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1 Introduction

Persistent racial and gender gaps are an increasing concern in many countries. In the United States,

a typical black 17-year old reads at the proficiency level of a typical white 13-year old (Fryer & Levitt

2006a). Girls significantly outperform boys in reading, and boys outperform girls in mathematics. At the

macroeconomic level, these gaps may be costly, given that the aggregate return to education is estimated

at around 6-10% per year of schooling (Acemoglu & Angrist 2000). A back-of-the-envelope calculation

thus suggests that there could be important gains of reducing the human-capital gap between races and

genders.

Of course, those potential gains depend on the cost of reducing racial and gender gaps. Some advocate

that there are intrinsic differences between races and genders that are not reducible to social or economic

factors. One of the most famous arguments is described in Herrnstein & Murray (1994). However, this

explanation has been disputed. Firstly, there is no single factor – usually called the g factor – that

explains educational or labor market outcomes (Heckman, Stixrud & Urzua 2006). Secondly, racial and

gender gaps are not constant but increasing with age. Fryer & Levitt (2006b) reports that there is no

difference in cognitive performance for children aged 1. In grade 1, a few covariates for family background

are enough to make racial gaps disappear (Fryer & Levitt 2006a). By the end of third grade, covariates

do not capture the black-white test score gap (Fryer & Levitt 2006a). And indeed, the black-white test

score gap increases by about 0.1 percent of a standard deviation a year. This suggests that teachers’

behavior may be part of the explanation.

The explanation may partly rely on the lack of minority teachers in elementary education: the fraction

of minority teachers should roughly double to make the fraction of minority teachers equal to the fraction

of minority students. In this paper, I look at whether teachers give better subjective assessments to

students of their own race and/or gender, conditionally on test scores. Subjective assessments are pervasive

in schools: most teachers fill school records that include comments on the child’s ability or behavior.

And important decisions such as tracking, special education and ability grouping are partly based on

subjective assessments. Moreover, teachers’ priors, beliefs and behavior may be based on what other

teachers reported.

Table 1 shows how teachers report their grading practices. 11% of white teachers declare they hold

all children to the same standards; 19% of non-hispanic black and hispanic teachers provide the same

answer. Male teachers too, more often declare holding all children to the same standards – 15%, 12%
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for female teachers. Thus teachers’ self-reported grading practices vary widely across race and gender.

However econometric work is needed to reveal teachers’ actual grading practices.

I estimate the effect of being assessed by a teacher of the same race on assessments conditionally on

test scores. I use a unique US longitudinal dataset that combines test scores and teacher assessments of

children’s skills in elementary education. I can therefore compare the difference between test scores and

teacher assessments when the same child experiences same race teachers and when he has a teacher of a

different race. I can also look at this difference for the same teacher when assessing same race children

and children of different races. Combining these two identification strategies, I estimate the effect of same

race and same gender teaching on assessments, conditionally on test scores, child and teacher fixed effects.

This addresses three potential identification issues: firstly, children of different genders and races may

behave differently in the classroom and during examinations, e.g. differential effect of testing on boys and

girls, stereotype threat effects (Steele & Aronson 1998); secondly, teacher assessments may capture skills

that are not captured by test scores; finally, some teachers may give higher average assessments regardless

of their students’ race or gender, and this can be correlated with child characteristics.

The dataset is the Early Childhood Longitudinal Study, Kindergarten cohort of 1998-1999 (ECLS-K),

collected by the National Center for Education Statistics of the US Department of Education. It is the

first large scale US study that follows a cohort of children from kindergarten entry to middle school. This

is therefore the first paper that looks at the discrepancy between test scores and teachers’ perception of

their students’ ability using a representative longitudinal sample of US children in elementary education.

Important findings are that teachers tend to give better assessments to children of their own race and

ethnicity, but not significantly higher assessments to children of their own gender. Moreover this result

is mainly due to grades given by white teachers to non-hispanic black and hispanic (any race) children.

White teachers give better assessments to non-hispanic black children and to hispanic children.

A number of robustness checks confirm the result of the baseline estimations. I test for endogenous

mobility, and allow for some correlation between race, gender and pupil mobility. Moreover, measurement

error checks show that only a large amount of measurement error can explain results. The estimates are

also robust to falsification checks in which test scores are regressed on test scores rather than test scores

on teacher assessments. Finally, I show that even if relative ranking and racial de facto segregation could

be a potential explanation, controlling for peers’ test scores does not change the results.

The analysis of this paper is related to Lavy (2004). Lavy’s paper uses high school matriculation exams

in Israel. Comparison of blind versus non-blind test scores showed that boys are likely to be overassessed
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Which of the following best describes your
evaluation and grading practices?

Same standards Standards based Same Standards
except for special needs on what they are capable of for everyone

All Teachers 0.70 0.17 0.12

White, Non Hispanic 0.71 0.17 0.11
Black, African American 0.59 0.22 0.19
American Indian or Alaska Native 0.71 0.22 0.07
Hispanic, Any Race 0.70 0.11 0.19
Native Hawaiian, other Pacific Islander 0.52 0.31 0.17
Asian 0.66 0.15 0.20

Male 0.68 0.17 0.15
Female 0.71 0.17 0.12

Source: Early Childhood Longitudinal Study, Kindergarten Cohort of 1998/1999.

Table 1: Fifth Grade Teachers’ Self-Reported Grading Practices

in all subjects. Moreover, the size of the bias was very sensitive to teachers’ characteristics suggesting that

teachers’ behavior is causing grade discrimination. This paper differs from Lavy (2004) in at least three

ways. Firstly, I compare subjective assessments and test scores, where subjective assessments are based

on classroom behavior and coursework. Lavy (2004) compares blind and non-blind marks. Secondly, in

Lavy (2004), if tough teachers are more likely to grade boys, the effect of non-blind assessments on boys’

test scores could be overestimated. I control for this effect in the ECLS-K, since I take into account child

and teacher fixed effects.

This paper is also related to a small scale experiment on fifth grade teachers in the state of Missouri.

Clifford & Walster (1973) sent report cards to teachers. These cards included child records randomly

matched to photographs, and teachers were asked to assess child ability. They found a significant effect of

physical attractiveness on assessments, but no effect of gender. This study nevertheless raises a number

of issues. It is not clear whether this result on Missouri fifth grade teachers may be relevant to assess

discrimination in a representative U.S. classroom: teachers were assessing students they did not know on

the basis of randomly generated school records. This paper’s analysis on the ECLS-K provides a large

scale analysis of teacher assessments in U.S. elementary education.

Better teacher assessments may have beneficial or detrimental effects on performance. On the one

hand, better assessments for the same ability level make it easier to get good grades and may therefore

decrease the child’s marginal benefit of effort, in a similar fashion as in Coate & Loury (1993). On the

other hand, better teacher expectations may raise student expectations, or reflect greater investment in
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the child’s education. These stories can be told apart in a controlled experiment. The psychological

and educational literature has debated on the issue of the effect of teacher expectations at least since

the Pygmalion experiment (Rosenthal & Jacobson 1968). In this experiment children of an elementary

school took a cognitive test at the beginning of the school year. The experimenters then selected 20%

of the children and told the teachers that these children were showing “unusual potential for intellectual

growth”. Empirical results suggested that those labeled as bloomers had significantly higher IQ progress

in first and second grade.

Discrimination and the effect of discrimination cannot be jointly identified in the same dataset. The

identification of grading discrimination by same race or same gender teachers requires a dataset such as

the ECLS-K but the identification of the effect of perceptions requires a controlled experiment.

Dee (2004) and Dee (2005b) show that being taught of the same race or a teacher of the same

gender increases test scores. Empirical results from Project STAR’s experiment show that same race

teaching increases test scores for grade 1 to grade 3 children (Dee 2004). Other empirical results from

the National Education Longitudinal Study shows that same gender teaching increases the test scores of

8th grade children (Dee 2005b). This paper is different: it estimates the effect of same race teaching on

assessments conditionally on test scores. That is, I look at whether teachers have incorrect perceptions

of their students’ ability, either by overestimating or by underestimating it. This leads to different policy

implications.

The rest of the paper is structured as follows. Section 2 presents the Early Childhood Longitudinal

Study. It provides a first hand descriptive analysis of the difference between teacher assessments and test

scores, as well as some statistics on racial and gender diversity in US elementary education. Section 3

explains main identification issues, the identification strategy and baseline results. Section 4 checks the

robustness of the results. Section 5 shows that assessment rankings are not affected by teacher-pupil

racial interactions in the classroom, but that relative ranking does not explain the main results. Finally,

section 6 concludes.

2 The Early Childhood Longitudinal Study

In the fall of 1998, the National Center for Education Statistics of the US Department of Education

undertook the first national longitudinal study of a representative sample of kindergartners. It started

with more than 20,000 children in a thousand participating schools. It then followed children in the
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spring, in the fall and spring of grade one and in the spring of grades three and five. The study’s last

followup will be eighth grade. Followups have combined procedures to reduce costs and maintain the

representativeness of the sample. Movers have been randomly subsampled to reduce costs. At the same

time, new schools and children have been added to the dataset to strengthen the representativeness of

the survey. In the spring of 1999, part of the schools that had previously declined participation were

included. In the spring of grade one, new children were included; this made the cross sectional sample

representative of grade one children. Children have then been followed in the spring of grade three and

five.

This paper’s empirical analysis uses the restricted use version of the ECLS-K which contains the race

and the gender of both the teacher and his pupils. Some observations with missing data on basic variables

(test scores, subjective assessments, teachers’ and children’s race and gender) were deleted. The analysis

is done on 48,065 observations in mathematics and 67,085 in English, which is similar to Fryer & Levitt

(2006a). Weights provided by the survey’s designers correct for the subsampling of movers, but most of

the analysis is robust to changes in weights. Race and ethnicity questions for the teacher were combined

to match the categories of the child’s race question; therefore ’Hispanic, Any Race’ is a separate category.

Same race should be subsequently read as ‘same race, non-hispanic’ or ‘both hispanic, any race’1.

Test scores were derived from national and state standards, including the National Assessment for

Educational Progress (NAEP), the National Council of Teachers of Mathematics, the American Associ-

ation for the Advancement of Science and the National Academy of Science. Test scores are based on

answers to multiple choice questionnaires conducted by external assessors. It is a two-stage adaptive test:

surveyors administer a routing test and select a longer test of appropriate difficulty. Test scores are made

comparable across children using Item Response Theory2, and items in second-stage forms overlap be-

tween adjacent forms. Skills covered by the reading assessments from kindergarten to fifth grade include:

print familiarity, letter recognition, beginning and ending sounds, recognition of common words (sight

vocabulary), and decoding multisyllabic words; vocabulary knowledge such as receptive vocabulary and

vocabulary-in-context; and passage comprehension. Skills covered by the mathematics assessment from

kindergarten to fifth grade include: number sense, properties, and operations; measurement; geometry

and spatial sense; data analysis, statistics, and probability; and patterns, algebra, and functions. Test
1Racial questions follow the 1997 Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity

published by the Office for Management and Budget. These standards allow for the possibility of specifying ”More than One
Race”. Nevertheless the share of children who were declared as ”More than One Race” is small.

2Item response theory computes test scores adjusting for the difficulty of each question. Formally, the probability of a
right answer is modelled as pi(θ) = ci + (1− ci)/(1 + e−Dai(θ−bi)), where ai,bi and ci are question specific parameters and θ
is child ability.
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scores were standardized to a mean of 50 and a standard deviation of 10 before the deletion of missing

observations.

At approximately the same time, teachers are contacted in their school. Teachers fill one questionnaire

per child. Teacher assessments of children’s skills, also called the Academic Rating Scale, are separated

into three areas: (i) Language and Literacy (ii) General Knowledge (ii) Mathematical Thinking. I will

use English, ie Language and Literacy, and mathematics assessments, ie mathematical thinking. The

instructions make it clear that it is not a test and should not be administered directly to the child. In

English and Maths, teachers answer between seven and nine questions on the childs’ proficiency in a set of

skills. Answers are on a five-point scale: ‘Not Yet’, ‘Beginning’, ‘In Progress’, ‘Intermediate’, ‘Proficient’.

An overall assessment is computed for each topic. Teacher assessments, like test scores, were standardized

to a mean of 50 and a standard deviation of 10 before the deletion of missing observations.

Teachers also report measures of behavior, that will be useful as controls. The social rating scale

(SRS) has five scales: approaches to learning, self-control, social interaction, impulsive/overactive, and

sad/lonely. The Approaches to Learning Scale measures the ease with which children can benefit from

the learning environment. The Self-Control Scale indicates the child’s ability to respect the property of

others, control temper, accept peer ideas for group activities, and respond appropriately to pressure from

peers. The five Interpersonal Skills items rate the childs skill in forming and maintaining friendships,

getting along with people who are different, comforting or helping other children, expressing feelings,

ideas and opinions in positive ways, and showing sensitivity to the feelings of others. Externalizing

Problem Behaviors include acting out behaviors. The Internalizing Problem Behavior Scale asks about

the apparent presence of anxiety, loneliness, low self-esteem, and sadness.

Basic children’s characteristics are depicted in table 2. The sample is balanced in terms of gender

and race. Some racial groups are overrepresented to increase the precision of statistics for subgroups.

Moreover, test scores and teacher assessments were standardized to a mean of 50 and a standard deviation

of 10 before the exclusion of missing data. This makes test scores and teacher assessments comparable to

the overall population.

What does it mean to be matched to a teacher of the same race or the same gender? Most children are

taught by female white teachers, therefore the potential advantages of same race or same gender teaching

will mostly be felt by female or white children. Tables 2 and 3 show that only 4.4% of teachers are male.

47.7% of children are matched with a teacher of the same gender. However, the fraction of male teachers

increases over time. 2.2% of fall kindergarten teachers are male , but it jumps to 15.1% among grade
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five English teachers and 17.4% among grade five mathematics teachers.

Teachers are also mostly white, with table 3 revealing that 73.9% of teachers are non hispanic white in

fall kindergarten. This fraction decreases along the curriculum but goes up in grade 5. Most of minority

teachers are either hispanic (of any race) or black, African Americans. They predominantly teach to

minority children, with minority teachers’ classrooms made up on average of 81.4% minority children.

Column (1) of table 13 shows the regression of a ‘same race’ dummy on pupil characteristics: boys are

not significantly more likely to be taught by a teacher of the same race, whereas minority children are

systematically less likely to be taught by a teacher of the same race. Non-hispanic black and hispanic

children are between 65 and 67% less likely to be taught by a teacher of the same race. It goes down to

83% for Asian children.

A first taste of the forthcoming results is shown in the descriptive statistics of tables 4 to 6. Let me start

with mathematics. The difference between test scores and teacher assessments is higher when matched

with a teacher of the same race for Black, African American children (7% of a standard deviation),

Hispanic, Any Race children (26.3% of a standard deviation), and American Indian or Alaska Native

children (42.6% of a standard deviation). These differences are significant at 1%. In English too these

differences are higher for children matched to a teacher of the same race: 15.8% of a standard deviation for

Black, African American children, 35.3% for Hispanic, Any Race children, 33.2% of a standard deviation

for American Indian or Alaska Native children. The difference is slightly negative for white children in

English, but this effect will disappear when controlling for confounding effects. Descriptive statistics for

same gender vs different gender pairings do not display the same clear-cut figures. The difference between

teacher assessments and test scores is lower for girls when matched to a teacher of the same gender. These

statistics should not be seen as causal as they do not control for potentially confounding effects. I describe

them in the next section.

3 Identification and Results

3.1 Identification of teacher discrimination

Descriptive statistics suggest that in most minority groups, the teacher assessment-test score gap is higher

when matched to a teacher of the same race (tables 4 and 5). This may not be interpreted as a causal

effect for a number of reasons.

Firstly, teachers may capture skills that are not captured by test scores. The description of the
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dataset makes it clear that, in principle, teacher assessments and test scores cover the same skills. But

questions and answers give some leeway. Questionnaires do not formally define the meanings of the five

possible answers, ie ‘Not Yet’, ‘Beginning’, ‘In Progress’, ‘Intermediate’, ‘Proficient’. Secondly, boys,

girls, white and minority children may display skills differently in the classroom and in a multiple choice

questionnaire. Studies have shown that, for instance, boys react differently to high stake examinations.

Thirdly, some teachers give on average higher grades than other teachers for children of the same abilities.

The teacher’s tendency to give higher grades may be correlated with being of the same race or same gender

as his children; in which case the gap between test scores and assessments varies with same race or same

gender teaching, without reflecting discrimination.

The baseline specification will attempt to cope with these three potential issues; in this specification,

teacher assessments depend on test scores, teacher fixed effects, child fixed effects and a variable indicating

whether the child is matched to a teacher of the same race or the same gender. Formally,

ai,f,t = µJ(i,f,t) + δyi,f,t + ui,f + αrSame Racei,f,t + εi,f,t (1)

ai,f,t = µJ(i,f,t) + δyi,f,t + ui,f + αgSame Genderi,f,t + εi,f,t (2)

Where ai,f,t is the teacher assessment of child i in field f = English, Maths, in period t. t runs from

fall kindergarten to spring grade 5. yi,f,t is the test score, ui,f the child effect of child i in field f . µJ(i,f,t)

is the teacher effect. Same Racei,f,t (Same Genderi,f,t) takes value 1 when matched with a teacher of the

same race (gender), 0 otherwise.

ui,f captures non time varying individual characteristics that may have an effect on assessments

regardless of the teacher. This for instance may capture behavior, that teachers may on average include

in their assessments. Boys may also react differently to classroom exercises, which are assessed by the

teacher, and to the multiple choice questions of the ECLS-K.

The inclusion of teacher effects µJ(i,f,t) attempts to cope with the third identification issue. If the

teacher’s grading practice µJ(i,f,t) is correlated to same race or same gender teaching, the OLS estimates

of αg and αr might be biased. The teacher effect µJ(i,f,t) therefore captures these permanent average

differences between teachers3.
3Another identification issue may arise if some teachers spread their assessments more than others. In this case δ may

vary from teacher to teacher. However estimations are too imprecise when allowing this flexibility. Results are available on
request.
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The model is estimated using a preconditioned conjugate gradient method described in Abowd, Creecy

& Kramarz (2002)4. All estimations have converged with a numerical precision of 10−15. Bootstrap

was used to compute standard errors, as described in Efron & Tibshirani (1994). More specifically,

block bootstrap was performed, i.e. simple random sampling of children, which takes into account the

correlation of residuals across observations of the same child.

As in Abowd, Kramarz & Margolis (1999) and Kramarz, Machin & Ouazad (2007), children moving

from/to a same race teacher identify the effect of same race assessments and same gender teacher on

assessments conditionally on test scores. The identification of specifications 1 and 2 therefore requires

sufficient and exogenous mobility5.

Exogenous mobility is best understood when comparing the progress of a child in terms of assessments

to the progress of the child in terms of test scores. Let us therefore take the first difference of specifications

(1) and (2).

∆ai,f,t = ∆µJ(i,f,t) + δ∆yi,f,t + αr∆Same Racei,f,t + ∆εi,f,t (3)

∆ai,f,t = ∆µJ(i,f,t) + δ∆yi,f,t + αg∆Same Genderi,f,t + ∆εi,f,t (4)

The effect of same race assessments and same gender assessments is identified whenever ∆Same Racei,f,t

and ∆Same Genderi,f,t are not correlated with unobserved characteristics that have an impact on the

progress in assessments, conditionally on the variation in teacher effects ∆µJ(i,f,t) and the progress in test

scores ∆yi,f,t. In other words, child mobility should not be driven by unobserved time varying shocks

that affect teacher assessments conditionally on the other covariates. Section 4.1 suggests that this issue

is not affecting the empirical results.

3.2 Baseline Results

Baseline results suggest that teachers indeed give better assessments to pupils of their race, but not

significantly better assessments to pupils of their gender. The effect is sizeable: it is between 1/10 and
4I have developed a set of STATA packages available on the web at http://repository.ciser.cornell.edu/viewcvs-

public/cg2/branches/stata/, or by typing net from http://repository.ciser.cornell.edu/viewcvs-public/cg2/branches/stata/
on the command line.

5Sufficient mobility can be properly defined. In the same way as in Abowd et al. (1999) and Kramarz et al. (2007), two
teachers are said to be connected when they have taught the same child in different years. This defines a network of teachers
connected together through children. All teachers need to be in the same connex component of the mobility graph. It is
then possible to identify the relative toughness in grading of all teachers.
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1/5 of the black-white teacher assessment gap, and around 1/3 of the hispanic-non-hispanic white teacher

assessment gap.

Baseline results are presented in table 7. OLS estimates indicate that children who are assessed by

same race teachers also have higher maths assessments, around 2.8% of a standard deviation higher.

However this is not likely to be the causal effect of same race assessments for reasons outlined above.

Column (2) gives the estimate when controlling for child effects. The estimate is higher than the baseline

OLS one, which suggests that the child fixed effect is negatively correlated with same race pairings. Most

teachers are female nonhispanic white, thus either on average all teachers give lower assessments to white

children or, white kids respond differently when in the classroom and when facing an assessor.

Column (3) gives the estimate when controlling for teacher fixed effects. Again, the estimate is higher

than the OLS estimate of column (1), which implies that the teacher fixed effect is negatively correlated

with same race pairings. This may be due to the fact that teachers who give lower assessments are

matched with children of the same race. Again a majority of teachers are female nonhispanic white, and

a possible story is that these teachers are tougher than teachers of other races & ethnicities.

Finally, column (4) gives the estimate when controlling for both children and teacher fixed effects. The

estimate is fairly similar to the estimates of columns (2) and (3). Column (4) is my preferred estimate

for the effect of same race matching on assessments conditionally on test scores. It indeed addresses the

three important identification issues described above. On average, children who are assessed by a teacher

of the same race have a higher mathematics assessment, by around 7% of a standard deviation higher.

Turning to English assessments, the OLS estimate and the child fixed effects are roughly similar;

children who are assessed by a teacher of the same race also have a higher English assessments, by around

4% of a standard deviation. Column (7) shows that controlling for teacher fixed effects actually increases

the estimate, suggesting the same correlation between grading practices and same race matching as for

maths assessments. Column (8) shows the estimate when controlling for both children and teacher fixed

effects. Interestingly, the effect is of the same magnitude as the OLS and the child fixed effect estimates.

This is due to the negative correlation between child and teacher fixed effects. Results indicate that being

matched with a teacher of the same race increases assessments by around 4% of a standard deviation,

conditionally on test scores and children and teacher fixed effects.

The gender and racial gaps in teacher assessments are shown on table 8. This table is useful to

compare the gaps in assessments to the magnitude of the effect. In mathematics, the effect of same race

assessments is around 7% of a standard deviation, and that is around 1/3 of the black-white teacher
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assessment gap and 1/5 of the non-hispanic white-hispanic teacher assessment gap. In English, the effect

of same race assessments is around 4.1% of a standard deviation, which is around 1/10 of the black-white

teacher assessment gap. Overall, the effect of race interactions on assessments accounts for between 1/10

and 1/3 of the teacher assessment gaps.

3.3 Analysis of Child and Teacher Effects

Child fixed effects are interpreted as: (i) differential behavior in the classroom and during tests (ii)

unobserved characteristics that teachers may on average include in their assessment (iii) average grading

discrimination. Column (1) of table 9 shows that boys’ fixed effects are 19% of a standard deviation lower,

controlling for race. Controlling for teacher reported child’s behavior, the difference between boys’ and

girls’ fixed effects is much smaller (7% of a standard deviation). This indicates that teacher assessments

partly include the child’s behavior. The same reasoning for other rows of columns (1) and (2) of table

9 suggests that lower fixed effects for minority children are partly due to the inclusion of behavior in

teachers’ assessments.

Teacher grading practices are captured by teacher fixed effects. The fixed effects are higher when

teachers give better assessments regardless of the student’s race or gender. Columns (3) and (4) of table

9 shows results of the analysis of teacher fixed effects. Male teachers’ effects are 5.3% of a standard

deviation higher, suggesting that male teachers give better assessments on average. Black, hispanic and

Asian teachers’ effects are between 1% and 2.5% of a standard deviation lower. These correlations are

stable when controlling for tenure and experience; this even though the share of minority teachers has

steadily declined in the last decades.

3.4 Breaking Down Results by Race

Results have suggested that teachers give higher grades to children of their own race conditionally on

test scores and children’s and teachers’ constant characteristics. What races drive the result? In order to

disentangle the effects of different racial interactions, I will estimate a specification in which the Same Race

dummy is split into multiple dummies, one for each interaction between the teacher’s and the student’s

race. This will allow for heterogeneous effects, race by race. The specification is similar to baseline

specification 1.
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ai,f,t = µJ(i,f,t) + δyi,f,t

+
∑
r 6=r′

ααr,αr′ (Teacher’s Race is r, Student’s Race is r’)

+ui,f + εi,f,t (5)

Pupil i’s assessment ai,f,t in field f = English, Maths in period t depends on test scores yi,f,t, a set of

interactions between the teacher’s and the student’s race (Teacher’s Race is r, Student’s Race is r’), child

effects ui,f and teacher effects µJ(i,f,t).

Results are presented in table 10 for mathematics assessments and in table 11 for English assessments.

This more refined analysis of racial interactions gives a better view of teacher perceptions. In mathematics

being assessed by a white teacher lowers the assessment of hispanic children by 17.3% of a standard

deviation. The interaction between white teachers and black students is not significant but the order of

magnitude of the coefficient is comparable to baseline estimates. In English, this interaction is significant.

White teachers give lower assessments to black children, lower by 11.1% of a standard deviation. They

also give lower assessments to hispanic children, lower by 14.8% of a standard deviation.

One result from table 10 and 11 departs from the idea that same race assessments higher grades.

Hispanic teachers tend to give higher grades to white students than to hispanic students in English.

Results from very small minority groups – Pacific Islanders, American Indians – may not be robust.

Overall results broken down by race reveal that the strongest interactions occur between white teachers

and black students on the one hand, and white teachers and hispanic students on the other hand.

3.5 Do Female Teachers Give Better Assessments to Girls?

It has not been found that teachers give significantly higher grades to children of their own gender

conditionally on test scores and children’s and teachers’ constant characteristics. However, it may be

possible that this average effect for both male and female teachers is due to the combination of opposite

effects for male teacher–male child and female teacher–female child pairings.

I therefore put forward a specification in which heterogenous effects are allowed. In the same way as

in the previous subsection,
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ai,f,t = µJ(i,f,t) + δyi,f,t

+αmale(Male Teacher - Male Pupil)i,f,t

+αfemale(Female Teacher - Female Pupil)i,f,t

+ui,f + εi,f,t (6)

Pupil i’s assessment ai,f,t in field f = English, Maths in period t depends on test scores yi,f,t, a

(Male Teacher - Male Pupil)i,f,t,Male dummy, a (Female Teacher - Female Pupil)i,f,t,Female, child effects

ui and teacher effects µJ(i,f,t).

Empirical results presented in table 12 show that male teachers are more likely to give higher as-

sessments to male children in mathematics, increasing them by 6.5% of a standard deviation. Other

coefficients are not significant.

4 Discussion

4.1 Are Disruptive Children Assigned to Teachers of Their Own Race?

The baseline model described in equations 1 and 2 is not identified if, for instance, (i) the behavior is

the child is implicitly part of the teacher assessments and (ii) his behavior makes him more likely to be

taught by a teacher of the same race. This section shows that there is little correlation between being

assigned a teacher of the same race and measures of behavior.

Studies in psychology have shown that family events are correlated with child behavior: children

who witness domestice violence suffer from low self-esteem, anxiety, depression and behavior problems

(Hughes 1988); physically abused adolescents have significantly higher prevalence rates of depression,

conduct disorder, internalizing and externalizing behavior problems, and social deficits (Pelcovitz, Kaplan,

Goldenberg, Mandel, Lehane & Guarrera 1994). Family events may therefore drive behavioral changes.

Moreover the economics literature shows that students are not randomly assigned to students (Rothstein

2008). Clotfelter, Ladd & Vigdor (2005) suggests that novice teachers are assigned to classrooms in a

way that disadvantages black students. In my case, if students who become disruptive are assigned to

same race teachers, I overestimate the effect of same race assessments. A good test is therefore to regress

probabilities of being matched to a teacher of the same race on changes of behavior.
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Columns (3) and (4) of table 13 show that there is no significant effect of behavior on the probability

of being matched with a teacher of the same race6. There is little correlation between behavior and same

race teaching when controlling for teacher fixed effects, and it disappears when controlling for both child

fixed effects and teacher fixed effects. This table is for mathematics, and a similar table is available for

English teachers. The ECLS-K contains multiple measures of behavior reported by the teacher and by

the parents. Table 13 uses teacher-reported measures of behavior as they are likely to be more relevant

in the teacher assignment process than parental measures7.

4.2 Minority children are more likely to be matched to a teacher of their own race

as they move from kindergarten to grade 5

There are many more minority teachers in grade 5 than in kindergarten. Thus minority children are more

and more likely to move from a teacher of a different race to a teacher of the same race as they move

from kindergarten to grade 5. Thus moving from/to a teacher of the same race will be correlated with

the child’s race. This is a potential identification issue in specifications 1 and 2. I will therefore design a

specification that allows for some correlation between race, gender and mobility patterns.

Table 14 shows the average characteristics of children who experience different mobility patterns.

‘00100’ means that the child had a teacher of the same race in spring grade 1 and a teacher of a different

race in the other four periods – fall kindergarten, spring kindergarten, spring grade 3 and spring grade

5. Mobility is strongly correlated with race and ethnicity. Only 4% of white children have never been

taught by a teacher of the same race, while 25% of Black, African American children have always been

taught by a teacher of a different race. Column (1) of table 13 shows that while gender is not correlated

with same race teaching, minority pupils are less likely to be matched with a teacher of the same race in

the early years of elementary education. There is indeed a link between race and mobility patterns.

It is possible to condition on the whole history of teacher-student matchings as in Card & Sullivan

(1988), which inspired table 14. I perform here a simpler test. I introduce child and teacher fixed effects in

the first differenced equation. That allows for some correlation between mobility and children’s observed

and unobserved characteristics.
6This is a linear probability model. Conditional logits allow for the estimation of discrete models with controls for

unobservable heterogeneity. Their estimation yields very similar results. Conditional logits do not allow the introduction of
both student and teacher unobserved heterogeneity.

7Parental measures could be used, with no significant effect on the results. Results available on request.
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∆ai,f,t = δ∆yi,f,t + αr∆Same Racei,f,t + ui,f + µJ(i,f,t) + νi,f,t (7)

∆ai,f,t = δ∆yi,f,t + αg∆Same Genderi,f,t + ui,f + µJ(i,f,t) + νi,f,t (8)

Notations are as before. ui,f is a child fixed effect, µJ(i,f,t) is a teacher fixed effect. These two

specifications may then account for the observed correlation between race, included in ui,f , and mobility

patterns ∆Same Racei,f,t and ∆Same Genderi,f,t. A major disadvantage of this specification though, is

the increased standard errors that it generates.

Table 15 show the results for the estimation of specifications 7 and 8. A striking fact is that, although

standard errors are wider, point estimates are remarkably similar to the estimates of specifications 1 and

2. Columns (4) and (8) show the estimates for same race pairings on English and maths assessments.

The effect is not significant for mathematics; it is very similar to the baseline estimates (7% in column

(4) of table 7, and 8% in column (4) of table 15). The estimate for English assessments is both significant

and very close to the baseline estimate, with children paired with a teacher of the same race having an

assessment that is 4% of a standard deviation higher than other children.

Overall, mobility based on constant observed and unobserved characteristics such as ability, race or

gender does not seem to affect baseline estimates.

4.3 Do Teacher Assessments Have An Effect on Test Scores? Reverse Causality

Baseline results suggest that teachers give significantly higher assessments to children of their race. How-

ever other stories could explain the result. Teacher assessments may be driving test scores as in the

Pygmalion experiment (Rosenthal & Jacobson 1968), such that expectations actually have an impact on

educational outcomes. In this case, the effect of same race teaching goes from teacher assessments to test

scores, and not the reverse. The following specifications test for potential reverse causality, and empirical

results suggest that these stories are not relevant.

In this falsification test, test scores and teacher assessments are therefore reversed, assessments explain

test scores rather than the other way round.
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yi,f,t = µJ(i,f,t) + δai,f,t + ui,f + αrSame Racei,f,t + εi,f,t (9)

yi,f,t = µJ(i,f,t) + δai,f,t + ui,f + αgSame Genderi,f,t + εi,f,t (10)

Notations are as in the baseline specifications 1 and 2. Results are presented in table 16: while the OLS

estimates are significantly negative, the effect of same race teaching becomes non-significant when adding

a child fixed effect, in both mathematics and English specifications. The effect is also non-significant

when controlling for both child and teacher fixed effects. This suggests that it is unlikely that reverse

causality is an alternative story8.

4.4 Does Measurement Error Explain the Results?

Test scores of multiple choice questionnaires are usually noisy measures of underlying ability (Rudner &

Schafer 2001). Random error may be introduced in the design of the questionnaire; distractors – wrong

options – may not be effective, or may be partially correct; items may be either not sufficiently difficult

or too difficult for the child. Noise may be also be due to children’s behavior, such as sleep patterns,

illnesses, careless errors when filling the questionnaire, misinterpretation of test instructions.

Measurement error in test scores could cause bias in my estimation of the effect of same race/same

gender teachers on assessments. More precisely, most teachers are nonhispanic white, and most minority

teachers are either hispanic or black, African American. The ‘same race’ variable will therefore be cor-

related with the gap between white and black and hispanic children. This means that the effect of same

race assessments could be overestimated. It is therefore important to check whether measurement error

could be a potential story for a significant effect of same race teachers on assessments in table 7.

A first hint that measurement error may be an explanation comes from the second row of table 7. The

coefficient of test scores in all regressions is lower than 1, and one would naturally expect this coefficient

to be equal to 1, given that both assessments and test scores have standard deviation 10. But constraining

this coefficient to be equal to 1 does not significantly alter the coefficients of interest (first row of table

7)9.

So what measurement error can explain the baseline estimates? Consider that test scores are noisy
8This assumes that either yi,f,t = µJ(i,f,t) + δai,f,t + ui,f + αrSame Racei,f,t + εi,f,t or ai,f,t = µJ(i,f,t) + δyi,f,t + ui,f +

αrSame Racei,f,t + εi,f,t is the underlying structural equation. If both equations hold, the test doesn’t allow to disentangle
the two effects. This is then a simultaneous equation problem and an instrument for test scores or assessments is needed.

9Results available on request.
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measures of the child’s underlying ability:

yi,f,t = y∗i,f,t + νi,t (11)

I assume that measurement error is classical, ie νi,t is not correlated with ability. In other words,

this assumes that ability is as precisely measured for low performing children, average children and high

performing children.

For the sake of clarity, I drop fixed effects in the so-called structural equation:

ai,f,t = µ+ δy∗i,f,t + αrSame Racei,f,t + εi,f,t (12)

Where teachers’ assessments are based on true ability y∗i,f,t rather than test scores yi,f,t. The econome-

trician does not observe y∗i,f,t and estimates equation 12 by regressing on yi,f,t. Then, both the estimate

of δ and the estimate of αr will be biased.

α̂r,OLS = αr + δ · λθ (13)

Where

θ = V ar(ν)/[V ar(ν) + V ar(y∗)] (14)

λ =
Cov(Same Race, y∗)

V ar(Same Race)(1− Corr(Same Race, y∗)2)
(15)

θ is the size of the measurement error. If, as suggested, Same Race and test scores y are positively

correlated, then λ > 0 and the effect α of same race teachers on assessments will be overestimated. This

result is in the same spirit as developments from the literature on measurement error and statistical

discrimination (Phelps 1972).

Given the knowledge of the relative size θ of the measurement error, one could estimate the unbiased

effect of same race teachers on assessments. Indeed, build the following corrected value of the test score:

ỹi,f,t = θ · E[y·,f,t|SameRace] + (1− θ) · yi,f,t (16)

The estimation of specification 1 on the corrected test score ỹ will then give an unbiased estimate of
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the effect α of same race teachers on assessments conditionally on test scores.

But the size of measurement error is unknown, therefore I will estimate the parameter of interest

α using different values of θ. The lowest size of the measurement error will give an estimate of the

measurement error that is required to explain our results.

Results for the baseline specifications with corrected test scores are presented in table 17. For mathe-

matics test scores, a measurement error of 30% is required to make the coefficient nonsignificant. Between

40 and 50% of measurement error is required to cancel the point estimate. In English, a measurement

error of about 20% is required to make the coefficient nonsignificant, whereas a measurement error of

about 30 to 40% cancels the point estimate. In a word,at least 20 to 30% of measurement error would

be necessary to explain the coefficient. Even though this result does not exclude a potential confounding

effect of measurement error, it suggests that only a large amount of measurement error would alter our

conclusions.

4.5 Are the Teacher Assessment–Test Score Gaps Correlated Across Topics?

The analysis has been carried out so far separately for English and mathematics. It could be fruitful

though to investigate whether teachers’ perceptions are correlated across topics. More precisely, are the

differences between test scores and teacher assessments correlated in English and in mathematics? On

the one hand, if the gap between assessments and test scores reflects teachers’ perceptions, they should

be correlated across topics. From kindergarten to third grade, it is indeed the same teacher who fills

both teacher assessment forms in English and mathematics. On the other hand, if the difference between

teacher assessments and test scores is only measurement error, their correlation across topics should be

low.

Defining the gaps between assessments and test scores,

∆i,Mathematics,t = ai,Mathematics,t − yi,Mathematics,t

∆i,English,t = ai,English,t − yi,English,t

Table 18 shows the correlation of teacher assessment-test score gaps across fields, race by race, and

gender by gender. Interestingly, the correlation is significant and above 0.5 for all races expect Pacific

islanders. Moreover, the correlation is remarkably stable across races – from 0.445 to 0.552 –, indicating

that teachers’ perceptions are correlated across fields regardless of race and gender. These figures also

suggest that random noise is not likely to explain the main results of this paper.
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4.6 Stereotype Threats

One last – and important – identification issue relies on the fact that students may truly perform better

in the classroom when matched to a teacher of the same race. In this case, it is likely that behavior in the

classroom will be affected by same race teaching. There is evidence that stereotype threats can impair

both academic performance and psychological engagement with academics (Aronson, Fried & Good 2002).

Wheeler & Petty (2001) review literature on the link between stereotype activation and behavior. Five

regressions were therefore performed as a test for stereotype threat:

bki,f,t = mJ(i,f,t) + d · yi,f,t + θi,f + ar · Same Racei,f,t + ei,f,t (17)

bki,f,t is the k-th behavioral measure of pupil i in field f in period t. Other notations are as before. The

interpretation of fixed effects is slightly different than in the previous sections though. bki,f,t is reported

by the teacher and the teacher effect mJ(i,f,t) is seen here as the average behavioral assessment of teacher

J(i, f, t). θi,f is the pupil’s average difference between cognitive performance and behavior.

Results are reported in table 19. There is no significant effect of same race assessment on behavior

conditionally on test scores in neither of the four behavioral dimensions10. This suggests that the child’s

behavior is not significantly affected by same race teaching conditionally on test scores. Stereotype threats

are therefore not likely to explain the main results of this paper. These results do not however rule out

an unconditional effect of same race teaching on behavior, as in Dee (2005a).

5 How Do Teachers Order Assessments?

Results suggest that teachers give higher assessments to children of their own race. Are assessments still

ranked the same way as test scores? Even if the absolute value of teacher assessments is biased, the

ranking of teacher assessments in the classroom might reflect the ranking of children’s cognitive skills.

5.1 Relative v. Absolute Grading

I computed the child’s rank in test scores and teacher assessments within surveyed children in the class-

room. The small number of surveyed children per teacher is not an issue given that teachers fill assessment

questionnaires only for the surveyed ones.
10One behavioral measure could not be used as a dependent variable, ‘Self-Control and Peers’ as missing observations

would significantly reduce the size of the sample.
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In the econometric specification, the rank in teacher assessments depends on the rank in test scores,

a teacher fixed effect, and a child fixed effect as well as a variable indicating whether the teacher is of the

same race or the same gender.

Rank in ai,f,t = µJ(i,f,t) + δRank in yi,f,t + ui,f + αrSame Racei,f,t + εi,f,t (18)

Rank in ai,f,t = µJ(i,f,t) + δRank in yi,f,t + ui,f + αgSame Genderi,f,t + εi,f,t (19)

Rank in ai,f,t is the rank in teacher assessments within surveyed children of the classroom for child i

in field f = English, Maths in period t as before. Rank in yi,f,t is the rank in test score within surveyed

children of the classroom. µJ(i,f,t) is a teacher effect. ui,f is a child effect. The coefficients of interest are

αr and αg.

Results are presented in table 20. OLS estimates of same race teachers are between 0.09 ranks

(Mathematics) and 0.119 ranks (English). Controlling for child fixed effects, this effect falls and is only

significant in English (0.06 ranks). This suggests that some children get better rankings regardless of the

teacher’s race. Two way fixed effects results are not significant in mathematics and English.

Combining these results with the baseline results, teachers tend to give better assessments to children

of their race and ethnicity, but they do not seem to alter the ranking of students of their race or gender.

5.2 A Small Model of Relative Grading

In fact, relative ranking could potentially explain my main results. I design a small model that explains

that identification issue and I test the hypothesis in the dataset. The results do not support ranking as

a driving force of my results.

For the sake of clarity, I will design a model in which I do not capture teacher-student interactions.

It can be extended to teacher-student interactions. Assume teachers order students on a rigid scale, and

the absolute value of the assessments does not matter to them. Blacks could be overassessed whenever

(i) they are more likely to be matched to other black kids than white kids (ii) black kids have on average

lower test scores. If black students are more likely to be matched to underachievers when matched to

a teacher of the same race than when not, then the effect of same race assessments might just reflect

ranking and not teachers’ perceptions.

I will design a small model to explain this effect. Each classroom has two students, who can be either
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black or white. The teacher assessment of a student is either a = a or a = a depending on the child’s

ranking in the test scores in the classroom. The child can be either black (r = b) or white (r = w). The

overall fraction of white kids in the population is π. I will use primes to designate the child’s peer, e.g.

the peer’s race is r′.

The probability of getting a high assessment when black and when the test score is y depends on the

distribution of test scores and the de facto segregation pattern.

P (a = a|r = b, y) = P (y > y′|r = b, y)

= P (y > y′|r = b, y, r′ = b)P (r′ = b|r = b, y)

+P (y > y′|r = b, y, r′ = w)P (r′ = w|r = b, y)

= P (y > y′|r = b, r′ = b)P (r′ = b|r = b)

+P (y > y′|r = b, y, r′ = w)P (r′ = w|r = b)

I assume that there is no correlation between the test score and the probability of being matched to

a black pupil. Assuming that there is no correlation between test scores in a classroom – i.e. no peer

effects, which is a strong assumption but can be relaxed –, let’s say that the distribution of test scores

is fb(y) for blacks and fw(y) for whites. Moreover, the segregation pattern can be described by a single

number p = P (r′ = b|r = b) that doesn’t change with test scores, r′ ⊥ y|r. Then,

P (a = a|r = b, y) = Fw(y) · (1− p) + Fb(y) · p

And, symmetrically for whites:

P (a = a|r = w, y) = Fw(y) · (1− p′) + Fb(y) · p′

With p′ = P (r′ = b|r = w) = π
1−π (1− p). This leads to the following effect of race on assessments:
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δa(y) = P (a = a|r = w, y)− P (a = a|r = b, y)

= [Fw(y)− Fb(y)](p− p′)

If white children have uniformly better test scores and if there is some degree of de jure segregation,

then Fb(y) > Fw(y) for all y and p > p′. This leads to lower assessments for white children, i.e. δ < 0.

This makes clear that even in the absence of any form of teacher misperception, there can be effects of

the child’s race on teacher assessments. This result relies on the relationship between teacher assessments

and classroom composition and is therefore testable.

5.3 Controlling for Peers in the Baseline Equation

For this to explain our main result one would require that students who move from a same race teacher

to a teacher of a different race are more likely to move to a classroom with worse peers, conditionally on

child and teacher fixed effects. In this case, peers’ test scores would be correlated with same race teacher

conditionally on the covariates and this would invalidate the causal interpretation of the identification

strategy.

I design two falsification tests. Firstly, I regress a same race teacher dummy on the average test score

in the classroom either conditionally on teacher fixed effects or child fixed effects. Secondly, I include

peers’ average test score as a control in the baseline regression.

Table 21 shows the regression of a same race dummy on peers’ test scores. Column (1) shows that

there is some correlation between peers’ average test score and being assigned to a teacher of the same

race in mathematics. Lower quality peers are, as expected, more likely to be encountered when taught by

a teacher of the same race. Interestingly this effect disappears in column (2), where I control for a child

fixed effect in a conditional logit regression. That is, looking at the same child moving from a teacher

of the same race to a teacher of a different race, peers’ quality does not decline. Column (3) shows that

controlling for teacher unobservables is not sufficient to control for peers’ characteristics. Columns (4) to

(6) present similar results for English teachers.

Table 22 is another piece of evidence that suggests relative ranking is not the whole story. It is the

results of the baseline regression of table 7 with an additional control for peers’ average test score. These

two tables are very similar, and the hypothesis that the coefficients of interest (column (8)) are equal
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between those two tables cannot be rejected at 95%. Controlling for peers’ average test scores, child

effects, teacher effects, and the test score, being assessed by a teacher of the same race increases test

scores by 7.2% of a SD in mathematics and 4.4% of a SD in English.

6 Conclusion

This paper uses a unique US longitudinal dataset that contains both teacher assessments and test scores.

I assess whether teachers give better assessments to children of their race or gender. Controlling for child

and teacher unobservables, I found that teachers give better assessments to children of their race, but not

of their gender. This effect is mainly due to the lower grades given to black and to hispanic children by

white teachers. It should be noted that a conservative interpretation of the results cannot tell whether

white teachers overassess black pupils or whether they underassess black pupils. The same reasoning

applies to hispanic pupils. Finally, results show that the behavior of the child is not significantly affected

by same race teachers conditionally on test scores, teacher effects and student effects. This suggests that

stereotype threat does not explain our main results.

This is the first large scale analysis of teacher assessments vs. test scores that uses US elementary

education data. Results highlight the fact that the teachers’ races determine their perceptions of students’

skills. Controlled experiments on teachers’ perceptions in U.S. classrooms would be needed to assess both

(i) how they affect children performance (ii) how public policies can change teachers’ perceptions of their

students.
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Mean S.D.

Children’s characteristics

Male 0.503 ( 0.500 )
White, Non Hispanic 0.587 ( 0.492 )
Black, African American 0.137 ( 0.344 )
Hispanic, Any Race 0.157 ( 0.364 )
Asian 0.057 ( 0.232 )
Native Hawaiian, other Pacific Islander 0.012 ( 0.109 )
American Indian or Alaska Native 0.018 ( 0.133 )
More than One Race 0.024 ( 0.154 )
Test Scores 50.296 ( 9.810 )
Assessments 50.310 ( 9.877 )

Teachers’ characteristics

Male 0.044 ( 0.205 )
Race — See next table —
Age 42.255 ( 10.880 )
Tenure 11.076 ( 9.273 )
Experience at the Grade Level 8.536 ( 7.669 )

Matching statistics

Same Gender Teacher 0.477 ( 0.499 )
Same Race Teacher 0.618 ( 0.486 )
Sampled Children per Teacher 8.198 ( 5.914 )

Some children and some teachers have a missing race variable. This case is treated as separate category and does not enter

into the ‘same race’ variable.

Source: Early Childhood Longitudinal Study, Kindergarten Cohort of 1998/1999.

Table 2: Descriptive Statistics – All Periods Pooled
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— All Teachers — - English - - Mathematics -

Fall Spring Spring Spring Spring Spring
Kindergarten Kindergarten Grade 1 Grade 3 Grade 5 Grade 5

Male 0.022 0.020 0.018 0.045 0.151 0.174

White, Non Hispanic 0.739 0.740 0.607 0.561 0.742 0.737

Black, African American 0.062 0.064 0.054 0.052 0.080 0.086

Hispanic, Any Race 0.086 0.083 0.062 0.046 0.068 0.067

Asian 0.026 0.024 0.022 0.016 0.022 0.023

American Indian 0.008 0.009 0.009 0.008 0.016 0.016
or Alaska Native

Native Hawaiian, 0.004 0.004 0.002 0.003 0.008 0.006
other Pacific Islander

Number of Teachers 3,132 3,388 5,046 6,093 4,735 4,697

Some teachers have not reported their race. This case is treated as separate category and does not enter into the ‘same race’

variable.

Source: Early Childhood Longitudinal Study, Kindergarten Cohort of 1998/1999.

Table 3: Racial and Gender Diversity among Teachers From Kindergarten to Grade 5
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Teacher’s Race
Mean Same Race Different Race Difference

(1) (2) (3) (4)=(2)-(3)

Mathematics Test Scores

Test Score 50.245 51.503 48.209 3.293**
( 9.878 ) ( 9.629 ) ( 9.936 ) [ 0.092 ]

Teacher Assessments 50.210 51.030 48.883 2.147**
( 9.917 ) ( 9.779 ) ( 9.994 ) [ 0.093 ]

Teacher Assessments - Test Scores

. . . American Indian or Alaska Native Child 1.259 4.832 0.569 4.263**
( 8.818 ) ( 8.634 ) ( 8.691 ) [ 0.796 ]

. . . Asian Child -0.703 -1.489 -0.629 -0.860
( 9.470 ) ( 11.423 ) ( 9.264 ) [ 0.653 ]

. . . Black, African American Child 2.109 2.665 1.891 0.774**
( 8.924 ) ( 9.173 ) ( 8.816 ) [ 0.248 ]

. . . Pacific Islander Child 0.666 2.367 0.501 1.866
( 8.032 ) ( 6.728 ) ( 8.134 ) [ 1.165 ]

. . . White Child -1.040 -1.032 -1.122 0.090
( 8.921 ) ( 8.849 ) ( 9.655 ) [ 0.191 ]

. . . Hispanic, Any Race Child 1.660 3.668 1.035 2.634**
( 9.269 ) ( 9.658 ) ( 9.055 ) [ 0.240 ]

Standard deviations between round brackets (columns 1, 2 and 3) and standard errors between square brackets (column 4).

The significance levels for the standard errors are computed following a two sample t-test with equal variances.

**: Significant at 1%. *: Significant at 5%.

Source: Early Childhood Longitudinal Study, Kindergarten Cohort of 1998/1999.

Table 4: Descriptive Statistics on the difference between teacher assessments and test scores – Mathematics
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Teacher’s Race
Mean Same Race Different Race Difference

(1) (2) (3) (4)=(2)-(3)

English Test Scores

Test Score 50.332 51.340 48.700 2.641**
( 9.762 ) ( 9.522 ) ( 9.923 ) [ 0.076 ]

Teacher Assessments 50.381 51.181 49.084 2.097**
( 9.848 ) ( 9.711 ) ( 9.930 ) [ 0.077 ]

Teacher Assessments - Test Scores

. . . American Indian or Alaska Native Child 2.527 5.332 2.010 3.322**
( 8.200 ) ( 7.791 ) ( 8.172 ) [ 0.642 ]

. . . Asian Child -0.774 -0.713 -0.781 0.067
( 8.435 ) ( 8.387 ) ( 8.442 ) [ 0.462 ]

. . . Black, African American Child 1.421 2.543 0.961 1.583**
( 8.145 ) ( 8.344 ) ( 8.018 ) [ 0.184 ]

. . . Pacific Islander Child 0.052 3.616 -0.333 3.950**
( 7.849 ) ( 8.155 ) ( 7.723 ) [ 0.926 ]

. . . White Child -0.585 -0.608 -0.323 -0.286*
( 7.987 ) ( 7.948 ) ( 8.397 ) [ 0.145 ]

. . . Hispanic, Any Race Child 1.326 4.220 0.687 3.533**
( 8.693 ) ( 9.087 ) ( 8.472 ) [ 0.223 ]

Standard deviations between round brackets (columns 1, 2 and 3) and standard errors between square brackets (column 4).

The significance levels for the standard errors are computed following a two sample t-test with equal variances.

**: Significant at 1%. *: Significant at 5%.

Source: Early Childhood Longitudinal Study, Kindergarten Cohort of 1998/1999.

Table 5: Descriptive Statistics on the difference between teacher assessments and test scores – English
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Teacher’s Gender
Mean Same Gender Different Gender Difference

(1) (2) (3) (4)=(2)-(3)

Mathematics Test Scores

Test Score 50.245 50.088 50.387 -0.300**
( 9.878 ) ( 9.477 ) ( 10.227 ) [ 0.090 ]

Teacher Assessments 50.210 50.622 49.836 0.786**
( 9.917 ) ( 9.735 ) ( 10.065 ) [ 0.090 ]

Teacher Assessments - Test Scores

. . . Male Child -0.678 -0.178 -0.701 0.523
( 9.224 ) ( 8.770 ) ( 9.244 ) [ 0.274 ]

. . . Female Child 0.621 0.569 1.186 -0.617**
( 8.921 ) ( 8.941 ) ( 8.685 ) [ 0.204 ]

English Test Scores

Test Score 50.332 51.199 49.538 1.661**
( 9.762 ) ( 9.444 ) ( 9.978 ) [ 0.075 ]

Teacher Assessments 50.381 51.524 49.334 2.190**
( 9.848 ) ( 9.748 ) ( 9.823 ) [ 0.075 ]

Teacher Assessments - Test Scores

. . . Male Child -0.309 0.159 -0.330 0.489*
( 8.242 ) ( 8.598 ) ( 8.225 ) [ 0.229 ]

. . . Female Child 0.410 0.333 1.255 -0.922**
( 8.149 ) ( 8.121 ) ( 8.411 ) [ 0.165 ]

Standard deviations between round brackets (columns 1, 2 and 3) and standard errors between square brackets (column 4).

The significance levels for the standard errors are computed following a two sample t-test with equal variances.

**: Significant at 1%. *: Significant at 5%.

Source: Early Childhood Longitudinal Study, Kindergarten Cohort of 1998/1999.

Table 6: Descriptive Statistics on the difference between teacher assessments and test scores – Mathematics
& English

29



M
a
th

em
a
ti

cs
T

ea
ch

er
A

ss
es

m
en

ts
E

n
g
li
sh

T
ea

ch
er

A
ss

es
m

en
ts

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

O
L

S
C

h
il
d

f.
e.

T
ea

ch
er

f.
e.

T
w

o
w

ay
f.

e.
O

L
S

C
h
il
d

f.
e.

T
ea

ch
er

f.
e.

T
w

o
w

ay
f.

e.

S
a
m

e
R

a
ce

T
ea

ch
er

0
.2

8
1
*

0
.7

0
4
*
*

0
.6

9
4
*
*

0
.7

1
1
*
*

0
.4

2
8
*
*

0
.4

1
3
*
*

0
.7

0
2
*
*

0
.4

3
5
*
*

(
0
.1

1
8

)
(

0
.1

6
2

)
(

0
.1

1
9

)
(

0
.1

9
0

)
(

0
.0

9
3

)
(

0
.1

1
3

)
(

0
.0

9
4

)
(

0
.1

1
4

)

T
es

t
S
co

re
0
.5

9
1
*
*

0
.2

6
3
*
*

0
.5

8
8
*
*

0
.2

4
1
*
*

0
.6

5
9
*
*

0
.3

1
6
*
*

0
.6

6
9
*
*

0
.3

1
3
*
*

(
0
.0

0
4

)
(

0
.0

0
9

)
(

0
.0

0
4

)
(

0
.0

0
9

)
(

0
.0

0
3

)
(

0
.0

0
6

)
(

0
.0

0
3

)
(

0
.0

0
5

)
F

S
ta

ti
st

ic
1
,2

1
8
.5

1
7

8
2
.6

3
0

1
,6

6
8
.0

0
9

4
.1

5
2

2
,5

0
1
.1

0
6

2
8
5
.9

0
3

3
,4

6
2
.8

7
6

5
.6

0
3

R
S
q
u
a
re

d
0
.3

4
8

0
.6

6
6

0
.5

4
0

0
.7

8
6

0
.4

3
6

0
.6

9
9

0
.5

5
3

0
.7

7
3

S
a
m

e
G

en
d
er

T
ea

ch
er

0
.1

3
2

0
.2

7
8

-0
.0

8
3

-0
.0

1
9

-0
.2

2
1

-0
.1

5
8

-0
.2

1
5

-0
.1

7
4

(
0
.1

5
1

)
(

0
.1

8
6

)
(

0
.1

5
2

)
(

0
.2

3
8

)
(

0
.1

2
1

)
(

0
.1

3
5

)
(

0
.1

2
2

)
(

0
.1

8
8

)

T
es

t
S
co

re
0
.5

9
1
*
*

0
.2

6
2
*
*

0
.5

8
7
*
*

0
.2

4
1
*
*

0
.6

5
9
*
*

0
.3

1
6
*
*

0
.6

6
8
*
*

0
.3

1
4
*
*

(
0
.0

0
4

)
(

0
.0

0
9

)
(

0
.0

0
4

)
(

0
.0

0
5

)
(

0
.0

0
3

)
(

0
.0

0
6

)
(

0
.0

0
3

)
(

0
.0

0
6

)

F
S
ta

ti
st

ic
1
,2

1
8
.1

5
8

8
1
.1

9
7

1
,6

6
4
.4

4
1

4
.1

4
9

2
,4

9
9
.5

7
8

2
8
4
.8

2
0

3
,4

5
6
.4

9
7

5
.6

0
1

R
S
q
u
a
re

d
0
.3

4
7

0
.6

6
5

0
.5

3
9

0
.7

8
6

0
.4

3
6

0
.6

9
9

0
.5

5
2

0
.7

7
3

C
h
il
d

C
o
n
tr

o
ls

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

T
ea

ch
er

C
o
n
tr

o
ls

Y
es

Y
es

N
o

N
o

Y
es

Y
es

N
o

N
o

O
th

er
C

o
n
tr

o
ls

—
T

im
e

d
u
m

m
ie

s
—

N
u
m

b
er

o
f

O
b
se

rv
a
ti

o
n
s

4
8
,0

6
5

6
7
,8

5
5

R
ea

d
in

g
:

T
es

t
S
co

re
s

h
av

e
a

st
a
n
d
a
rd

d
ev

ia
ti

o
n

o
f

1
0

a
n
d

a
m

ea
n

o
f

5
0
.

C
h
il
d

C
o
n
tr

o
ls

in
cl

u
d
e

co
n
tr

o
ls

fo
r

ra
ce

a
n
d

g
en

d
er

.
T

ea
ch

er
co

n
tr

o
ls

in
cl

u
d
e

co
n
tr

o
ls

fo
r

th
e

te
a
ch

er
’s

ra
ce

,
g
en

d
er

,
te

n
u
re

a
n
d

ex
p

er
ie

n
ce

.

*
*
:

S
ig

n
ifi

ca
n
t

a
t

1
%

.
*
:

S
ig

n
ifi

ca
n
t

a
t

5
%

.

S
ta

n
d
a
rd

er
ro

rs
a
re

co
m

p
u
te

d
u
si

n
g

b
o
o
ts

tr
a
p
p
in

g
in

co
lu

m
n
s

4
a
n
d

8
.

R
eg

re
ss

io
n
s

a
re

w
ei

g
h
te

d
u
si

n
g

sa
m

p
li
n
g

d
es

ig
n

w
ei

g
h
ts

.

S
o
u
rc

e:
E

a
rl

y
C

h
il
d
h
o
o
d

L
o
n
g
it

u
d
in

a
l

S
tu

d
y,

K
in

d
er

g
a
rt

en
C

o
h
o
rt

o
f

1
9
9
8
/
1
9
9
9
.

T
ab

le
7:

D
o

Sa
m

e
R

ac
e

or
Sa

m
e

G
en

de
r

T
ea

ch
er

s
G

iv
e

B
et

te
r

A
ss

es
sm

en
ts

C
on

di
ti

on
al

ly
on

T
es

t
Sc

or
es

?

30



—
M

a
th

em
a
ti

cs
T

ea
ch

er
A

ss
es

sm
en

t
—

—
E

n
g
li
sh

T
ea

ch
er

A
ss

es
sm

en
t

—

F
a
ll

S
p
ri

n
g

S
p
ri

n
g

S
p
ri

n
g

S
p
ri

n
g

F
a
ll

S
p
ri

n
g

S
p
ri

n
g

S
p
ri

n
g

S
p
ri

n
g

K
in

d
er

g
a
rt

en
K

in
d
er

g
a
rt

en
G

ra
d
e

1
G

ra
d
e

3
G

ra
d
e

5
K

in
d
er

g
a
rt

en
K

in
d
er

g
a
rt

en
G

ra
d
e

1
G

ra
d
e

3
G

ra
d
e

5

B
oy

-1
.1

3
1
*
*

-1
.2

2
9
*
*

-0
.2

9
4
*

0
.0

3
5

0
.0

0
6

-1
.7

9
6
*
*

-2
.3

7
7
*
*

-2
.4

1
3
*
*

-2
.5

9
1
*
*

-3
.2

0
8
*
*

(
0
.1

6
0
)

(
0
.1

4
3
)

(
0
.1

6
5
)

(
0
.1

9
1
)

(
0
.2

7
6
)

(
0
.1

4
5
)

(
0
.1

4
3
)

(
0
.1

6
3
)

(
0
.1

8
7
)

(
0
.1

9
1
)

B
la

ck
,

A
fr

ic
a
n

A
m

er
ic

a
n

-4
.7

6
1
*
*

-4
.2

4
0
*
*

-4
.7

3
1
*
*

-3
.2

3
9
*
*

-4
.7

6
6
*
*

-4
.1

0
7
*
*

-3
.3

9
2
*
*

-3
.6

8
0
*
*

-4
.4

3
8
*
*

-4
.0

0
5
*
*

(
0
.2

2
7
)

(
0
.2

0
5
)

(
0
.2

4
6
)

(
0
.2

9
2
)

(
0
.4

5
8
)

(
0
.2

0
5
)

(
0
.2

0
4
)

(
0
.2

4
4
)

(
0
.2

8
6
)

(
0
.3

1
2
)

H
is

p
a
n
ic

,
A

n
y

R
a
ce

-5
.6

4
7
*
*

-4
.5

8
9
*
*

-3
.4

0
1
*
*

-1
.3

7
2
*
*

-2
.1

8
6
*
*

-6
.2

4
8
*
*

-4
.4

9
9
*
*

-3
.0

0
4
*
*

-2
.3

1
4
*
*

-2
.4

2
4
*
*

(
0
.2

1
0
)

(
0
.1

9
4
)

(
0
.2

2
6
)

(
0
.2

6
7
)

(
0
.3

5
9
)

(
0
.1

9
2
)

(
0
.1

9
3
)

(
0
.2

2
4
)

(
0
.2

6
2
)

(
0
.2

5
1
)

A
si

a
n

-1
.8

8
5
*
*

-1
.6

4
0
*
*

-0
.9

5
9
*
*

2
.3

5
2
*
*

2
.3

5
6
*
*

-3
.1

0
6
*
*

-1
.7

9
6
*
*

-0
.2

8
2

0
.8

9
1
*
*

1
.6

1
3
*
*

(
0
.4

5
4
)

(
0
.3

5
1
)

(
0
.3

7
0
)

(
0
.4

4
8
)

(
0
.5

5
6
)

(
0
.4

0
7
)

(
0
.3

5
0
)

(
0
.3

6
7
)

(
0
.4

3
9
)

(
0
.3

8
3
)

P
a
ci

fi
c

Is
la

n
d
er

-4
.6

9
5
*
*

-3
.9

8
0
*
*

-5
.4

0
5
*
*

-1
.6

3
9
*

-0
.7

0
3

-5
.0

7
8
*
*

-2
.8

5
2
*
*

-4
.8

0
0
*
*

-2
.4

9
6
*
*

-2
.8

0
3
*
*

(
1
.0

7
4
)

(
0
.8

5
9
)

(
0
.8

3
7
)

(
0
.9

9
5
)

(
1
.2

9
4
)

(
0
.9

3
0
)

(
0
.8

5
8
)

(
0
.8

3
6
)

(
0
.9

7
3
)

(
0
.9

4
6
)

In
d
ia

n
-5

.8
2
4
*
*

-6
.8

2
3
*
*

-5
.3

0
6
*
*

-4
.8

5
9
*
*

-6
.0

5
5
*
*

-5
.9

0
6
*
*

-6
.2

3
3
*
*

-5
.3

8
5
*
*

-5
.2

3
1
*
*

-5
.0

0
5
*
*

(
0
.6

0
4
)

(
0
.5

5
6
)

(
0
.6

6
0
)

(
0
.7

7
7
)

(
0
.9

9
0
)

(
0
.5

4
3
)

(
0
.5

5
0
)

(
0
.6

5
2
)

(
0
.7

5
5
)

(
0
.7

1
7
)

O
b
se

rv
a
ti

o
n
s

1
4
,4

6
2

1
8
,7

4
4

1
4
,4

2
5

1
1
,1

9
0

5
,2

6
1

1
7
,6

8
8

1
8
,9

0
8

1
4
,5

7
7

1
1
,3

5
7

1
0
,7

2
0

R
S
q
u
a
re

d
0
.0

7
0
.0

5
0
.0

4
0
.0

2
0
.0

4
0
.0

8
0
.0

5
0
.0

4
0
.0

5
0
.0

5

F
S
ta

ti
st

ic
1
1
7
.4

1
1
0
8
.9

9
7
0
.2

3
2
4
.9

3
2
6
.1

9
1
6
1
.1

1
1
1
4
.8

7
7
7
.6

8
6
1
.9

4
6
8
.3

9

R
ea

d
in

g
:

T
es

t
S
co

re
s

h
av

e
a

st
a
n
d
a
rd

d
ev

ia
ti

o
n

o
f

1
0

a
n
d

a
m

ea
n

o
f

5
0
.

C
h
il
d

C
o
n
tr

o
ls

in
cl

u
d
e

co
n
tr

o
ls

fo
r

ra
ce

a
n
d

g
en

d
er

.
T

ea
ch

er
co

n
tr

o
ls

in
cl

u
d
e

co
n
tr

o
ls

fo
r

th
e

te
a
ch

er
’s

ra
ce

,
g
en

d
er

,
te

n
u
re

a
n
d

ex
p

er
ie

n
ce

.*
*
:

S
ig

n
ifi

ca
n
t

a
t

1
%

.
*
:

S
ig

n
ifi

ca
n
t

a
t

5
%

.

S
o
u
rc

e:
E

a
rl

y
C

h
il
d
h
o
o
d

L
o
n
g
it

u
d
in

a
l

S
tu

d
y,

K
in

d
er

g
a
rt

en
C

o
h
o
rt

o
f

1
9
9
8
/
1
9
9
9
.

T
ab

le
8:

T
he

G
ap

s
in

T
ea

ch
er

A
ss

es
sm

en
ts

fr
om

K
in

de
rg

ar
te

n
to

G
ra

de
5

31



Child Fixed Effect Teacher Fixed Effect
(1) (2) (3) (4)

Male -1.856** -0.717** 1.221** 1.276**
( 0.094 ) ( 0.083 ) ( 0.369 ) ( 0.378 )

Black, African American -1.669** -0.594** 0.515 0.503
( 0.136 ) ( 0.118 ) ( 0.265 ) ( 0.268 )

Hispanic, Any Race -1.382** -0.604** 0.492 0.451
( 0.131 ) ( 0.113 ) ( 0.270 ) ( 0.273 )

Asian -0.065 -0.403* 0.145 0.121
( 0.200 ) ( 0.172 ) ( 0.384 ) ( 0.389 )

Pacific Islander -2.411** -1.505** -0.223 -0.340
( 0.461 ) ( 0.395 ) ( 1.036 ) ( 1.039 )

Indian -2.914** -1.901** 0.129 0.097
( 0.355 ) ( 0.304 ) ( 0.654 ) ( 0.655 )

Teacher’s Tenure -0.044**
( 0.010 )

Teacher’s Experience 0.021
( 0.012 )

Child’s behavior controls No Yes - -

Other controls - - – Grade Dummies –

F Statistic 74.55 435.46 2.19 3.48

R Squared 0.03 0.29 0.00 0.01

Number of Observations 20,131 20,131 5,496 5,268

Reading: Male children’s fixed effects are 18.6% of a standard deviation lower than female children’s fixed effects when not

controlling for the child’s behavior. Male teachers’ fixed effects are 1.2% of a standard deviation higher than female teachers’

fixed effects.

**: Significant at 1%. *: Significant at 5%.

Source: Early Childhood Longitudinal Study, Kindergarten Cohort of 1998/1999.

Table 9: The Analysis of Pupil Effects – The Analysis of Teacher Effects
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Same Race Teacher
(1) (2) (3) (4)

Boy -0.001 0.000
( 0.003 ) ( 0.003 )

Black, African American -0.645** -0.644**
( 0.005 ) ( 0.005 )

Hispanic, Any Race -0.675** -0.676**
( 0.004 ) ( 0.004 )

Asian -0.829** -0.831**
( 0.008 ) ( 0.008 )

Native Hawaiian, other Pacific Islander -0.820** -0.820**
( 0.016 ) ( 0.016 )

American Indian or Alaska Native -0.734** -0.733**
( 0.012 ) ( 0.012 )

Approaches to learning 0.000 -0.000 -0.000
( 0.000 ) ( 0.000 ) ( 0.000 )

Self-control -0.001* -0.001 -0.000
( 0.000 ) ( 0.000 ) ( 0.001 )

Interpersonal skills 0.000 0.001* 0.001
( 0.000 ) ( 0.000 ) ( 0.000 )

Externalizing Problems Behavior -0.001** 0.000 -0.000
( 0.000 ) ( 0.000 ) ( 0.001 )

Internalizing Problems Behavior -0.001** -0.000 -0.000
( 0.000 ) ( 0.000 ) ( 0.000 )

Child Fixed Effect No No Yes Yes

Teacher Fixed Effect No No No Yes

F Statistic 4,031.979 2,283.608 4.444 9.026

R Squared 0.522 0.522 0.822 0.889

Number of Observations 48,065 48,065 48,065 48,065

Behavioral measures are reported by the teacher (Teacher Social Rating Scale). Standard errors are bootstrapped in column

4. Observations are for the matching of children to mathematics teachers, similar results for English teachers.

**: Significant at 1%. *: Significant at 5%.

Source: Early Childhood Longitudinal Study, Kindergarten Cohort of 1998/1999.

Table 13: The Matching of Teachers to Children – Race, Gender and Behavior
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