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1 Introduction

In the recent macroeconomic literature, factor-based dynamic models have
become popular. The idea underlying these models is that, while there are
potentially a very large number of explanatory variables, most of the move-
ment in the dependent variable can be explained by only a few variables or
linear combinations thereof. One of the reasons why this happens it that the
explanatory variables are often highly correlated.

We mention three recent examples where this approach has been success-
fully applied. Stock and Watson (2002) performed forecasting experiments
for key USA macroeconomic variables using 215 explanatory variables. From
this large number of variables they extracted a few factors which were suffi-
cient for their purpose. Then they used the extracted factors to forecast key
macroeconomic indicators. Forni et al. (2000, 2003) provided a time-series
forecasting method based on spectral analysis, and applied this method to
forecast Euro-area industrial production and inflation using 447 explanatory
variables. Finally, Bernanke et al. (2005) took a VAR model and augmented
it with factors based on 120 macroeconomic variables. All three papers find
that the mean squared errors of estimates and forecasts based on factor mod-
els are lower than those obtained from vector autoregressive models.

After extracting factors, these models are typically estimated in the tra-
ditional econometric way, that is, separating model selection and estimation.
Recent advances in econometric theory allow us to combine model selection
and estimation into one procedure, thus avoiding the undesirable problem of
pretesting. This procedure is called ‘Bayesian model averaging’. The purpose
of the current paper is to extend the basic model averaging framework to in-
clude dynamics and factor extraction, and to apply this extended framework
to explain and forecast Armenian real GDP and inflation dynamics.

In addition, we wish to compare in this context the standard Bayesian
model averaging (BMA) approach to the ‘weighted average least squares’
(WALS) approach, recently developed in Magnus et al. (2010). The WALS
approach has both theoretical and computational advantages over BMA.
Theoretical, because it generates bounded risk and contains an explicit treat-
ment of ignorance; computational, because its computing time increases lin-
early rather than exponentially with the dimension of the model selection
space. In Magnus et al. (2010), WALS was applied to growth empirics, but
without dynamics or lagged dependent variables.

Estimation and forecasting in factor-based dynamic models using the
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BMA algorithm was first applied by Koop and Potter (2004) to US data.
Our current paper follows their general approach, but also reports on ex-
periments where the two model averaging methods (WALS and BMA) are
compared.

The paper is organized as follows. In Section 2 we present the WALS
and BMA model averaging methods. The factor-based dynamic model is
introduced in Section 3. Some characteristics of Armenia are provided in
Section 4 and the data are described in Section 5, which also contains a pre-
liminary analysis of the data. The estimation results are given in Section 6.
We report on two experiments. First, an estimation simulation in Section 7,
then a forecast experiment in Section 8. Section 9 concludes.

2 Bayesian combinations of frequentist esti-

mators

The idea behind combining estimators (or forecasts) is to use information
from all models within a given family in a continuous fashion. In contrast to
standard econometrics — where one first selects a model and then estimates
the parameters within the chosen model, a discrete procedure — we combine
the estimators from all models considered, where some models get a higher
weight than others, based on priors and diagnostics. One advantage of this
procedure is that we avoid the well-known pretest problem: our procedure is
a joint procedure, where model selection and estimation are combined.

As our framework we choose the linear regression model

y = X1β1 +X2β2 + ǫ = Xβ + ǫ, ǫ ∼ N(0, σ2In),

where y (n×1) is the vector of observations, X1 (n×k1) and X2 (n×k2) are
matrices of nonrandom regressors, ǫ is a random vector of unobservable dis-
turbances, and β1 and β2 are unknown parameters which we need to estimate.
We assume that k1 ≥ 1, k2 ≥ 0, k = k1+k2 ≤ n−1, that X = (X1 : X2) has
full column-rank, and that the disturbances are independent and identically
distributed.

The reason for distinguishing between X1 and X2 is that X1 contains
variables that we want to be in the model (whatever t-values or other diag-
nostics we find), while X2 contains variables that may or may not be in the
model. The columns of X1 are called ‘focus’ regressors, the columns of X2

‘auxiliary’ regressors. The uncertainty about each auxiliary regressor, that is
whether we should or should not include the regressor in our model, is a very
common situation, and the application of model averaging is then a natural
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procedure. Rather than choosing one model by some preliminary diagnostic
tests, we assume that each model tells us something of interest about our
focus parameters. We do not, however, trust each model to the same degree,
and the resulting weights are determined by priors and data. In this paper
we concentrate on two model averaging algorithms, the well-known BMA
algorithm and the recently introduced WALS algorithm. We briefly discuss
each in turn.

Bayesian model averaging (BMA). With the exception of Magnus et al.
(2010), the whole literature on Bayesian model averaging considers the case
k1 = 1. We summarize the approach of Magnus et al. (2010, Section 2).
Since there are k2 auxiliary regressors, we have 2k2 models to consider. The
posterior probability for model Mi is given by

λi = p(Mi|y) =
p(Mi)p(y|Mi)

∑

j p(Mj)p(y|Mj)
(i = 1, . . . , 2k2),

and if we take p(Mi) = 2−k2, which is the common assumption, then p(Mi)
does not depend on i, and we have simply λi ∝ p(y|Mi), the marginal
likelihood of y in model Mi. If we adopt Zellner’s g-prior and let X2i denote
the n×k2i matrix containing the k2i auxiliary regressors that appear in model
Mi, then

λi ∝

(

gi
1 + gi

)k2i/2

(y′M1AiM1y)
−(n−k1)/2,

where

Ai =
gi

1 + gi
M1 +

1

1 + gi
(M1 −M1X2i(X

′

2iM1X2i)
−1X ′

2iM1)

and
M1 = In −X1(X

′

1X1)
−1X ′

1.

The λi are the required weights to obtain the BMA estimates and pre-
cisions. For example, the BMA estimator of β1 is given by E(β1|y) =
∑

i λi E(β1|y,Mi).
There are several problems with BMA. First, all 2k2 models have to be

evaluated implying a huge computational effort; second, the priors are based
on the normal distribution, leading to unbounded risk; and third, the treat-
ment of ‘ignorance’ is ad hoc and unsatisfactory. These problems are avoided
in an alternative model averaging procedure, called WALS.

Weighted average least squares (WALS). In the WALS algorithm, developed
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in Magnus et al. (2010), we first ‘orthogonalize’ the columns of X2 such that
P ′X2

′M1X2P = Λ, where P is orthogonal and Λ is diagonal. Then we define
X∗

2 = X2PΛ−1/2 and β∗

2 = Λ1/2P ′β2, so that X∗

2β
∗

2 = X2β2. Our prior will be
on β1 and β∗

2 (rather than on β2), and this gives us enormous computational
advantage, because all models which include x∗

2j as a regressor will have the
same estimator of β∗

2j , irrespective which other β∗

2 ’s are estimated.
The second ingredient is the ‘equivalence theorem’ (Magnus and Durbin,

1999; Danilov and Magnus, 2004), which tells us that the WALS estimator
b1 of β1 will be ‘good’ (in the mean squared error sense) if and only if Wβ̂∗

2

is a good estimator of β∗

2 , where β̂
∗

2 denotes the least squares estimator of β∗

2

in the unrestricted model, and W is a diagonal matrix or order k2 × k2. The
diagonal elements wj of W will depend on the weights λi, but while there
are 2k2 λ’s, there are only k2 w’s. This is where the computation advantage
comes from.

The third ingredient is the treatment of ignorance. Based on the fact
that a t-value of one indicates that including an auxiliary regressor gives us
the same mean squared error of the estimated focus parameter as excluding
the auxiliary regressor, we define ignorance on an auxiliary parameter η by
the properties

Pr(η > 0) = Pr(η < 0), Pr(|η| > 1) = Pr(|η| < 1),

and we propose the Laplace distribution π(η) = (c/2) exp(−c|η|) with c =
log 2. Details of the procedure can be found in Magnus et al. (2010), Sec-
tion 3. The WALS estimator is a Bayesian combination of frequentist esti-
mators, and possesses major advantages over standard Bayesian model av-
eraging (BMA) estimators: the WALS estimator has bounded risk, allows a
coherent treatment of ignorance, and its computational effort is negligible.
The sampling properties of the WALS estimator as compared to BMA es-
timators have been examined in Magnus et al. (2011), where Monte Carlo
evidence shows that the WALS estimator performs significantly better than
standard BMA and pretest alternatives. Because of the light computational
cost, extensions are possible in many directions. For example, Magnus et al.
(2011) extend the WALS theory to allow for nonspherical disturbances.

3 Model and assumptions

In the current paper we consider another extension, namely to allow for
lagged dependent variables. The yt will then be correlated with the current
and all previous disturbances, but uncorrelated with all future disturbances.
Hence, the regressor yt−1 will be uncorrelated with the current disturbance
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and all future disturbances, although it will be correlated with all previous
disturbances. The standard OLS assumptions do therefore not hold, and
the finite-sample properties of the least squares estimators are not valid.
However, as shown by Mann and Wald (1943), these properties will hold
asymptotically.

Thus motivated, we consider the dynamic regression model

yt = α(L)yt−1 + β(L)xt−1 + ξt (t = 1, . . . , T ), (1)

where yt is a scalar dependent variable, xt is a k × 1 vector of nonrandom
explanatory variables, α(L) and β(L) are polynomials in the lag operator of
dimensions p1 and p2, respectively, and ξt is a random vector of unobservable
disturbances, independently and identically distributed as N(0, σ2).

We have p1 + kp2 explanatory variables, which may be a large number.
Moreover, many of the parameters may be close to zero. These two factors
make it difficult to apply standard estimation methods (Koop and Potter,
2004). It is then common in the macro-econometric literature to replace the k
explanatory variables with a much smaller number of variables. This can be
achieved by using principal component or factor analysis algorithms. Then,
after extracting the principal components, Model (1) can be rewritten as

yt = α(L)yt−1 + γ(L)ft−1 + ǫt (t = 1, . . . , T ), (2)

where ft (m× 1) is the vector of extracted principal components (Stock and
Watson, 2002). We assume that m < k and m < T .

Koop and Potter (2004) were the first to show how Bayesian model av-
eraging can be applied to estimation and forecasting using dynamic factor
models. Their study applies BMA to the problem of forecasting GDP and
inflation using quarterly US data on 162 time series. Our paper follows their
approach, but also compares two competing estimation procedures: BMA
and WALS. This will not only tell us something about the power of the two
algorithms, but will also provide information about the robustness of our
results.

We shall assume that the lagged dependent variables are always focus
regressors. But the extracted principal components can be either focus or
auxiliary. Thus we write

y = X1β1 +X2β2 + ǫ, (3)

where X1 contains the lagged dependent variables and a subset (possible
empty) of the principal components, and X2 contains the remainder of the
principal components. In this form we can apply BMA and WALS to this
system.
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4 Characteristics of Armenia

Armenia is a small country in the Southern Caucasus, about 65% the size of
Moscow region. It is bordered by Georgia to the North and East, Azerbaijan
to the West, and Turkey and Iran to the South. Armenia was the first
nation to adopt Christianity as a state religion, in 301 AD. The population of
Armenia, close to three million people, is homogeneous: about 98% is ethnic
Armenian with some small minorities, mostly Yazidis (1.3%) and Russians
(0.5%).

Until 1991 Armenia was a republic of the former Soviet Union. During
the Soviet period Armenia was transformed from an agricultural to an in-
dustrial society, and produced machine tools, electronic products, synthetic
rubber, and textiles to trade with other Soviet republics in exchange for
raw materials and energy. But the regional conflict with Azerbaijan over
Nagorno-Karabakh and the break-up of the Soviet Union contributed to a
severe economic decline in the early 1990s. As a result, GDP in 1992/93 was
only about 40% of the level in 1989.

In 1994 the Armenian Government launched an ambitious IMF-sponsored
economic program, which has resulted in positive growth since 1995. Today,
Armenia’s economy is stable with a high growth rate and low inflation. From
2000–2009 the economy grew at an annual average rate of 8.8%, while the
inflation rate was 3.0%. The reason for this rapid growth lies mainly in the
expanding construction and service sectors; according to Armenia’s National
Statistical Agency, the construction sector accounted for about 27% of GDP
in 2008. Cash remittances from migrant workers (of which 95% are employed
in Russia) are another important factor.

Despite marked progress, Armenia still suffers from a large trade imbal-
ance which is an impediment to economic growth. Armenia is still largely
dependent upon foreign aid and remittances from Armenian nationals work-
ing abroad. The economy was hit hard by the recent global economic crisis
as worker remittances fell and exports of key mineral products (copper, alu-
minum, molybdenum, and processed diamonds) dropped. The total value of
foreign debt is high: the ratio between the GDP and foreign debt has reached
46%. The unemployment rate is nearly 30%, and a huge gap exists between
actual and potential GDP.

5 Data description and preliminary analysis

Our data consist of quarterly time series of 42 macroeconomic variables from
2000 (second quarter) to 2010 (third quarter), in total 42 observations for
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each variable. This set comprises information on national accounts data (9
variables) and consumer prices and exchange rate data (13 variables), listed
in Table 1; and on financial and monetary policy indicators (13 variables)
and international macroeconomic indicators (7 variables), listed in Table 2.
All variables in Table 1 are in logarithmic form, in first differences. The

Table 1: National accounts, consumer prices, and exchange rates

National accounts Price indices Price indices and exchange rates
GDP Consumer price index Wheat price index
Consumption Food price index Fuel price index
Investment Nonfood price index Imported food price index
Exports Services price index Imported nonfood price index
Imports Home food price index Administrative price index
Industrial output AMD/USD exchange rate
Agricultural output AMD/EURO exchange rate
Construction AMD/RR exchange rate
Services

variables in column 1 are all real. The variables in columns 1 and 2 are
seasonally adjusted.

Table 2: Financial, monetary, and international indicators

Financial policy indicators Interest rates International indicators
Cash money AMD deposits USA real GDP
Money aggregate, M0 USD deposits EU real GDP
Money aggregate, M1 AMD loans USA consumer price index
Money aggregate, M2X USD loans EU consumer price index
Total deposits Central Bank interbank Gasoline price index
Loans to economy Petroleum price index
Loans to enterprizes Wheat price index
Loans to households

The variables in Table 2 are also in logarithmic form, in first differences,
and the variables in columns 1 and 3 are seasonally adjusted. The inter-
national indicators in column 3 are taken from the International Financial
Statistics published by the IMF and are already seasonally adjusted by the
IMF.

In this paper we estimate and forecast factor-based dynamic models us-
ing principal components. These principal components are based on the
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Table 3: Characteristics of the extracted principal components

Principal Rotated % of total Cumulative Correlation Correlation
components eigenvalue variance % with real GDP with inflation
Int rate 5.17 12.94 12.94 0.04 −0.17
Ex rate 5.13 12.82 25.75 −0.04 0.32
Invest 3.85 9.63 35.38 0.66 0.09
Mon agg 3.47 8.67 44.05 0.39 −0.05
Credit 3.21 8.02 52.07 0.02 0.05
ImpExp 2.97 7.41 59.49 0.27 −0.06
Pr index 2.94 7.35 66.84 0.27 0.70
Nat acc 2.15 5.39 72.22 0.27 −0.21
GDP star 2.04 5.11 77.34 0.28 −0.13
Hfood pr 1.42 3.55 80.89 0.04 0.38

underlying data set of 42 variables. The extracted principal components
have been given names, based on the correlation coefficients between the
extracted principal components and the underlying time series. Some impor-
tant characteristics of the extracted principal components are presented in
the Table 3. The first principal component is Int rate and its contribution to
the total variance of the underlying variables is 12.94%. The second principal
component is Ex rate with a contribution of 12.82%, and the third is Invest
with a contribution of 9.63%. The ten most important principal components
(those with a rotated eigenvalue larger than 1) explain more than 80% of the
variance of the underlying variables, which we consider to be sufficient.

Table 4: Focus and auxiliary variables (j = 1, . . . , 4)

Real GDP Inflation
Regressor Model 1.1 Model 1.2 Regressor Model 2.1 Model 2.2
Intercept focus focus Intercept focus focus
GDPt−j focus focus INFt−j focus focus
Investt−j auxiliary focus Int ratet−j auxiliary auxiliary
Mon aggt−j auxiliary auxiliary Ex ratet−j auxiliary focus
ImpExpt−j auxiliary auxiliary Creditt−j auxiliary auxiliary
Nat acct−j auxiliary focus Pr indext−j auxiliary focus
GDP start−j auxiliary auxiliary Hfood prt−j auxiliary auxiliary

Each of the extracted principal components could be used for estima-
tion in our factor-based dynamic models. However, we use our knowledge of
economic theory and Armenian practice to include only those principal com-
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ponents which contain important information about real GDP and inflation
dynamics. Regarding real GDP, the three highest correlations are obtained
by Invest, Mon agg, and GDP star, to which we add ImpExp and Nat acc,
but not Pr index. Regarding inflation, the three highest correlations are ob-
tained by Pr index, Hfood pr, and Ex rate, to which we add Int rate and
Credit, but not Nat acc and GDP star. These choices then lead to the four
models in Table 4. Model 1 refers to real GDP and Model 2 to inflation.
Each model has two variants. In variant 1 (Models 1.1 and 2.1) we take
as our focus variables only the lagged values of the dependent variable (and
the intercept), while all other variables are auxiliary, that is, we are uncer-
tain whether they should be in the model or not. In variant 2 (Models 1.2
and 2.2) we have more focus variables, namely Invest and Nat acc in the
Model 1.2 and Ex rate and Pr index in Model 2.2. These new focus vari-
ables are always in the model; we do not question whether they should be
or not. Having specified the four models, we can now estimate and forecast
these models using the WALS and BMA algorithms, and compare the two
algorithms.

6 Estimation results

We have two models, one for GDP and one for inflation. Each models has
two variants, one with only the intercept and lagged dependent variable
as focus regressors, the other with additional focus regressors. For each of
these four cases we can consider one lag, two lags, three lags, or four lags.
In addition, we have two different model averaging algorithms: WALS and
BMA. All WALS and BMA results are obtained using Matlab algorithms,
which are freely available from http://center.uvt.nl/staff/magnus/wals. The
WALS estimates for the GDP equation are presented in Tables 5 and 6.

In Table 5 the focus variables are the intercept and lagged values of real
GDP, while in Table 6 we add lagged values of Invest and Nat acc to the focus
variables. The first lag of the real GDP is positively correlated with current
GDP, and the parameter appears to be close to one in both models, and in
each of the four lag structures. This suggests that this dynamic relationship
is quite robust. Current GDP is negatively correlated with lagged values of
Invest, and positively correlated with Nat acc. This is to be expected, be-
cause one of the main ingredients of the Nat acc is final consumption, which
in turn is one of the basic components of GDP. Thus, final consumption
should be positively correlated with GDP. Also, current consumption is pos-
itively correlated with previous-period consumption, and hence consumption
of the previous period and GDP of the current period should be positively
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Table 5: WALS estimates for Model 1 (GDP), Version 1

Est (Std) Est (Std) Est (Std) Est (Std)
Focus regressors
Intercept 0.30 (0.42) 0.72 (0.47) 1.23 (0.60) 0.95 (0.87)
GDPt−1 0.82 (0.18) 1.03 (0.22) 0.95 (0.27) 0.95 (0.33)
GDPt−2 — −0.43 (0.20) −0.70 (0.30) −0.62 (0.36)
GDPt−3 — — 0.05 (0.23) −0.05 (0.42)
GDPt−4 — — — 0.08 (0.37)

Auxiliary regressors
Investt−1 −0.33 (0.34) −0.70 (0.34) −0.66 (0.36) −0.55 (0.40)
Mon aggt−1 0.15 (0.27) 0.19 (0.25) 0.34 (0.27) 0.32 (0.32)
ImpExpt−1 −0.21 (0.23) −0.11 (0.21) 0.02 (0.21) 0.05 (0.28)
Nat acct−1 0.46 (0.24) 0.20 (0.22) 0.13 (0.26) 0.26 (0.37)
GDP start−1 −0.25 (0.24) −0.14 (0.25) −0.08 (0.27) −0.14 (0.44)
Investt−2 — 0.09 (0.33) 0.19 (0.39) 0.10 (0.43)
Mon aggt−2 — 0.16 (0.23) 0.27 (0.26) 0.33 (0.37)
ImpExpt−2 — 0.25 (0.21) 0.42 (0.22) 0.26 (0.32)
Nat acct−2 — 0.80 (0.24) 0.91 (0.25) 0.63 (0.29)
GDP start−2 — 0.09 (0.23) 0.06 (0.31) 0.20 (0.36)
Investt−3 — — 0.12 (0.35) 0.06 (0.63)
Mon aggt−3 — — 0.34 (0.24) 0.27 (0.29)
ImpExpt−3 — — 0.24 (0.21) 0.18 (0.28)
Nat acct−3 — — 0.44 (0.29) 0.28 (0.37)
GDP start−3 — — 0.18 (0.31) −0.05 (0.48)
Investt−4 — — — 0.04 (0.53)
Mon aggt−4 — — — −0.38 (0.31)
ImpExpt−4 — — — 0.02 (0.27)
Nat acct−4 — — — 0.08 (0.44)
GDP start−4 — — — 0.11 (0.45)

correlated.
Concerning Invest we see that the first lag is negatively correlated with

current GDP, but that higher lags are positively correlated. Apparently, in-
vestments have a short-term (one quarter) negative impact, but an medium-
term (2–4 quarters) positive impact on economic activity (and therefore on
the level of the current real GDP). Many of the auxiliary parameters are not
statistically significant.

In Tables 7 and 8 we report the result for inflation dynamics. Lagged
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Table 6: WALS estimates for Model 1 (GDP), Version 2

Est (Std) Est (Std) Est (Std) Est (Std)
Focus regressors
Intercept 0.27 (0.44) 0.63 (0.48) 1.21 (0.61) 1.09 (0.90)
GDPt−1 0.83 (0.19) 1.10 (0.22) 1.00 (0.29) 0.98 (0.35)
Investt−1 −0.49 (0.39) −0.98 (0.36) −0.95 (0.39) −0.87 (0.45)
Nat acct−1 0.64 (0.26) 0.22 (0.24) 0.16 (0.29) 0.23 (0.41)
GDPt−2 — −0.46 (0.21) −0.71 (0.32) −0.65 (0.40)
Investt−2 — 0.13 (0.35) 0.20 (0.43) 0.07 (0.51)
Nat acct−2 — 0.97 (0.26) 1.09 (0.27) 0.86 (0.33)
GDPt−3 — — 0.01 (0.24) 0.05 (0.43)
Investt−3 — — 0.22 (0.39) 0.15 (0.68)
Nat acct−3 — — 0.49 (0.33) 0.40 (0.41)
GDPt−4 — — — 0.01 (0.38)
Investt−4 — — — 0.24 (0.59)
Nat acct−4 — — — 0.16 (0.48)

Auxiliary regressors
Mon aggt−1 0.13 (0.26) 0.15 (0.23) 0.26 (0.27) 0.29 (0.33)
ImpExpt−1 −0.16 (0.22) −0.12 (0.20) 0.03 (0.21) 0.04 (0.29)
GDP start−1 −0.21 (0.23) −0.15 (0.23) −0.08 (0.27) −0.14 (0.45)
Mon aggt−2 — 0.17 (0.22) 0.28 (0.26) 0.31 (0.37)
ImpExpt−2 — 0.20 (0.19) 0.35 (0.22) 0.28 (0.31)
GDP start−2 — 0.10 (0.23) 0.12 (0.31) 0.20 (0.36)
Mon aggt−3 — — 0.35 (0.23) 0.23 (0.27)
ImpExpt−3 — — 0.26 (0.21) 0.19 (0.27)
GDP start−3 — — 0.18 (0.30) −0.07 (0.48)
Mon aggt−4 — — — −0.32 (0.31)
ImpExpt−4 — — — 0.01 (0.27)
GDP start−4 — — — 0.06 (0.46)

values of inflation are positively correlated with current inflation, but com-
paring with the real GDP estimates we see that inflation in Armenia is less
backward-looking than real GDP. The first lags of Pr index and Ex rate are
positively correlated with current inflation, which is again reasonable. The
positive correlation between Pr index and inflation tells us that price fluctu-
ations in Armenia are autocorrelated. It appears that Ex rate dynamics are
positively correlated with inflation, due to the fact that Armenia is a small
open economy with an imports-to-GDP ratio of about 40%. The home price
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Table 7: WALS estimates for Model 2 (Inflation), Version 1

Est (Std) Est (Std) Est (Std) Est (Std)
Focus regressors
Intercept 1.09 (0.32) 0.81 (0.49) 0.86 (0.71) 0.84 (1.32)
INFt−1 0.05 (0.27) 0.16 (0.32) 0.00 (0.45) −0.09 (0.74)
INFt−2 — 0.14 (0.27) 0.13 (0.36) 0.21 (0.50)
INFt−3 — — 0.14 (0.34) 0.03 (0.47)
INFt−4 — — — 0.08 (0.40)

Auxiliary regressors
Pr indext−1 0.41 (0.25) 0.42 (0.28) 0.47 (0.36) 0.48 (0.53)
Ex ratet−1 0.20 (0.17) 0.19 (0.21) 0.26 (0.26) 0.19 (0.30)
Int ratet−1 −0.09 (0.15) 0.34 (0.53) 0.26 (0.61) 0.31 (0.87)
Creditt−1 0.10 (0.14) −0.14 (0.20) −0.14 (0.26) −0.05 (0.39)
Hfood prt−1 −0.10 (0.18) −0.22 (0.21) −0.13 (0.26) −0.11 (0.38)
Pr indext−2 — −0.21 (0.27) 0.00 (0.34) −0.10 (0.45)
Ex ratet−2 — −0.01 (0.19) −0.07 (0.26) 0.04 (0.37)
Int ratet−2 — −0.44 (0.50) 0.01 (0.69) −0.33 (0.87)
Creditt−2 — 0.25 (0.19) 0.08 (0.30) 0.29 (0.40)
Hfood prt−2 — 0.03 (0.21) 0.03 (0.26) −0.01 (0.33)
Pr indext−3 — — −0.35 (0.34) −0.07 (0.47)
Ex ratet−3 — — 0.04 (0.22) −0.19 (0.29)
Int ratet−3 — — −0.39 (0.64) −0.72 (0.84)
Creditt−3 — — 0.10 (0.24) 0.02 (0.35)
Hfood prt−3 — — −0.25 (0.24) −0.17 (0.32)
Pr indext−4 — — — −0.34 (0.40)
Ex ratet−4 — — — 0.16 (0.25)
Int ratet−4 — — — 0.64 (1.05)
Creditt−4 — — — −0.04 (0.28)
Hfood prt−4 — — — −0.25 (0.32)

index therefore depends strongly on the international price index level.

7 An estimation simulation experiment

While the previous results are of practical and theoretical interest, a proper
comparison between WALS and BMA can only be done through a simula-
tion experiment, where we know the true data-generating process and can
therefore relate the estimates with the truth. The data-generating process
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Table 8: WALS estimates for Model 2 (Inflation), Version 2

Est (Std) Est (Std) Est (Std) Est (Std)
Focus regressors
Intercept 1.27 (0.32) 0.89 (0.54) 0.83 (0.76) 0.87 (1.37)
INFt−1 −0.12 (0.26) 0.01 (0.34) −0.18 (0.46) −0.31 (0.76)
Pr indext−1 0.64 (0.27) 0.68 (0.32) 0.72 (0.40) 0.76 (0.58)
Ex ratet−1 0.31 (0.19) 0.28 (0.24) 0.39 (0.28) 0.32 (0.33)
INFt−2 — 0.22 (0.29) 0.22 (0.38) 0.27 (0.52)
Pr indext−2 — −0.37 (0.32) −0.07 (0.40) −0.20 (0.50)
Ex ratet−2 — −0.02 (0.21) −0.12 (0.30) 0.03 (0.40)
INFt−3 — — 0.27 (0.37) 0.11 (0.49)
Pr indext−3 — — −0.50 (0.38) −0.11 (0.51)
Ex ratet−3 — — 0.03 (0.26) −0.19 (0.33)
INFt−4 — — — 0.10 (0.42)
Pr indext−4 — — — −0.43 (0.45)
Ex ratet−4 — — — 0.23 (0.29)

Auxiliary regressors
Int ratet−1 −0.09 (0.14) 0.33 (0.52) 0.25 (0.61) 0.29 (0.88)
Creditt−1 0.09 (0.13) −0.14 (0.20) −0.15 (0.25) −0.07 (0.39)
Hfood prt−1 −0.09 (0.16) −0.20 (0.21) −0.12 (0.25) −0.09 (0.38)
Int ratet−2 — −0.44 (0.50) 0.01 (0.69) −0.35 (0.87)
Creditt−2 — 0.23 (0.19) 0.08 (0.28) 0.28 (0.40)
Hfood prt−2 — 0.00 (0.21) 0.02 (0.25) −0.01 (0.32)
Int ratet−3 — — −0.39 (0.64) −0.72 (0.84)
Creditt−3 — — 0.10 (0.23) 0.02 (0.34)
Hfood prt−3 — — −0.28 (0.25) −0.17 (0.32)
Int ratet−4 — — — 0.63 (1.06)
Creditt−4 — — — −0.03 (0.27)
Hfood prt−4 — — — −0.24 (0.31)

follows closely that models that we have estimated before. Regarding GDP,
we assume one of the following two processes to be true:

GDPt = 0.2 + 0.85GDPt−1 + 1.5 ut,

GDPt = 0.2 + 0.85GDPt−1 − 0.7 Investt−1 + 0.3Nat acct−1 + 1.5 ut,
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which we label (1.1) and (1.2), respectively. Regarding inflation we assume:

INFt = 0.5 + 0.1 INFt−1 + ut,

INFt = 0.5 + 0.1 INF t−1 + 0.4Pr indext−1 + 0.2Ex ratet−1 + ut,

labeled (2.1) and (2.2). The values of the parameters resemble the estimates
and the error variances are set to σ2 = 2.25 for the GDP equations and
σ2 = 1 for inflation. Given the data-generating process and the values of
the regressors, we randomly draw the {ut} from a standard-normal distri-
bution. Then, we generate the time series for real GDP or inflation from
the data-generating process. Now that we have all the data, we estimate
the parameters using the models and the estimation algorithms of Section 6.
This gives us parameter estimates.

Next we draw new errors {ut}, obtain new values for the dependent vari-
able, and hence new parameter estimates. We repeat this 1000 times, and
compute the simulation root mean squared errors:

RMSEwals

k =

√

√

√

√

1

1000

1000
∑

l=1

(βwalsl

k − βtrue

k )2,

RMSEbma

k =

√

√

√

√

1

1000

1000
∑

l=1

(βbmal

k − βtrue

k )2,

where βtrue

k denotes the true value of βk, and βwalsl

k and βbmal

k are the cor-
responding WALS and BMA estimates, respectively, for the l-th iteration.

The results of the Monte-Carlo simulation are presented in the Table 9.
We see that the RMSE values calculated for WALS are generally lower than
for BMA, although the difference is not large. Based on these simulations
we suggest that WALS gives more accurate estimates than BMA.

8 A forecast experiment

We conduct a second experiment, this time in forecasting rather than estima-
tion. Suppose we use T1 < T = 42 quarters on which we base our estimates.
This leaves us T2 = T − T1 > 0 quarters for forecast experiments. The
h-period forecast is given by

ŷT1+h = α̂(L)yT1+h−1 + γ̂(L)fT1+h−1 (h = 1, . . . , T2),
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Table 9: RMSE for the estimation simulations
Version 1 Version 2

WALS BMA WALS BMA
Model 1 (GDP)
Intercept 0.0150 0.0173 0.0146 0.0155
GDPt−1 0.0075 0.0089 0.0074 0.0077
Investt−1 — — 0.0107 0.0101
Nat acct−1 — — 0.0090 0.0090

Model 2 (Inflation)
Intercept 0.0094 0.0089 0.0118 0.0127
INFt−1 0.0072 0.0075 0.0096 0.0101
Pr indext−1 — — 0.0088 0.0088
Ex ratet−1 — — 0.0082 0.0079

where y denotes either GDP or inflation. In a practical situation we would not
know fT1+h−1 and yT1+h−1, when h ≥ 2. So we would have to forecast these
as well. In the experiment we use the observed values of fT1+h−1 and yT1+h−1,
hence not the forecasted value ŷT1+h−1 when h ≥ 2. Then we compute

RMSET1
=

√

√

√

√

1

T − T1

T−T1
∑

h=1

(ŷT1+h − yT1+h)2,

which depends on the estimation period T1, the model, and the method
(BMA or WALS). The results are presented in Table 10.

In general, the smaller is the estimation period T1, the less accurate are
the estimates and the forecasts, that is, the RMSE increases as T1 decreases.
This is to be expected, but it does not always happen. In particular the
behavior for T1 = 35 deviates. The explanation lies in the global financial
crisis, which affected Armenia heavily. From the third quarter of 2008 (quar-
ter 34 in our data set) to the second quarter of 2009 (quarter 37) Armenia’s
real growth of GDP decreased by 18%. The largest decrease (around 9.0%)
in real GDP took place in the fourth quarter of 2008 (quarter 35). This large
decrease in real GDP causes a large deviation of real GDP from its long-
term trend, and this may explain (in part) why the RMSE values calculated
for T1 = 35 are relatively large, and for T1 = 36 somewhat smaller. On the
whole, the WALS algorithm gives slightly more accurate forecast results than
BMA, but the difference is small.
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Table 10: RMSE for ex-post forecast accuracy

T1

Version Method 38 37 36 35 34
Model 1 (GDP)
1 WALS 0.2997 0.3395 0.7021 2.3682 1.3780

BMA 0.2845 0.3397 0.7439 2.4683 1.3545
2 WALS 0.2352 0.3011 0.7749 2.2081 1.3869

BMA 0.2315 0.3077 0.7756 2.2264 1.3977

Model 2 (Inflation)
1 WALS 0.6092 0.5020 0.5356 0.4574 0.4321

BMA 0.6103 0.5625 0.6175 0.5252 0.4649
2 WALS 0.6468 0.5212 0.5653 0.4819 0.4377

BMA 0.6381 0.5201 0.5716 0.4876 0.4412

9 Concluding remarks

In this paper we have applied two alternative model averaging algorithms
(WALS and BMA) to the problem of estimating factor-based dynamic mod-
els. The estimated models have also been used to forecast two key macroeco-
nomic variables, namely real GDP and inflation in Armenia. The advantage
of using model averaging is that it allows all models to play a role in the
estimation and forecasting, thus avoiding the problem of pretesting. A com-
parison of the performance of the WALS algorithm to BMA shows that the
WALS algorithm is to be preferred. Not only does it give more accurate
results in the practical application and simulation experiments, but it also
has theoretical and computational advantages over BMA.
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