also compared on the basis of

their flexibility towards calibration, and it is shown that, provided myopic calibration is feasi-

ble, the generalized CES model can calibrate larger sets of supply elasticities than its quadratic

counterpart. Our calibration criterion has relevance both for calibrated positive mathematical pro-

gramming models and for “well-posed” models estimated through generalized maximum entropy

following Heckelei and Wolff (2003), where it is deemed appropriate to include prior information

regarding the value of own-price supply elasticities.
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Introduction

Positive mathematical programming (PMP) models of agricultural supply that use CES produc-

tion functions to specify the farming technology have been popularized by Howitt (1995a). The

CES-quadratic model constitutes a natural generalization of the classic Leontief-quadratic model

that allows the analyst to account for substitutability between farm inputs, while retaining much of

the simplicity of the standard PMP procedure. While the initial purpose of PMP was to calibrate

model parameters so that the maximization of aggregate farm returns under resource and policy

constraints would replicate the observed base year allocation, more recently analysts have asked

of such models that their implied supply responses be consistent with exogenous prior information

(Heckelei and Britz 2005; Helming et al. 2001). The idea was to avoid selecting a set of calibrating

parameters that would lead to unreasonable magnitudes for the model’s implied supply elasticities.

Prior information on supply elasticities typically comes from econometric estimates that implicitly

take into account limitations faced by farmers, notably the land constraint (Buysse et al. 2007).1

Thus, a PMP model of agricultural supply that incorporates these constraints should yield sup-

ply elasticities that are consistent with such prior information. Yet, Mérel and Bucaram (2009)

demonstrated that the dual goal of calibrating against the base year allocation while replicating

exogenously given supply elasticities is not always achievable in practice. Despite the fact, as

Heckelei and Britz (2005) note, that a single-year observation on activity and input levels does not

provide any information on second-order properties of the objective function, not all sets of supply

elasticities are compatible with the information contained in the reference allocation. Mérel and

Bucaram (2009) derived the necessary and sufficient conditions under which quadratic models, in-

cluding the CES-quadratic specification of Howitt (1995a), can be calibrated against an exogenous

set of supply elasticities. These conditions, referred to by these authors as the “number of crops”

and the “no dominant response” rules, ensure that the base year data is compatible with the set of

1 For instance, Russo et al. (2008) estimate supply elasticities for California commodities using a partial adjustment model, and they do not
control for the price of land. As such, their elasticity estimates incorporate the land constraint.
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exogenous elasticities, and provide the analyst with a clear-cut, ex ante test to determine whether

exact calibration of the model is possible.2

This article extends Mérel and Bucaram’s analysis to a more desirable model that we refer to as

the generalized CES model. In this model, the strict concavity in the objective function arises from

a decreasing returns to scale production relation rather than the addition of a quadratic adjustment

cost, while the possibility of substitution between farm inputs is preserved. The change has at least

three main consequences. First, the objective function is directly interpretable as the difference

between a production relation and a linear cost term, as required by microeconomic theory. Second,

for each activity, there is only one parameter controlling for the supply elasticity, and therefore the

under-determinacy of the model is less severe than with the use of a full matrix of quadratic cost

coefficients, eliminating the need for arbitrary assumptions—a popular choice is to set all off-

diagonal terms to zero—or the use of maximum entropy methods (Paris and Howitt 1998).3 Third,

while the CES-quadratic model singles out one input—typically, land—as the source of decreasing

returns in the production of each crop, the generalized CES treats all inputs evenly. This modeling

difference has important consequences regarding the implied input allocation response to policy

shocks.

The contribution of this article is three-fold. First, we derive a closed-form expression for the im-

plied supply elasticities in the generalized CES model, which means that calibration against supply

elasticities can be achieved through the resolution of a simple system with as many equations as

activities. This constitutes a significant improvement over the current technique of duplicating

the model’s entire set of first-order conditions for ceteris paribus increments in the price of each

activity, to indirectly recover the value of the model parameters consistent with the exogenous

information on supply elasticities.4 Our elasticity equations can also be easily incorporated into

2 These conditions are stringent in practice. We applied the results of Mérel and Bucaram (2009) to Howitt’s SWAP model of California
agriculture, which uses the CES-quadratic specification. None of the 26 SWAP regions could be calibrated to the initially specified set of
elasticities.

3 An attendant implication is that the generalized CES model does not allow the analyst to control for the magnitude of cross-price elasticities.
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“well-posed” models based on more than one observation and estimated through generalized max-

imum entropy (GME), whenever it is deemed appropriate to include prior information on supply

elasticities (Heckelei and Wolff 2003).

Second, the availability of a closed-form elasticity equation allows us to derive the necessary and

sufficient conditions under which the model can be simultaneously calibrated against the reference

allocation and the exogenous set of supply elasticities. These conditions, which relate the infor-

mation contained in the observed allocation to the set of supply elasticities, implicitly delineate

the range of elasticities that is “compatible” with this allocation and the chosen model specifica-

tion. They can easily be tested ex ante by the analyst to determine whether calibration is feasible.

The calibration criterion is also relevant for “well-posed” models estimated through GME that

incorporate prior information on supply elasticities (Heckelei and Wolff 2003). This is because

such models typically require the analyst to specify a set of supports for the supply elasticities,

and it is important that these supports contain elasticity values that are compatible with the “mean

allocation” at which the elasticities are to be evaluated.

Third, we compare the generalized CES model and the CES-quadratic model of Howitt (1995a)

on the basis of their flexibility with regard to calibration, and conclude that, subject to a caveat,

the general CES model can accommodate larger sets of supply elasticities, for a given reference

allocation.

The article is organized as follows. First, a “fixed proportion” variant of the generalized CES

model is presented. The necessary and sufficient conditions for exact calibration are derived, and it

is shown that when they are satisfied the solution to the calibration problem is unique. The relative

simplicity of the derived calibration system in this simplified model allows us to interpret the

calibrating equations easily, and, with little notational complexity, allows for a basic understanding

of the conditions under which the calibration system has a solution. We then generalize these

4 This method was first proposed by Heckelei (2002) in the context of generalized maximum entropy estimation, but his suggestion can be
applied to calibrated models as well.
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results to the case of variable proportions. Finally, we provide a comparison of the generalized

CES model and the CES-quadratic model on the basis of their flexibility towards calibration and

their empirical response to three simple policy experiments. All of our results are derived for the

case where one linear constraint is binding, and we will interpret it as a land constraint.5

The fixed-proportion case

The letter I denotes the number of non-zero activities in the base year. We denote by xi the acreage

of crop i, pi the price of crop i per unit, and Ci the per acre cost. The notation x̄i is used to denote the

observed land allocation, and q̄i the observed output. The value of land in the reference allocation,

which is usually obtained from the first-step linear programming model subject to resource and

calibration constraints (Howitt 1995b), is denoted by λ̄1. The set of exogenous supply elasticities

is η̄ηη = (η̄1, ..., η̄I), and η̄ηη >> 0.

The optimization program is written

(1) max
xi≥0

I

∑
i=1

piαix
δi
i − (Ci +λ2i)xi subject to

I

∑
i=1

xi = L̄

where xxx = (x1, ...,xI) denotes the acreage allocation and L̄ the available land.

In model (1), the output of activity i is αix
δi
i . The coefficients δi lie within the interval (0,1) and are

used to calibrate against the set of elasticities η̄ηη , while the crop-specific parameters λ2i are intro-

duced to allow the model to exactly calibrate against the base year allocation (q̄i, x̄i, λ̄1). For a given

set of parameters δi ∈ (0,1), calibration against (q̄i, x̄i, λ̄1) requires the following relationships to

5 Given the mathematical complexity of the question, we reserve the treatment of the two-constraint case to further research. The one-constraint
case is, of course, of primary empirical significance. In Howitt’s SWAP model of California agriculture for instance, out of 26 regions, 23 have
only one binding resource constraint.
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be satisfied for all i:

(2)

 piq̄iδi = (Ci +λ2i + λ̄1)x̄i

αix̄
δi
i = q̄i

which determines the parameters αi and λ2i as functions of the reference allocation and δi.

Following the procedure described in Mérel and Bucaram (2009), we can derive the supply elas-

ticity of crop i implied by model (1) as6

ηi =
δi

1−δi

1−
x̄2

i
piq̄iδi(1−δi)

∑
I
j=1

x̄2
j

p jq̄ jδ j(1−δ j)


an expression that shows that the implied elasticities depend on the base year allocation and the

parameters δi, but not on the parameters αi or λ2i. Calibration against the exogenous supply

elasticities may thus be conducted independently of the calibration against the base year allocation.

Defining bi = x̄2
i

piq̄i
, the corresponding calibration system can be written

(3) ∀ i = 1, ..., I η̄i =
δi

1−δi

1−
bi

δi(1−δi)

∑
I
j=1

b j
δ j(1−δ j)

 .

In equation (3), the second term in the bracket captures the effect of the change in the shadow value

of land induced by the change in the price of crop i. To see why, first note that the “myopic” value

of parameter δi, that is, the one that obtains if the change in the shadow price of land is ignored, is

simply δ
myopic
i = η̄i

1+η̄i
, a number that lies automatically between zero and one. As such, the factor

δi
1−δi

in (3) represents the supply elasticity of crop i, holding the price of land constant. The second

term in the bracket thus reflects the adjustment to this implied elasticity necessary to take account

of the fact that the shadow price of land λ1 changes with pi. We show in the appendix that the terms
b j

δ j(1−δ j)
represent the (opposite of the) acreage reactivity of crop j to a rise in the price of land,

6 See the appendix for the derivation.
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keeping all other prices (including output price) constant. The adjustment term in (3) thus involves

the ratio of the acreage reactivity of crop i to the sum of the acreage reactivities of all crops. That

the adjustment term should be proportional to the acreage reactivity of crop i to the price of land

is intuitive, since the term adjusts for the fact that the “myopic” elasticity δi
1−δi

ignores the change

in λ1. This acreage reactivity is deflated by the sum of all acreage reactivities, a quantity that we

show is inversely related to the magnitude of the change in λ1. Therefore, the adjustment term can

be interpreted as the product of the acreage reactivity of crop i, keeping pi constant, multiplied by

a measure of the change in λ1 arising from the change in pi.

Denote ω̄i = biη̄i = x̄2
i η̄i

piq̄i
. We shall now state and prove the first proposition of this article, that

identifies the necessary and sufficient condition under which model (1) can be calibrated against

the base year allocation (q̄i, x̄i, λ̄1) while replicating the exogenous set of supply elasticities η̄ηη .

Since the subsystem (2) has a solution no matter the value of δi in (0,1), calibration will be feasible

whenever system (3) has an acceptable solution, that is, a solution δδδ = (δ1, ...,δI) such that δi ∈

(0,1) for all i = 1, ..., I.

Proposition 1 Suppose that I≥ 2. Then, the calibration system (3) has a solution in the acceptable

range (0,1)I if and only if

(4) ∀ i = 1, ..., I ω̄i < ∑
j 6=i

ω̄ j

(
1+

1
η̄ j

)2

.

When this condition is satisfied, the set of calibrating parameters δδδ is unique and satisfies δi ≥

δ
myopic
i for all i = 1, ..., I.

Proof. Necessity. Suppose that a solution to system (3) exists that satisfies δi ∈ (0,1) for all i, and

denote S = ∑
I
j=1

bi
δi(1−δi)

. Then, we have

ω̄i =
biδi

1−δi

∑ j 6=i
b j

δ j(1−δ j)

S


7



while

∑
j 6=i

ω̄ j

(
1+

1
η̄ j

)2

=
1
S ∑

j 6=i

b jδ j

1−δ j

(
∑
k 6= j

bk

δk(1−δk)

) 1
δ j

+
(

1−δ j

δ j

) b j
δ j(1−δ j)

∑k 6= j
bk

δk(1−δk)

2

=
1
S ∑

j 6=i

b j

δ j(1−δ j)

(
∑
k 6= j

bk

δk(1−δk)

)1+
(
1−δ j

) b j
δ j(1−δ j)

∑k 6= j
bk

δk(1−δk)

2

.

Since δi ∈ (0,1), it is apparent from these expressions that condition (4) must hold.

Sufficiency. Suppose that condition (4) is satisfied. Starting from the expression in (3), we can

unambiguously solve for δi, which yields the following calibrating equation for activity i:

(5) δi =
η̄i

2(1+ η̄i)

1+

√√√√√1+
4bi

(
1+ 1

η̄i

)
∑ j 6=i

b j
δ j(1−δ j)


an expression that clearly shows that any acceptable solution δδδ to system (3) has to satisfy δi ≥

η̄i
1+η̄i

for all i. Since the function δ j 7→ δ j(1− δ j) is bell-shaped on the interval (0,1), with its

maximum at δ j = 1
2 , for δ j ∈ [ η̄ j

1+η̄ j
,1) we have that b j

δ j(1−δ j)
≥ 4b j. This, in turn, implies that when

δ j ∈ [ η̄ j
1+η̄ j

,1) for all j 6= i the right-hand side of equation (5) is always smaller than or equal to the

positive number

ζi =
η̄i

2(1+ η̄i)

1+

√√√√
1+

4bi

(
1+ 1

η̄i

)
∑ j 6=i 4b j

 .

Now denote ∆i = [ η̄i
1+η̄i

,ζi], ∆ = ∏
I
i=1 ∆i and define the following function:

φi : ∆ → ∆i

δδδ = (δ1, ...,δI) 7→ φi(δδδ ) =


η̄i

2(1+η̄i)

1+

√√√√1+
4bi

(
1+ 1

η̄i

)
∑ j 6=i

b j
δ j(1−δ j)

 if ∀ j 6= i δ j < 1

η̄i
1+η̄i

otherwise

.
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Clearly, the range of φi is included in ∆i. The function φi is also continuous on its entire domain,

including points δδδ such that ∃ j 6= i s.t. δ j = 1, because limδ j→1
δ j<1

b j
δ j(1−δ j)

= +∞. Let

φφφ : ∆ → ∆

δδδ 7→ φφφ(δδδ ) = (φ1(δδδ ), ...,φI(δδδ ))
.

The function φφφ is continuous on the compact subset ∆, and ∆ is stable by φφφ . By Brouwer’s fixed

point theorem, φφφ has a fixed point.

It remains to be shown that there is one fixed point in the set ∏
I
i=1[

η̄i
1+η̄i

,1). Suppose first that δ̃δδ

is a fixed point of φφφ in ∆ with more than one element δ̃i greater than or equal to one. Then, for i0

such that δ̃i0 ≥ 1, by the definition of φi it must be that φi0(δ̃δδ ) =
η̄i0

1+η̄i0
< 1, which contradicts the

fact that δ̃δδ is a fixed point of φφφ . Now suppose that one and only one component δ̃i0 of a fixed point

δ̃δδ is greater than or equal to one. By the definition of φi, the image of δ̃δδ by φφφ is

φφφ(δ̃δδ ) =

 η̄1

1+ η̄1
, ...,

η̄i0−1

1+ η̄i0−1
,

η̄i0
2(1+ η̄i0)

1+

√√√√√1+
4bi0

(
1+ 1

η̄i0

)
∑ j 6=i0

b j

δ̃ j(1−δ̃ j)

 ,
η̄i0+1

1+ η̄i0+1
, ...,

η̄I

1+ η̄I


and since φφφ(δ̃δδ ) = δ̃δδ the component δ̃i0 must equal

δ̃i0 =
η̄i0

2(1+ η̄i0)

1+

√√√√√√1+
4bi0

(
1+ 1

η̄i0

)
∑ j 6=i0 b jη̄ j

(
1+ 1

η̄ j

)2

 .

But the premise (4) ensures that this last expression is strictly smaller than one, which contradicts

the fact that δ̃i0 ≥ 1. Therefore, any fixed point of φφφ in ∆ has to lie within the set ∏
I
i=1[

η̄i
1+η̄i

,1),

which completes the existence proof.
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Uniqueness. We here provide a proof for the case I = 2. The case I = 3 is treated in the appendix.7

When I = 2, system (3) can be solved analytically to obtain the following two candidate solutions8

 δ
+
1 =

η̄1+
√

b1
b2

η̄1η̄2

1+η̄1+η̄2

δ
+
2 =

η̄2+
√

b2
b1

η̄1η̄2

1+η̄1+η̄2

and

 δ
−
1 =

η̄1−
√

b1
b2

η̄1η̄2

1+η̄1+η̄2

δ
−
2 =

η̄2−
√

b2
b1

η̄1η̄2

1+η̄1+η̄2

.

Since δ
−
1 > 0⇒ δ

−
2 < 0, it is clear that (δ−1 ,δ−2 ) lies outside the acceptable set. Therefore, system

(3) has at most one acceptable solution.

Proposition 1 establishes the condition under which an exogenous set of elasticities η̄ηη is compatible

with a given observed allocation. Condition (4) implicitly delineates a subregion of RI
++ within

which the vector η̄ηη should lie for calibration to be possible. Such a region is depicted in Figure 1 for

the case I = 2 and b1 = b2 = 1. If η̄ηη lies outside of this region, exact calibration is not technically

feasible. Yet, depending on the “extent” of the violation and the degree of confidence the analyst

has in the set of elasticities, it may be possible to modify the elasticities so as to meet the criterion.

Suppose, for instance, that the prior on elasticities consists of a set of confidence intervals Ei =

[η̄min
i , η̄max

i ], such that the calibration criterion (4) is violated for η̄ηη = ( η̄min
1 +η̄max

1
2 , ...,

η̄min
I +η̄max

I
2 ).

Assume further that the set of vectors ηηη ∈∏i Ei for which (4) is satisfied is nonempty. A reasonable

way of calibrating the model would be to first solve the GME program

max
0≤wik≤1

−
I

∑
i=1

2

∑
k=1

wik lnwik subj. to ∀i = 1, ..., I


wi1 +wi2 = 1

ηi = wi1η̄min
i +wi2η̄max

i

biηi ≤ ∑ j 6=i b jη j

(
1+ 1

η j

)2

.

Then, denoting the corresponding solution (η̃1, ..., η̃I), one could choose as the set of exogenous

elasticities the vector (η̃1, ..., η̃i0−1, η̃i0−ε, η̃i0+1, ..., η̃I), where i0 denotes the index of the crop for

7 We were not able to formally establish uniqueness in the general case. We confirmed through numerical simulations in MATLAB that the
uniqueness result very likely holds for larger values of I. More specifically, for each value of I ∈ {4, ...,12}, we calculated the determinant of
the calibration system for 10,000 draws of parameters values and showed that its sign was constant on the acceptable range, which by the Index
theorem implies that there is at most one solution to the system.

8 These solutions can be obtained, for instance, using the algebraic capabilities of MATHEMATICA 6.
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which the condition biη̃i ≤ ∑ j 6=i b jη̃ j

(
1+ 1

η̃ j

)2
is satisfied with equality, for an arbitrarily small

ε > 0. Therefore, Proposition 1 should not be construed as a rigid sentence that seals the fate of the

model, but rather as a guide to making calibration possible at the lowest cost in terms of deviation

from prior information.

The generalized CES model

Here, we still consider the case where one constraint (say, land) is binding, but there is substitution

between land and other farming inputs. There are L inputs, and we denote by xil the quantity of

input l allocated to the production of crop i. Land is the first input and is thus denoted xi1. The

market price of input l is denoted cl .9 The reference allocation is denoted (q̄i, x̄il, λ̄1).

The allocation program is

max
xil≥0

I

∑
i=1

piαi

(
∑

l
βilx

ρi
il

) δi
ρi

− (c1 +λ2i)xi1−∑
l≥2

clxil

subject to
I

∑
i=1

xi1 = L̄(6)

where ρi = σi−1
σi

, σi denoting the elasticity of substitution between inputs in the production of

crop i . In program (6), this elasticity of substitution is given, while the parameters (αi,βil,λ2i,δi)

are chosen by the analyst to replicate the observed base year allocation (q̄i, x̄il, λ̄1) and the set of

exogenous supply elasticities η̄ηη . Following the practice initiated by Howitt (1995a), we introduced

the calibrating parameter λ2i as a crop-specific increment to the price of land, rather than other

inputs.10

9 With this notation, the variable c1 represents the observed land rent.

10 This choice is somewhat arbitrary and constitutes the only element of under-determinacy left in this fully calibrated generalized CES model.
We can, however, heuristically defend this choice by noting that in this model with one resource constraint, the shadow value of land λ̄1 is the
element of the reference allocation that is the most subject to criticism, because it is typically not observed, but obtained from the first stage
of the PMP procedure. Adding the parameters λ2i to the land cost implies that if one changes the value of λ̄1, the values of the parameters λ2i
will adjust accordingly, so that the sum λ̄1 +λ2i will remain the same, and the other model parameters (δi, αi and βil ) will be unaffected by this
change. For completeness, we have derived conditions for calibration in the case where the parameter λ2i appears as an increment to the price
of an input other than land. The conditions are available upon request to the authors.
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Using the procedure in Mérel and Bucaram (2009), the implied model elasticity for activity i can

be derived as11

ηi =
δi

1−δi

1−
bi

δi(1−δi)

∑
I
j=1

b j
δ j(1−δ j)

− σ jb j

δ j(1−
p j q̄ j

∑l≥2 cl x̄ jl
δ j)



where as before bi = x̄2
i1

piq̄i
. The second term in the bracket represents the effect of the induced

change in the shadow value of the land constraint when the price of crop i increases. The myopic

value of δi in the generalized CES model (6) is thus the same as in the fixed proportion model (1),

δ
myopic
i = η̄i

1+η̄i
. However, successful calibration against the observed allocation now requires that

for all i = 1, ..., I, piq̄iδi > ∑l≥2 cl x̄il . To see why, consider the following calibration conditions for

program (6), conditional on the choice of δi:

(7)



piαiδi
(
∑l βil x̄

ρi
il

) δi
ρi
−1

βi1x̄ρi−1
i1 = c1 + λ̄1 +λ2i

piαiδi
(
∑l βil x̄

ρi
il

) δi
ρi
−1

βil x̄
ρi−1
il = cl l = 2, ...,L

q̄i = αi
(
∑l βil x̄

ρi
il

) δi
ρi

∑l βil = 1

βil > 0, l = 1, ...,L

αi > 0

.

The first three conditions in (7) represent the optimality conditions of program (6), evaluated at the

reference allocation (q̄i, x̄il, λ̄1), while the last three conditions reflect standard parameter restric-

tions. Together, they implicitly define the value of the parameters αi, βil and λ2i that are consistent

with the reference allocation, conditional on the choice of δi. Rearranging, one can express the

value of parameter λ2i as a sole function of the base year allocation and the value of δi,

λ2i =
1

x̄i1

[
piq̄iδi−∑

l≥2
cl x̄il− (c1 + λ̄1)x̄i1

]
11 The derivation mirrors that of the elasticity equation for model (1), and is available upon request to the authors.
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so that c1 + λ̄1 + λ2i = 1
x̄i1

(
piq̄iδi−∑l≥2 cl x̄il

)
. Considering the first, fifth and sixth conditions

in system (7), it is then clear that the condition piq̄iδi > ∑l≥2 cl x̄il must be satisfied in order for

the model to replicate the reference allocation. Defining θi = piq̄i
∑l≥2 cl x̄il

> 1, an acceptable set of

calibrating parameters δδδ must therefore satisfy

∀ i = 1, ..., I δi ∈ (
1
θi

,1).

In particular, if the myopic parameter δ
myopic
i is used, we must have η̄i

1+η̄i
> 1

θi
, a condition equiv-

alent to

(8) ∀ i = 1, ..., I η̄i >
1

θi−1
.

Using the definition of θi, the exact calibration system can be written

(9) ∀i = 1, ..., I η̄i =
δi

1−δi

1−
bi

δi(1−δi)

∑
I
j=1

b j
δ j(1−δ j)

+ σ jb j
δ j(θ jδ j−1)

 .

We now state and prove the main proposition of this article, which defines the conditions under

which exact calibration of the generalized CES model (6) is feasible.12

Proposition 2 Let I ≥ 2, and suppose that condition (8) holds. The calibration system (9) has a

solution in the acceptable range ∏i

(
1
θi

,1
)

if and only if, for all i = 1, ..., I, the following condition

is satisfied

(10) ω̄i

(
1− σi

η̄i(θi−1)

)
< ∑

j 6=i
ω̄ j

(
1+

1
η̄ j

)2(
1+

σ j

η̄ j(θ j−1)−1

)
.

When condition (10) is satisfied, the set of calibrating parameters δδδ is unique and satisfies δi ≥

δ
myopic
i for all i = 1, ..., I.

12 We did not attempt to prove uniqueness for the generalized CES specification.
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Proof. Necessity. Suppose that condition (8) holds, and that there exists a set of parameters δi ∈

( 1
θi

,1) that solve system (9). Denoting Sσ = ∑
I
k=1

bk
δk(1−δk)

+ bkσk
δk(θkδk−1) and using the equality in

(9), we have

ω̄i

(
1− σi

η̄i(θi−1)

)
=

1
Sσ

biδi

1−δi

[
∑
j 6=i

b j

δ j(1−δ j)
+∑

j

b jσ j

δ j(θ jδ j−1)
−
(

σi

θi−1

)(
1−δi

δi

)
Sσ

]
.

The condition that η̄i > 1
θi−1 implies that 1

Sσ

bi
δi(1−δi)

< 1− 1−δi
δi(θi−1) , which in turn implies that

biσi
δi(θiδi−1) < σiSσ

θi−1
1−δi

δi
. Therefore, we have that

(11) ω̄i

(
1− σi

η̄i(θi−1)

)
<

1
Sσ

biδi

1−δi

[
∑
j 6=i

b j

δ j(1−δ j)
+ ∑

j 6=i

b jσ j

δ j(θ jδ j−1)

]
.

Using (9), we also have

ω̄ j

(
1+

1
η̄ j

)2

=
1

Sσ

b jδ j

1−δ j

[
∑
k 6= j

bk

δk(1−δk)
+∑

k

bkσk

δk(θkδk−1)

]

×

 1
δ j

+

b j

δ j
2

∑k 6= j
bk

δk(1−δk)
+∑k

bkσk
δk(θkδk−1)

2

=
1

Sσ

b j

δ j(1−δ j)

[
∑
k 6= j

bk

δk(1−δk)
+∑

k

bkσk

δk(θkδk−1)

][
1+R j

]2
with R j > 0 and thus

ω̄ j

(
1+

1
η̄ j

)2(
1+

σ j

η̄ j(θ j−1)−1

)
=

1
Sσ

b j

δ j(1−δ j)

[
∑
k 6= j

bk

δk(1−δk)
+∑

k

bkσk

δk(θkδk−1)

]
×
[
1+R j

]2 [1+Tj
]
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where Tj = σ j
η̄ j(θ j−1)−1 > 0. It is clear that the term 1

Sσ

biδi
1−δi

∑ j 6=i
b j

δ j(1−δ j)
in (11) is dominated by the

sum ∑ j 6=i
1

Sσ

b j
δ j(1−δ j) ∑k 6= j

bk
δk(1−δk)

since δi ∈ (0,1). In addition, since θ j > 1, we can write

Tj =
σ j(1−δ j)Sσ

θ jδ j

(
∑k 6= j

bk
δk(1−δk)

+∑k
bkσk

δk(θkδk−1)

)
+ b j

1−δ j
−Sσ

>
σ j(1−δ j)
θ jδ j−1

so that the term 1
Sσ

biδi
1−δi

∑ j 6=i
b jσ j

δ j(θ jδ j−1) in (11) is dominated by the term ∑ j 6=i
1

Sσ

b jTj
δ j(1−δ j) ∑k 6= j

bk
δk(1−δk)

.

Q.E.D.

Sufficiency. Suppose that condition (10) is satisfied. Multiplying both sides of the equation in (9)

by the quantity (1−δi)∑
I
j=1

b j
δ j(1−δ j)

+ σ jb j
δ j(θ jδ j−1) and rearranging, the calibrating equation can be

expressed as

δ 2
i

[
(1+ η̄i)∑ j 6=i

b j
δ j(1−δ j)

+ σ jb j
δ j(θ jδ j−1)

]
−δiη̄i

[
∑ j 6=i

{
b j

δ j(1−δ j)
+ σ jb j

δ j(θ jδ j−1)

}
− 1+η̄i

η̄i

σibi
θiδi−1

]
−biη̄i

(
1+ σi

θiδi−1

)
= 0

which can be viewed as a polynomial equation of degree two in δi. (Note that δi still appears in the

coefficients of this polynomial.) An acceptable solution to (9) must be such that δi ∈ ( 1
θi

,1), and

therefore the only acceptable root of this polynomial is

δi =
η̄i

2(1+ η̄i)

1−
σibi

(
1+ 1

η̄i

)
θiδi−1

∑ j 6=i
b j

δ j(1−δ j)
+ σ jb j

δ j(θ jδ j−1)

+

√√√√√√
1+

σibi

(
1+ 1

η̄i

)
θiδi−1

∑ j 6=i
b j

δ j(1−δ j)
+ σ jb j

δ j(θ jδ j−1)


2

+
4bi

(
1+ 1

η̄i

)
∑ j 6=i

b j
δ j(1−δ j)

+ σ jb j
δ j(θ jδ j−1)

 .(12)

15



Denote ψi(δδδ ) the right-hand side of equation (12). Solving system (9) over the acceptable range

∏i( 1
θi

,1) is therefore equivalent to solving a system of equations of the form

(13) ∀ i = 1, .., I δi = ψi(δδδ ).

First note that any solution to system (13) that lies in the acceptable range ∏i( 1
θi

,1) has to also

satisfy δi ≥ η̄i
1+η̄i

for all i. This is obvious from the expression of ψi(δδδ ). Second, note that for

δ j ∈ [ η̄ j
1+η̄ j

,1), the following inequalities apply: b j
δ j(1−δ j)

≥ 4b j and σ jb j
δ j(θ jδ j−1) ≥

σ jb j
θ j−1 . (The function

δ j 7→ δ j(θ jδ j−1) is increasing on [ η̄ j
1+η̄ j

,1) given (8).) Further, define

ξi =
η̄i

2(1+ η̄i)

1+

√√√√√√√√√
1+

σibi

(
1+ 1

η̄i

)
θi

(
η̄i

1+η̄i

)
−1

∑ j 6=i 4b j +
σ jb j
θ j−1


2

+
4bi

(
1+ 1

η̄i

)
∑ j 6=i 4b j +

σ jb j
θ j−1

 .

and denote Λi = [ η̄ j
1+η̄ j

,ξi] and Λ = ∏
I
i=1 Λi. Now consider the following function:

ψ̃i : Λ → Λi

δδδ 7→ ψ̃i(δδδ ) =


ψi(δδδ ) if ∀ j = 1, ..., I δ j < 1

ψi(δ1, ...,δi−1,1,δi+1, ...,δI) if ∀ j 6= i δ j < 1 and δi ≥ 1

η̄i
1+η̄i

otherwise

.

It is clear from the above that the range of ψ̃i is indeed included in Λi. The function ψ̃i is also

continuous on its entire domain. In particular, it is continuous at points δδδ such that δ j < 1 for

all j 6= i and δi = 1 because the function ψi itself is continuous at such points. In addition, it is
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continuous at points δδδ such that δ j = 1 for at least one j 6= i because limδ j→1
δ j<1

b j
δ j(1−δ j)

= +∞. Let

ψ̃ψψ : Λ → Λ

δδδ 7→ ψ̃ψψ(δδδ ) = (ψ̃1(δδδ ), ..., ψ̃I(δδδ ))
.

The function ψ̃ψψ is continuous on the compact subset Λ, and Λ is stable by ψ̃ψψ . By Brouwer’s fixed

point theorem, ψ̃ψψ has a fixed point in Λ.

It remains to be shown that given the premice (10), any fixed point of ψ̃ψψ in Λ has to lie in the

acceptable set ∏i( 1
θi

,1). Given (8), it is clear that any fixed point δ̃δδ in Λ must satisfy δ̃i > 1
θi

.

Given the definition of ψ̃ψψ , it is also clear that at most one component of a fixed point δ̃δδ , say δ̃i0 ,

can be greater than or equal to one. Let us assume that this is the case. Then, given the definition

of ψ̃i and the fact that δ̃δδ is a fixed point, we must have

ψ̃i0(δ̃δδ ) = ψi0

(
η̄1

1+ η̄1
, ...,

η̄i0−1

1+ η̄i0−1
,1,

η̄i0+1

1+ η̄i0+1
, ...,

η̄I

1+ η̄I

)
.

But a straightforward calculation shows that the premice (10) implies that this expression must be

strictly smaller than one, which contradicts the facts that δ̃i0 ≥ 1 and δ̃δδ is a fixed point of ψ̃ψψ . Q.E.D.

For a given reference allocation, Proposition 2 implicitly delineates a subset of RI
++ within which

the vector η̄ηη must lie for calibration to be feasible. The discussion following Proposition 1 is

relevant here, too: if the analyst has priors Ei = [η̄min
i , η̄max

i ], it may be possible to deviate from

the midpoint of the intervals Ei so as to satisfy the calibration criterion, in a way that minimizes

the total “information cost”.

Condition (8), which we have taken as a premise to derive the necessary and sufficient conditions

for the exact calibration of model (6), represents the necessary and sufficient condition under which

myopic calibration of this model is feasible. This seems to be a reasonable prerequisite in and of

itself.13 More importantly, as shown in the following proposition, when condition (8) is violated,
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even though there may technically exist a solution to the calibration problem, this solution is not

guaranteed to be unique. Deriving conditions for calibration under which uniqueness of the set of

calibrating parameters is not guaranteed seems to have limited practical relevance, because there is

no objective way of choosing among multiple sets of calibrating parameters. Therefore, we believe

condition (8) ought to be satisfied for the calibration to be meaningful.

Proposition 3 Let I ≥ 2. If condition (8) is violated, there may be more than one acceptable

solution to system (9).

Proof. Consider the special case where I = 3 and bi = 1, σ = 0.5 and θi = 5 for all i. Acceptable

solutions must satisfy δi ∈ (0.2,1). When η̄1 = η̄3 = 1 and η̄2 = .24, condition (8) is violated

and the sets (0.517419,0.210727,0.517419) and (0.534521,0.22708,0.534521) both solve system

(9).14

Flexibility of the generalized CES model

We argued in the introduction that the generalized CES model, unlike the CES-quadratic speci-

fication, is fully consistent with microeconomic theory, because the objective function is directly

interpretable as the difference between a well-specified revenue function and a well-specified (di-

rect) cost function. This, alone, should constitute a sufficient reason for preferring the generalized

CES model.

Here, we compare the two CES models on the basis of their flexibility with regard to calibration

against exogenous sets of elasticities, in the context where there is one binding constraint (land).

In other words, we ask the question: “Given a reference allocation, does one model always ac-

commodate larger sets of elasticities than the other?” The answer is not clear-cut, but, overall,

13 For the CES-quadratic model, Mérel and Bucaram (2009) show that exact calibration is necessarily infeasible if myopic calibration is infeasible.
Although the generalized CES model seems to be less rigid in this respect, their finding provides a heuristic justification to focusing on the case
where condition (8) is satisfied.

14 These solutions were obtained numerically using MATHEMATICA 6.
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the generalized CES model appears to be more flexible than its quadratic counterpart. The CES-

quadratic specification we consider is the one described in Howitt (1995a) and Mérel and Bucaram

(2009), where all off-diagonal terms are set to zero and the land input is used as the quadratic term

in the nonlinear cost function. More specifically, the CES-quadratic program is written

max
xil≥0

I

∑
i=1

piαi

(
∑

l
βilx

ρi
il

) 1
ρi

− (c1 +λ2i− γix̄i1)xi1−∑
l≥2

clxil−
1
2

γix2
i1

subject to
I

∑
i=1

xi1 = L̄.

A first advantage of the generalized CES model is that it can calibrate systems with as little as

two activities, while the CES-quadratic model requires at least three positive activities (Mérel and

Bucaram 2009). The following proposition establishes another advantage of the generalized CES

model.

Proposition 4 For a given base year allocation (q̄i, x̄il, λ̄1), assuming that the following conditions

hold for all i = 1, ..., I :

(i) η̄i > 1
θi−1 and

(ii) η̄i
σi

> 1
θi−1 ,

the generalized CES model can calibrate a larger set of supply elasticities than the CES-quadratic

model.

The proof follows directly from examination of the necessary and sufficient conditions in Proposi-

tion 2 of this article and in Proposition 9 of Mérel and Bucaram (2009).

Although Proposition 4 seems to establish the greater flexibility of the generalized CES specifi-

cation, it relies on caveats (i) and (ii). These caveats imply that the generalized CES and CES-
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quadratic models, respectively, are able to accommodate myopic calibration.15 Therefore, condi-

tional on myopic calibration being feasible in both models, the generalized CES model is more

flexible than its quadratic counterpart.

Empirical implementation

In this section, we calibrate a generalized CES model and a CES-quadratic model against the same

reference allocation and the same set of supply elasticities, and compare their responses to three

policy experiments: (i) an incremental output price increase, (ii) a non-incremental output price

increase, and (iii) an input price increase.

The agricultural region we consider corresponds to the region labeled “Rest of the US” in Howitt

(1995a), that is, all the US but California. The land constraint is the only binding constraint. There

are three crops: cotton (C), wheat (W) and rice (R). The reference allocation is published in Howitt

(1995a). We use the following set of supply elasticities: η̄C = 0.47, η̄W = 0.4 and η̄R = 0.8. There

are four inputs: land (1), water (2), capital (3) and chemical inputs (4).

Calibration against the reference allocation and the set of supply elasticities yields the parameter

values reported in Table 1. The results of the various policy experiments are reported in Tables 2,

3 and 4.

Tables 2 and 3 show that calibration against the set of supply elasticities is successful: the observed

output responses are fully consistent with the assumed elasticity of supply for cotton. The output

cross-price effects are not as consistent between the two models, particularly for rice where the

reduction in output is more than twice as large in the generalized CES model as in the CES-

quadratic model. Output effects when the price of chemical inputs increases (Table 3) are fairly

consistent between the two models, for all three crops.

15 Caveat (ii) corresponds to the condition ω̄ ′i > 0 in Mérel and Bucaram (2009).
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Regarding input allocations, apart from the own-price effect of the increase in c4 on the use of

chemicals, the two models yield inconsistent results. The discrepancy is most acute for the land

use effect, across all policy experiments. This outcome is in fact expected: while the generalized

CES specification treats all inputs equally, the CES-quadratic model singles out the land input

through the quadratic land term γix2
i1. In fact, the concavity of the objective function in the vari-

ables xik arises solely from this quadratic land term, and therefore the onus is exclusively put on

land to generate the required decreasing returns to scale. The choice of land as the source of de-

creasing returns has been justified heuristically in the literature by the supposed heterogeneity of

land quality. This makes it difficult to give a meaningful interpretation to land use effects in this

model, because “not all acres are treated equal”. In contrast, the generalized CES specification ex-

ploits the concavity of the production function itself, and does not single out any particular input. It

is therefore not surprising that the two models yield different results regarding input use, and par-

ticularly land use. This observation should constitute yet another reason to prefer the generalized

CES model over the CES-quadratic model in future applications.

Conclusion

Although the use of exogenous supply elasticities in PMP models of agricultural supply has been

advocated repeatedly in the recent literature, exact calibration of CES models against elasticities

represents a challenging modeling task, because the analytical relationship between the model

implied elasticities and the calibrating parameters is difficult to elucidate, and the conditions under

which the set of calibrating equations has a (unique) solution are not trivial. An early answer to

such difficulties was to use parameters obtained from myopic calibration, where the change in the

shadow price of constrained resources is ignored (Helming et al. 2001). Heckelei (2002) later

suggested duplicating the entire set of first-order conditions for an incremental change in the price

of each activity and choosing the value of the calibrating parameters that force the supply response

to coincide with that implied by the prior information. In addition to being demanding in terms
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of programming effort, this method does not enable the analyst to determine ex ante whether a

solution to the calibration problem exists.

In this article, we provided the methodological foundation for exactly calibrating constrained gen-

eralized CES models of agricultural supply against a reference allocation and a set of exogenous

supply elasticities. Using the methodology introduced by Mérel and Bucaram (2009), we derived a

closed-form expression for the supply elasticity equation. We then showed that a generalized CES

model can be calibrated for systems with as little as two activities, and we provided the exact cali-

bration conditions. The conditions we derived further ensure that the set of calibrating parameters

is unique.

Another contribution of this article was to compare the generalized CES specification to the CES-

quadratic specification. Despite their popularity, quadratic models are not consistent with mi-

croeconomic theory and lead to conceptual issues when interpreting acreage responses (if, as is

often the case, land is used as the source of decreasing returns). Derivation of the calibrating

conditions for the generalized CES model showed that this latter model is more flexible than its

quadratic counterpart, provided that myopic calibration is feasible in both models. Overall, our re-

sults provide support for the use of generalized CES models as a preferred alternative to quadratic

specifications.
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Appendix

Elasticity equation for model (1)

Consider the increase in pi. For activities j 6= i, the first-order conditions to program (1) imply that

x j =
(

C j+λ2 j+λ1
p jα jδ j

) 1
δ j−1 = X j(λ1). We then have

dX j

dλ1
= − 1

1−δ j

(
C j +λ2 j + λ̄1

) 2−δ j
δ j−1

(
p jα jδ j

) 1
1−δ j

= − 1
1−δ j

(p jα jδ j)−1x̄2−δ j
j

= −
x̄2

j

p jq̄ jδ j(1−δ j)

= −
b j

δ j(1−δ j)

where we have used the definition b j =
x̄2

j
p jq̄ j

. Since the land constraint is binding, we can write xi

itself as a function Xi of λ1, with derivative

(14)
dXi

dλ1
= ∑

j 6=i

b j

δ j(1−δ j)
.

The FOC with respect to xi is

piαiδix
δi−1
i −Ci−λ2i−λ1 = 0.

Totally differentiating with respect to λ1 and pi, we obtain

dλ1

d pi
=

αiδix̄
δi−1
i

1− piαiδi(δi−1)x̄δi−2
i

dXi
dλ1

=
δiq̄ix̄−1

i

1+ piq̄ix̄−2
i δi(1−δi) dXi

dλ1

=
biq̄ix̄−1

i
1−δi

∑ j
b j

δ j(1−δ j)
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where we have used (14). Now, we can derive the total effect of the increase in pi on xi as

dxi

d pi
=

dXi

dλ1

dλ1

d pi

=

[
∑
j 6=i

b j

δ j(1−δ j)

] biq̄ix̄−1
i

1−δi

∑ j
b j

δ j(1−δ j)

 .

This implies that the supply elasticity for activity i is

ηi = δix−1
i pi

dxi

d pi
=

δi

1−δi

∑ j 6=i
b j

δ j(1−δ j)

∑ j
b j

δ j(1−δ j)

=
δi

1−δi

1−
bi

δi(1−δi)

∑ j
b j

δ j(1−δ j)

 .

Proof of uniqueness in Proposition 1 for I = 3

For δδδ ∈ (0,1)3, let f(δδδ ) = ( fi(δi))3
i=1, where fi(δi) = δi

1−δi

(
1−

bi
δi(1−δi)

∑
I
j=1

b j
δ j(1−δ j)

)
− ηi. To

streamline notation, we define yi(δi) = bi
δi(1−δi)

and Y (δδδ ) = ∑
I
j=1 y j(δ j), and now write

fi(δδδ ) = δi
1−δi

(
1− yi(δi)

Y (δδδ )

)
−ηi. Henceforth, we will suppress the arguments of f, yi and Y .

Our task is to show that there is a unique vector δδδ ∈ (0,1)3 such that f(δδδ ) = 0. We will accomplish

this by showing that the determinant of the Jacobian of f, |Jf(·)|, is positive on (0,1)3. Uniqueness

will then follow from the index theorem (Mas-Colell et al. 1995).16

16 Mas-Colell et al. (1995) apply the index theorem to prove that there is a unique (normalized) price equilibrium of a regular economy with L
goods. A normalized price equilibrium is a vector p� 0, with pL = 1 at which the excess demand functions zl(p) of the economy are zero. A
consequence of the index theorem is that if one can attach a definite sign to the Jacobian of the system of equations (z1(p), ...,zL−1(p)) = 0 at
any solution point, then the equilibrium is unique (Mas-Colell et al. 1995, Prop. 17.D.2 & pg. 615). In our model, the range of δδδ is (0,1)3,
whereas Prop. 17.D.2 is stated for equilibrium price vectors on the range RL−1

++ . It is easy to see that we can rewrite our system of calibrating
equations so that the calibrating parameters are defined on R3

++. Simply consider the change of variables di =
δi

1−δi
. The Jacobian of the system

of calibrating equations with respect to the di variables then has the same sign as the Jacobian of f.
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Letting Y−i = Y − yi, the Jacobian of f can be written as

Jf(δδδ ) =


(

b1
((1−δ1)Y )2

){
Y−1

(
Y−1
b1

+ 2
δ1

)
, dy2

dδ2
, dy3

dδ3

}
(

b2
((1−δ2)Y )2

){
dy1
dδ1

, Y−2

(
Y−2
b2

+ 2
δ2

)
, dy3

dδ3

}
(

b3
((1−δ3)Y )2

){
dy1
dδ1

, dy2
dδ2

, Y−3

(
Y−3
b3

+ 2
δ3

)}


Noting that dy j
dδ j

=
(2δ j−1)y2

j
b j

and expanding by cofactors along the first column, we obtain:

|Jf(δδδ )| =
∏

I
j=1 b j

Y 6 ∏
I
j=1(1−δ j)2

×

{
Y−1 (2(1−δ1)y1 +Y−1)

b1

(
3

∏
j=2

Y− j
(
2(1−δ j)y j +Y− j

)
b j

−
3

∏
j=2

(2δ j−1)y2
j

b j

)

−
(2δ1−1)y2

1
b1

(
(2δ2−1)y2

2
b2

Y−3 (2(1−δ3)y3 +Y−3)
b3

−
3

∏
j=2

(2δ j−1)y2
j

b j

)

+
(2δ1−1)y2

1
b1

(
3

∏
j=2

(2δ j−1)y2
j

b j
−

(2δ3−1)y2
3

b3

Y−2 (2(1−δ2)y2 +Y−2)
b2

)}

which, after cancelling out the b j’s, and collecting terms

= Y−6
I

∏
j=1

(1−δ j)−2×(15) {
I

∏
j=1

(
Y− j
(
2(1−δ j)y j +Y− j

))
︸ ︷︷ ︸

A′

−

(
I

∏
j=1

(1−2δ j)y2
j

)(
I

∑
j=1

Y− j
(
2(1−δ j)y j +Y− j

)
(1−2δ j)y2

j
+ 2

)
︸ ︷︷ ︸

B

}

Since Y−6
∏

I
j=1(1−δ j)−2 is positive, our task is to show that the term in curly brackets in (15) is

positive also. Letting φi = Y−i
yi

(
∏

I
j=1 y j

)
and noting that ∏

I
j=1Y− j = 2∏

I
j=1 y j + ∑

I
j=1 φ j, Term

A′ can be expanded to

Term A′ =
I

∏
j=1

Y− j


I

∏
j=1

Y− j +

(
2

I

∏
j=1

Y− j

)
I

∑
j=1

(1−δ j)y j

Y− j︸ ︷︷ ︸
C

+ 4

(
I

∏
j=1

(1−δ j)y j

)
I

∑
j=1

Y− j

(1−δ j)y j


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+

(
2

I

∏
j=1

y j +
I

∑
j=1

φ j

)
8

I

∏
j=1

(1−δ j)y j︸ ︷︷ ︸
D

Since (∏I
j=1Y− j times Term C) and (∑I

j=1 φ j times Term D) are unambiguously positive, a suffi-

cient condition for |Jf(δδδ )| to be positive is that (Term A - Term B) is positive, where A is obtained

below from A′ by omitting Terms C and D, with their coefficients:

Term A =

(
I

∏
j=1

Y− j

)2

︸ ︷︷ ︸
A1

+ 4

(
I

∏
j=1

(1−δ j)y jY− j

)
I

∑
j=1

Y− j

(1−δ j)y j︸ ︷︷ ︸
A2

+

(
I

∏
j=1

y2
j

)
16

I

∏
j=1

(1−δ j)︸ ︷︷ ︸
A3

Term B in expression (15) can be expanded to

Term B =

(
I

∏
j=1

y2
j

){(
−2

I

∏
j=1

(1−2δ j)

)
I

∑
j=1

δ jY− j

(1−2δ j)y j︸ ︷︷ ︸
B1

+

(
I

∏
j=1

(1−2δ j)

)
I

∑
j=1

2y jY− j +(Y− j)2

(1−2δ j)y2
j︸ ︷︷ ︸

B2

+ 2
I

∏
j=1

(1−2δ j)︸ ︷︷ ︸
B3

}

None of the components of Term B can be signed unambiguously. To prove that |Jf(δδδ )| is positive,

we will show that each of these components is dominated by a combination of subcomponents of

Term A. To establish this, we begin by decomposing terms A1 and A2. Each term identified with

an underbrace as Ar,q will be used to offset some component of Term B.

Term A1 = 2

(
I

∏
j=1

y j

)
I

∑
j=1

y3
j +

I

∏
j=1

y2
j

(
I

∑
j=1

(
Y− j

y j

)2

+ 6
I

∑
j=1

Y− j

y j
+ 10

)

>

(
I

∏
j=1

y2
j

){
2

I

∑
j=1

Y− j

y j︸ ︷︷ ︸
A1,1

+

(
I

∑
j=1

2y jY− j +(Y− j)2

y2
j

)
︸ ︷︷ ︸

A1,2

+ 2︸︷︷︸
A1,3

}
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Term A2 =

(
I

∏
j=1

y2
j

){
4

(
I

∏
j=1

(1−δ j)

)(
I

∑
j=1

2y jY− j +(Y− j)2

(1−δ j)y2
j

)
︸ ︷︷ ︸

A2,2

+ 8

(
3−2

I

∑
j=1

δ j +

(
I

∏
j=1

δ j

)
I

∑
j=1

1
δ j

)
︸ ︷︷ ︸

A2,3

}
+ 4

(
I

∑
j=1

y j

)(
I

∏
j=1

(1−δ j)y j

)
I

∑
j=1

∑k 6= j y2
k

1−δ j︸ ︷︷ ︸
>0

We now combine these expressions, to obtain terms (Ei)3
i=1 below. To complete the proof of the

theorem, it clearly suffices to show that each of these terms is nonnegative.

Term E1 = Term A1,1 − Term B1

= 2
I

∑
j=1

Y− j

y j
−

(
−2

I

∏
j=1

(1−2δ j)

)
I

∑
j=1

δ jY− j

(1−2δ j)y j

= 2
I

∑
j=1

Y− j
(
1+δ j ∏k 6= j(1−2δk)

)
y j

Term E2 = Term A1,2 + Term A2,2 − Term B2

=

(
I

∑
j=1

2y jY− j +(Y− j)2

y2
j

)
+ 4

(
I

∏
j=1

(1−δ j)

)
I

∑
j=1

2y jY− j +(Y− j)2

(1−δ j)y2
j

−

(
I

∏
j=1

(1−2δ j)

)
I

∑
j=1

2y jY− j +(Y− j)2

(1−2δ j)y2
j

= 2
I

∑
j=1

(
2−∑

k 6= j
δk

)
2y jY− j +(Y− j)2

y2
j

Term E3 = Term A1,3 + Term A2,3 + Term A3 − Term B3

= 2 + 8

(
3−2

I

∑
j=1

δ j +

(
I

∏
j=1

δ j

)
I

∑
j=1

1
δ j

)
+ 16

I

∏
j=1

(1−δ j)− 2
I

∏
j=1

(1−2δ j)

= 4

(
10 − 7

I

∑
j=1

δ j +4
I

∑
j=1

∏
k 6= j

δk

)

Term E1 is nonnegative since for each j, δ j ∏k 6= j(2δk − 1) ≥ −1. Term E2 is nonnega-

tive since for each j,
(
−∑k 6= j δk

)
≥ −2. Term E3 is nonnegative since the expression
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(
4∑

I
j=1 ∏k 6= j δk−7∑

I
j=1 δ j

)
attains a minimum of -10 on [0,1]3 when two of the δ j’s are

1 and the remaining one is 0. �
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Figure 1. Calibration region for b1 = b2 = 1.
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Generalized CES CES-quadratic
Cotton Wheat Rice Cotton Wheat Rice

βi1 0.830 0.647 0.316 0.937 0.847 0.632
βi2 0.154 0.346 0.624 0.057 0.150 0.336
βi3 0.011 0.004 0.038 0.004 0.002 0.021
βi4 0.006 0.002 0.021 0.002 0.001 0.012
αi 460.365 199.389 61.842 153.591 69.264 35.826
λ2i 15.651 -77.958 -51.295 315.219 0.000 137.790
δi 0.373 0.435 0.476 - - -
γi - - - 162.382 23.583 217.051

Table 1. Calibrated parameter values for the Generalized CES and CES-quadratic
models. The value of the the elasticity of substitution σi = 1

1−ρi
is set to 0.7 in both

models.
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Generalized CES CES-quadratic
Cotton Wheat Rice Cotton Wheat Rice

xi1 1.226 -0.824 -0.619 0.418 -0.334 -0.086
xi2 1.409 -0.410 -0.255 1.172 -0.334 -0.086
xi3 1.409 -0.410 -0.255 1.172 -0.334 -0.086
xi4 1.409 -0.410 -0.255 1.172 -0.334 -0.086
qi 0.468 -0.295 -0.192 0.470 -0.334 -0.086

Table 2. Percentage change in allocated inputs and output after a 1% increase in pC.
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Generalized CES CES-quadratic
Cotton Wheat Rice Cotton Wheat Rice

xi1 12.073 -8.085 -6.155 4.187 -3.349 -0.861
xi2 14.176 -4.105 -2.589 11.924 -3.349 -0.861
xi3 14.176 -4.105 -2.589 11.924 -3.349 -0.861
xi4 14.176 -4.105 -2.589 11.924 -3.349 -0.861
qi 4.472 -2.972 -1.953 4.700 -3.349 -0.861

Table 3. Percentage change in allocated inputs and output after a 10% increase in pC.
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Generalized CES CES-quadratic
Cotton Wheat Rice Cotton Wheat Rice

xi1 -0.014 0.122 -0.259 -0.007 0.037 -0.072
xi2 -0.057 0.021 -0.347 -0.039 0.010 -0.229
xi3 -0.057 0.021 -0.347 -0.039 0.010 -0.229
xi4 -6.508 -6.434 -6.779 -6.491 -6.444 -6.669
qi -0.038 0.015 -0.261 -0.039 0.010 -0.229

Table 4. Percentage change in allocated inputs and output after a 10% increase in c4.
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