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Could we have predicted the recent downturn in the South
African Housing Market?

Sonali Das∗, Rangan Gupta†and Alain Kabundi‡
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Abstract

This paper develops large-scale Bayesian Vector Autoregressive (BVAR) models, based on
268 quarterly series, for forecasting annualized real house price growth rates for large-, medium-
and small-middle-segment housing for the South African economy. Given the in-sample period
of 1980:01 to 2000:04, the large-scale BVARs, estimated under alternative hyperparameter val-
ues specifying the priors, are used to forecast real house price growth rates over a 24-quarter
out-of-sample horizon of 2001:01 to 2006:04. The forecast performance of the large-scale BVARs
are then compared with classical and Bayesian versions of univariate and multivariate Vector
Autoregressive (VAR) models, merely comprising of the real growth rates of the large-, medium-
and small-middle-segment houses, and a large-scale Dynamic Factor Model (DFM), which com-
prises of the same 268 variables included in the large-scale BVARs. Based on the one- to
four-quarters ahead Root Mean Square Errors (RMSEs) over the out-of-sample horizon, we find
the large-scale BVARs to not only outperform all the other alternative models, but to also
predict the recent downturn in the real house price growth rates for the three categories of the
middle-segment-housing over the period of 2003:01 to 2008:02.

Journal of Economic Literature Classification : C11,C13,C33,C53
KEYWORDS: Dynamic Factor Model, BVAR, Forecast Accuracy

1 Introduction
This paper develops large-scale Bayesian Vector Autoregressive (BVAR) models, based on 268 quar-
terly series, for forecasting annualized real house price growth rates, where real house price is the
ratio of the nominal house price to the Consumer Price Index (CPI), for large-, medium- and small-
middle-segment housing for the South African economy.1 Given the in-sample period of 1980:01 to
2000:04, the large-scale BVARs, estimated under alternative hyperparameter values specifying the
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1Data on house prices are obtained from the ABSA Housing Price Survey, with ABSA being one of the leading
private banks of South Africa. The ABSA Housing Price Survey, distinguishes between three price categories as –
luxury houses (R 2.6 million to R9.5 million), middle-segment houses (R226,000 to R2.6 million) and affordable houses
(R226,000 and below with an area in the range of 40 m2-79 m2); and further subdivides the middle segment category
based on the square meters of house area into small (80 m2-140 m2), medium (141 m2-220 m2) and large (221 m2-400
m2). Given the easy accessibility of house price data for the middle-segment houses, we restrict our study to this
category only. However, given that the market for different house-sizes within this category, behave differently (Burger
and van Rensburg, 2008), we consider each of them separately, rather than investigating the overall house price of the
middle-segment of the South African housing market.
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priors, are used to forecast real house price growth rates over a 24-quarter out-of-sample horizon of
2001:01 to 2006:04.2 The forecast performance of the large-scale BVARs are then compared with
classical and Bayesian versions of univariate and multivariate Vector Autoregressive (VAR) models,
merely comprising of the real growth rates of the large-, medium- and small-middle-segment houses,
and a large-scale Dynamic Factor Model (DFM), which comprises of the same 268 variables included
in the large-scale BVARs. Once we determine a model that produces, on average, the minimum one-
to four-quarters ahead Root Mean Square Errors (RMSEs) over the out-of-sample horizon, we eval-
uate, how well the same would have been able to predict the recent downturn, depicted in Figure 1,
in the real house price growth rates for the three categories of the middle-segment-housing over the
period of 2003:01 to 2008:02.

[INSERT FIGURE 1]

At this stage, two questions arise: First, why is forecasting real house price growth rates im-
portant? And second, why develop large-scale BVARs for this purpose? As far as the answer to
the first question is concerned, the importance of predicting house price inflation is motivated by
recent studies that conclude that asset prices help forecast both inflation and output (Forni et al.,
2003; Stock and Watson, 2003, Gupta and Das, 2008a and Das et al., 2008). Since a large amount
of individual wealth is imbedded in houses, similar to other asset prices, house price movements
are thus important in signaling inflation.3 As such, models that forecast real house price inflation
can give policy makers an idea about the direction of overall inflation in the future, and hence, can
provide a better control for designing of appropriate policies. Ideally, one would want to forecast key
macroeconomic variables based on models that have strong theoretical structures, such as Dynamic
Stochastic General Equilibrium Models which are immune to the Lucas (1976) critique. However,
the usage of a atheoretical framework like that of the VAR allows one to provide a preliminary and
quick analysis of where the economy is headed. The rationale for large-scale BVARs to forecast real
house price growth rates emanates from the fact that a large number of economic variables help in
predicting real housing price growth (Cho, 1996; Abraham and Hendershott, 1996; Johnes and Hy-
clak, 1999; and Rapach and Strauss, 2007, 2009). For instance, income, interest rates, construction
costs, labor market variables, stock prices, industrial production, consumer confidence index, and
also variables containing information about the world economy and the major trading partners of
South Africa — which are included in the large-scale BVARs, are potential predictors. In addition,
given that movements in the housing market are likely to play an important role in the business
cycle, not only because housing investment is a very volatile component of demand (Bernanke and
Gertler, 1995), but also because changes in house prices tends to have important wealth effects on
consumption (International Monetary Fund, 2000) and investment (Topel and Rosen, 1988), the
importance of forecasting house price inflation is vital. The housing sector thus plays a significant
role in acting as leading indicator of the real sector of the economy, and as such, predicting it cor-
rectly cannot be overemphasized, especially in the light of the recent credit crunch in the U.S. that
started with the burst of the housing price bubble which, in turn, transmitted to the real sector of
the economy driving it towards an imminent recession. Besides this, the fact that BVARs are quite
well-suited in predicting turning points of macroeconomic variables have recently been substantiated
by Dua and Ray (1995), Del Negro 2001), Gupta and Sichei (2006), Gupta (2006, 2008), Banerji et
al. (2008), Zita and Gupta (2008) and Gupta and Das (2008b) amongst others.
To realize the contribution of this study, it is important to place this paper in the context of

current research that has been done on forecasting the housing market. In this regard, few studies
that are worth mentioning are: Rapach and Strauss (2007, 2009), Gupta and Das (2008a,b), Das
et al. (2008). Rapach and Strauss (2007) used an autoregressive distributed lag (ARDL) model

2The choice of the out-of-sample period is exactly the same as used by two recent studies on the South African
housing market, namely, Gupta and Das (2008a) and Das et al. (2008).

3Gupta and Das (2008a) point out that in South Africa, housing inflation and CPI inflation tend to move together,
though the former, understandably, is more volatile.

2



framework, containing 25 determinants, to forecast real housing price growth for the individual
states of the Federal Reserve’s Eighth District. Given the difficulty in determining apriori the
particular variables that are most important for forecasting real housing price growth, the authors
also use various methods to combine the individual ARDL model forecasts, which result in better
forecast of real housing price growth. Rapach and Strauss (2009) look at doing the same for 20
largest US states based on ARDL models containing large number of potential predictors, including
state, regional and national level variables. Once again, the authors reach similar conclusions as
far as the importance of combining forecasts are concerned. Given that in practice, forecasters and
policymakers often extract information from many series than the ones included in smaller models,
like the ones used by Rapach and Strauss (2007, 2009), who also indicate the importance of combining
forecast from alternative models, the role of a large-scale models cannot be ignored. In addition,
one cannot condone the fact that the main problem of small models, as seen from the studies by
Rapach and Strauss (2007, 2009), is in the decision regarding the choice of the correct potential
predictors to be included. Due to this reason, Vargas-Silva (2008) uses a Factor Augmented VAR
(FAVAR) model containing 120 monthly series to analyze the impact of monetary policy actions on
the housing sector of four different regions of the United States. Further, Das et al. (2008) show
that forecast performances of Spatial BVARs (SBVARs), developed by Gupta and Das (2008a),
to predict regional house prices in the middle-segment housing category of South Africa, can be
markedly improved using a DFM. Clearly then, the motivation and the need to forecast house prices
using large-scale models is quite compelling. However, to the best of our knowledge, this is the first
attempt to look into the ability of large-scale BVARs in forecasting and predicting downturns in
real house price growth rates.4 ,5 The only other study that does look into forecasting the recent
downturn in real house price growth rates for the twenty largest states of the US economy, is Gupta
and Das (2008b). In this paper, the authors use SBVARs, based merely on real house price growth
rates, to predict their downturn over the period of 2004:01 to 2008:01. They find that, though the
models are quite well-equipped in predicting the recent downturn, they underestimate the decline
in the real house price growth rates by quite a margin. They attribute this underprediction of the
models to the lack of any information on fundamentals in the estimation process. Against this
backdrop, our paper can thus be viewed as an extension of the abovementioned studies, in the sense
that we not only use large-scale BVARs that allow for the role of a widest possible set of domestic,
foreign and world fundamentals to affect the housing sector, but also use them to predict the recent
downturn in the South African housing market. At this juncture, we must elaborate that given the
type of models that we use, the study can easily be carried out for any country(ies). The reason
behind using the South African housing market as a case study is simply data driven, especially, as
far as data on the 268 macroeconomic variables are concerned, which, in turn, were obtained from
the recent study of Gupta and Kabundi (2008a,b,c) and Das et al. (2008).6 The remainder of the
paper is organized as follows: Section 2 lays out the basics of the benchmark large-scale BVARs and
the alternative models, while, Section 3 discusses the data. Sections 4 and 5 respectively, evaluate
the forecasting performances of the models and their ability to predict the recent downturn in the
housing market. Finally, Section 6 concludes.

4Note, Dua and Smyth (1995), Dua and Miller (1996) and Dua et al. (1999) used coincident and leading indexes
in BVAR models to forecast home sales for the Connecticut and the overall US economy, respectively.

5Note, even though just like Gupta and Das (2008a) and Das et al. (2008), we look at the middle-segment of the
South African housing market, unlike them, we do not look into regional data. This is simply because the recent
downturn in the housing market has been an economy-wide phenomenon and not been restricted to any specific region
(ABSA Quarterly Housing Price Review, 2008Q1, 2008Q2 and 2008Q3).

6 See Section 3 for further details.
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2 The Model

2.1 VARs and BVARs

The Vector Autoregressive (VAR) model, though ‘atheoretical’, is particularly useful for forecasting
purposes. An unrestricted VAR model, as suggested by Sims (1980), can be written as follows:

yt = A0 +A(L)yt + εt (1)

where y is a (n × 1) vector of variables being forecasted; A(L)is a (n × n) polynomial matrix in
the backshift operator L with lag length p, i.e., A(L) = A1L+A2L

2 + ................+ApL
p; A0is a

(n × 1) vector of constant terms, and ε is a (n × 1) vector of error terms. In our case, we assume
that ε ∼ N(0, σ2In),where In is a n× n identity matrix.
Note the VAR model, generally uses equal lag length for all the variables of the model. One

drawback of VAR models is that many parameters need to be estimated, some of which may be
insignificant. This problem of overparameterization, resulting in multicollinearity and a loss of
degrees of freedom, leads to inefficient estimates and possibly large out-of-sample forecasting errors.
One solution, often adapted, is simply to exclude the insignificant lags based on statistical tests.
Another approach is to use a near VAR, which specifies an unequal number of lags for the different
equations.
However, an alternative approach to overcoming this overparameterization, as described in Lit-

terman (1981), Doan et al. (1984), Todd (1984), Litterman (1986), and Spencer (1993), is to use a
BVAR model. Instead of eliminating longer lags, the Bayesian method imposes restrictions on these
coefficients by assuming that they are more likely to be near zero than the coefficients on shorter
lags. However, if there are strong effects from less important variables, the data can override this
assumption. The restrictions are imposed by specifying normal prior distributions with zero means
and small standard deviations for all coefficients with the standard deviation decreasing as the lags
increase. The exception to this is that the coefficient on the first own lag of a variable has a mean
of unity. Litterman (1981) used a diffuse prior for the constant. This is popularly referred to as the
‘Minnesota prior’ due to its development at the University of Minnesota and the Federal Reserve
Bank at Minneapolis.
Formally, as discussed above, the means of the Minnesota prior take the following form:

βi ∼ N(1, σ2βi) and βj ∼ N(0, σ2βj ) (2)

where βi denotes the coefficients associated with the lagged dependent variables in each equation of
the VAR, while βj represents any other coefficient. In the belief that lagged dependent variables are
important explanatory variables, the prior means corresponding to them are set to unity. However,
for all the other coefficients,βj ’s, in a particular equation of the VAR, a prior mean of zero is assigned
to suggest that these variables are less important to the model.
The prior variances σ2βiand σ2βj , specify uncertainty about the prior means β̄i = 1, and β̄j =

0, respectively. Because of the overparameterization of the VAR, Doan et al. (1984) suggested a
formula to generate standard deviations as a function of small numbers of hyperparameters: w, d, and
a weighting matrix f(i, j). This approach allows the forecaster to specify individual prior variances
for a large number of coefficients based on only a few hyperparameters. The specification of the
standard deviation of the distribution of the prior imposed on variable j in equation i at lag m, for
all i, j and m, defined as σijm, can be specified as follows:

σijm = [w × g(m)× f(i , j)]
σ̂i
σ̂j

(3)

with f(i, j) = 1, if i = j and kij otherwise, with (0 ≤ kij ≤ 1), g(m) = m−d, d > 0. Note that σ̂i is
the estimated standard error of the univariate autoregression for variable i. The ratio σ̂i/σ̂j scales
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the variables to account for differences in the units of measurement and hence causes specification of
the prior without consideration of the magnitudes of the variables. The term w indicates the overall
tightness and is also the standard deviation on the first own lag, with the prior getting tighter as we
reduce the value. The parameter g(m) measures the tightness on lag m with respect to lag 1, and is
assumed to have a harmonic shape with a decay factor of d, which tightens the prior on increasing
lags. The parameter f(i, j) represents the tightness of variable j in equation i relative to variable
i, and by increasing the interaction, i.e., the value of kij , we can loosen the prior.7 Note, in the
standard Minnesota-type prior, the overall tightness (w) takes the values of 0.1, 0.2 and 0.3, while,
the lag decay (d) is generally chosen to be equal to 0.5, 1.0 and 2.0. The interaction parameter
(kij) is traditionally set at = 0.5. The small-scale BVARs would be estimated with this set of
parameterization of the priors.
Given that we have domestic as well as foreign and world variables in the 268 data series used

for the large-scale models, and realizing that South Africa is a small open economy, and hence,
domestic variables would have minimal, if any, effect on foreign and world variables, while the latter
set of variables is sure to have an influence on the South African variables, setting kij = 0.5 could
be a quite far fetched from reality. Hence, borrowing from the BVAR models used for regional
forecasting, involving both regional and national variables, and following Kinal and Ratner (1986),
Shoesmith (1992) and Gupta and Kabundi (2008b,c), the weight of a foreign or world variable in a
foreign or world equation, as well as a domestic equation, is set at 0.6. The weight of a domestic
variable in other domestic equation is fixed at 0.1 and that in a foreign or world equation at 0.01.
Finally, the weight of the domestic variable in its own equation is 1.0. These weights are in line
with Litterman’s circle-star structure. Star (foreign or world) variables affect both star and circle
(domestic) variables, while circle variables primarily influence only other circle variables.8 Clearly
then, the large-scale BVARs are estimated with asymmetric priors.
Finally, once the priors have been specified, the alternative BVARs, whether based on 1 or 3 or

all the 268 variables, are estimated using Theil’s (1971) mixed estimation technique. Specifically,
suppose we denote a single equation of the VAR model as: y1 = Xβ+ε1, with V ar(ε1) = σ2I, then
the stochastic prior restrictions for this single equation can be written as:⎡⎢⎢⎢⎢⎢⎢⎣

M111

M112

¦
¦
¦

Mnnp

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

σ/σ111 0 ¦ ¦ ¦ 0
0 σ/σ112 0 ¦ ¦ 0
¦ ¦ ¦ ¦ ¦ ¦
¦ ¦ ¦ ¦ ¦ ¦
0 ¦ ¦ ¦ ¦ 0
0 0 ¦ ¦ 0 σ/σnnp

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
a111
a112
¦
¦
¦

annp

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣

u111
u112
¦
¦
¦

unnp

⎤⎥⎥⎥⎥⎥⎥⎦ (4)

Note, V ar(u) = σ2Iand the prior means,Mijm,and prior variance,σijm, take the forms shown in (2)
and (3). With (4) written as:

r = Rβ + u (5)

and the estimates for a typical equation are derived as follows:

β̂ = (X 0X +R0−1(X 0y1 +R0r) (6)

Essentially then, the method involves supplementing the data with prior information on the distri-
bution of the coefficients. The number of observations and degrees of freedom are increased by one
in an artificial way, for each restriction imposed on the parameter estimates. The loss of degrees
of freedom due to over- parameterization associated with a classical VAR model is, therefore, not a
concern in the BVARs.

7For an illustration, see Dua and Ray (1995).
8We also experimented by assigning higher and lower interaction values, in comparison to those specified above,

to the star variables in both the star and circle equations, but, the rank ordering of the alternative forecasts remained
the same.
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2.2 DFM

This study uses the Dynamic Factor Model (DFM) developed by Forni et al. (2005) to extract
common components between macroeconomics series, and then these common components are used
to forecast real house price growth rates in South Africa. In the VAR models, since all variables are
used in forecasting, the number of parameters to be estimated depends on the number of variables
n. With such a large information set, n, the estimation of a large number of parameters leads to
a curse of dimensionality, especially in the case of classical VARs. The DFM uses information set
accounted by few factors q << n, which transforms the curse of dimensionality into a blessing of
dimensionality.
The DFM expresses individual times series as the sum of two unobserved components: a common

component driven by a small number of common factors and an idiosyncratic component, which are
specific to each variable. The relevance of the method is that the DFM is able to extract the few
factors that explain the comovement of all South African macroeconomic variables. Forni et al.
(2005) demonstrated that when the number of factors is small relative to the number of variables
and the panel is heterogeneous, the factors can be recovered from the present and past observations.
Consider an n × 1 covariance stationary process Yt = (y1, ..., yn)

0. Suppose that Xt is the
standardized version of Yt, i.e. Xt has a mean zero and a variance equal to one. Under DFM
proposed by Forni et al. (2005) Xt is described by a factor model, it can be written as the sum of
two orthogonal components:

xit = bi(L)ft + ξit = λiFt + ξit (7)

or, in vector notation:
Xt = B(L)ft + ξit = ΛFt + ξit (8)

where ft is a q × 1 vector of dynamic factors, B(L) = B0 +B1L+ ....+BsL
s is in an n× q matrix

of factor loadings of order s, ξt is the n × 1 vector of idiosyncratic components, Ft is r × 1 vector
of static factors, with r ≥ q(s + 1). Let ft and ξt be mutually orthogonal stationary processes
and χt = B(L)ft the common component. In factor analysis jargon Xt = B(L)ft + ξit is referred
to as the dynamic factor model, and Xt = ΛFt + ξit as the static factor model. Similarly, ft is
regarded as vector of the dynamic factors while Ft as the vector of the static factors. Since dynamic
common factors are latent, they need to be estimated. Forni et al. (2005) estimate dynamic factors
through the use of dynamic principal component analysis. It involves the estimating the eigen
values and eigen vectors decomposition of spectral density matrix of Xt, which is a generalization of
orthogonalization process in case of static principal components. The DFM of Forni et al. (2005) is
estimated in two steps to solve the end-of-sample problems caused by two-sided filtering encounter
with the Dynamic Principle Component Analysis (DPCA) used in Forni et al. (2000). Due to end-
of-sample problems this method is not suited for forecasting. Firstly, the DPCA is used to compute
estimates of covariance matrices of common and idiosyncratic components of Xt at all leads and lags
as inverse Fourier transforms of the corresponding estimated spectral density matrices. The spectral
density matrix of Xt is given by Σ(θ) = Σχ(θ) + Σξ(θ). Secondly, these estimates are used in
the construction of r linear combinations of the observations having smallest idiosyncratic-common
variance ratio.

3 Data
While, the small-scale, univariate and 3-variable multivariate, VARs, both the classical and Bayesian
variants, include data on only the three variables of interest, namely, the annualized real house price
growth rates of the large-, medium- and small-middle-segment houses, the large-scale BVARs and
the DFM is estimated based on 268 quarterly series of South Africa, with the data covering the
real, nominal, and financial sectors. We also have intangible variables, such as confidence indices,
and survey variables. In addition to national variables, the paper uses a set of global variables such
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as commodity industrial inputs price index and crude oil prices. The data also comprises series of
major trading partners such as Germany, the United Kingdom (UK), and the United States (US) of
America. The in-sample period contains data from 1980:01 to 2000:04, while the out-of-sample set
is 2001:01-2006:04.9 All series are seasonally adjusted and were made covariance stationary when
estimating the DFM. The more powerful DFGLS test of Elliott, Rothenberg, and Stock (1996),
instead of the most popular ADF test, is used to assess the degree of integration of all series. All
non-stationary series are made stationary through differencing. The Schwarz information criterion
is used in the selecting the appropriate lag length in such a way that no serial correction is left in
the stochastic error term. Where there were doubts about the presence of unit root, the KPSS test
proposed by Kwiatowski et al., (1992), with the null hypothesis of stationarity, was applied. All
series are standardized to have a mean of zero and a constant variance. It must however be pointed
out that, non-stationarity is not an issue with the BVAR, since Sims et al. (1990) indicate that with
the Bayesian approach entirely based on the likelihood function, the associated inference does not
need to take special account of nonstationarity, since the likelihood function has the same Gaussian
shape regardless of the presence of nonstationarity. Hence, for the sake of comparison amongst the
VARs, both classical and Bayesian, we make no attempt to make the variables stationary, unlike in
the DFM.10

There are various statistical approaches in determining the number of factors in the DFM. For
example, Bai and Ng (2002) developed some criteria guiding the selection of the number of factors in
large dimensional panels. The Principal Component Analysis (PCA) can also be used in establishing
the number of factors in the DFM. The PCA suggests that the selection of a number of factors q be
based on the first eigen values of the spectral density matrix of Xt. Then, the principal components
are added until the increase in the explained variance is less than a specific α = 0.05. The Bai and
Ng (2002) approach proposes five static factors, while Bai and Ng (2007) suggests two primitive
or dynamic factors. Similar to the latter method, the principal component technique, as proposed
by Forni et al. (2000) suggests two dynamic factors. The first two dynamic principal components
explain approximately 99 percent of variation, while the eigen value of the third component is
0.005(< 0.05).

4 Forecasting Evaluation
Given the specifications of the models, we estimate the five alternative types of models, namely, the
univariate and multivariate versions of the classical VAR and the small-scale BVARs, the large-scale
BVAR and the DFM over the period of 1980:01 to 2000:04, based on quarterly data. Then we
compute the out-of-sample one- through four-quarters-ahead forecasts for the period of 2001:01 to
2006:04, and compare the forecast accuracy of the alternative models. The different types of the
VARs are estimated with eight lags11 of each variable. Since we use eight lags, the initial eight quar-
ters of the sample, 1980:01 to 1981:04, are used to feed the lags. We generate dynamic forecasts,
as would naturally be achieved in actual forecasting practice. The models are re-estimated each
quarter over the out-of-sample forecast horizon in order to update the estimate of the coefficients,
before producing the 4-quarters-ahead forecasts. This iterative estimation and 4-steps-ahead fore-
cast procedure was carried out for 24 quarters, with the first forecast beginning in 2001:01. This
experiment produced a total of 24 one-quarter-ahead forecasts, 24-two-quarters-ahead forecasts, and

9Details about data and the statistical treatment of the variables used to estimate the large-scale BVARs and the
DFM are available upon request.
10 See Dua and Ray (1995) for further details.
11The choice of 8 lags is based on the unanimity of the sequential modified LR test statistic, Akaike information

criterion (AIC), the final prediction error (FPE) criterion and the Hannan-Quinn (HQ) information criterion applied
to a stable VAR estimated with the 3 variables of concern. Note, stability, as usual, implies that no roots were found
to lie outside the unit circle.
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so on, up to 24 4-step-ahead forecasts. The RMSEs12 for the 24, quarter 1 through quarter 4 fore-
casts are then calculated for the annualized real house price growth rates of the large-, medium- and
small-middle-segment housing. The values of the RMSE statistic for one- to four-quarters-ahead
forecasts for the period 2001:01 to 2006:04 are then examined. The model that produces the lowest
average value for the RMSE is selected as the ‘optimal’ model for a specific category of real house
price growth rate.
In Tables 1 through 3, we compare the RMSEs of one- to four-quarters-ahead out-of-sample-

forecasts for the period of 2000:01 to 2006:04, generated by the abovementioned alternative models.
At this stage, a few words need to be said regarding the choice of the evaluation criterion for the
out-of-sample forecasts generated from Bayesian models. As Zellner (1986: 494) points out, the
‘optimal’ Bayesian forecasts will differ depending upon the loss function employed and the form
of predictive probability density function. In other words, Bayesian forecasts are sensitive to the
choice of the measure used to evaluate the out-of-sample forecast errors. However, Zellner (1986)
points out that the use of the mean of the predictive probability density function for a series, is
optimal relative to a squared error loss function and the Mean Squared Error (MSE), and hence,
the RMSE is an appropriate measure to evaluate performance of forecasts, when the mean of the
predictive probability density function is used. This is exactly what we do below in Tables 1 through
3, when we use the average RMSEs over the one- to four-quarter-ahead forecasting horizon.13 The
conclusions, regarding each of the three categories of real house price growth rate, based on the
average one- to four-quarters-ahead RMSEs, from these tables can be summarized as follows:

1. Irrespective of the hyperparameters specifying the tightness of the prior and the size of the
houses within the middle segment category, the large-scale BVARs, outperform all the other
models by quite a distance for each of the one- to four-quarters-ahead out-of-sample forecasts.
However, within the large-scale BVARs, the model with the most tight priors (w = 0.1, d =
2.0) is the best performing model on average;

2. Based on the average RMSEs, the univariate BVAR models with (w = 0.1, d = 2.0) are a
distant second to the large-scale BVARs in each of the three categories of the middle-segment
housing. These models are closely followed in the heels by the small-scale BVAR models with
same set of hyperparameters specifying the Minnesota prior;

3. In all the three cases, the univariate OLS or the Autoregressive model of order 8, the DFM and
the VAR, based on the average RMSEs for the out-of-sample horizon of 2001:01 to 2006:04,
are ranked as fourth, fifth and sixth respectively.

[INSERT TABLES 1 THROUGH 3]

Note, unlike Das et al. (2008), who found the DFM to be the overwhelming favorite in forecasting
regional house price inflation relative to small-scale spatial and non-spatial BVARs and a classical
VAR, our results do not indicate so.14 In fact, the DFM is found to be ranked below the univariate
and multivariate small-scale BVARs in our case. However, there is no doubt over the capability of
the large-scale BVARs in forecasting the economy-wide annualized real house price growth rates of
the large-, medium- and small-middle-segment housing.

12Note that if At+n denotes the actual value of a specific variable in period t + n and tFt+n equals the forecast

made in period t for t+n, the RMSE statistic equals the following:
N
1 (tFt+n −At+n)

2

N where Nequals the

number of forecasts.
13Our conclusions were, however, qualitatively the same based on the Mean Absolute Error (MAE) and Mean

Absolute Percentage Error (MAPE). The results are available upon request.
14 Interestingly, when we repeated the forecasting exercise for the regional house price inflation using the large-scale

BVAR, we found the model to outperform all the “optimal” models of Das et al. (2008). These results are available
upon request.
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At this stage, we must, however, point to at least two limitations of the Bayesian approach: First,
as is clear from Tables 1 to 3, the forecast accuracy is sensitive to the choice of the priors. So if the
prior is not well specified, an alternative model used for forecasting may perform better. Second,
for the Bayesian models, one requires to specify an objective function, for example the average
RMSEs, to search for the ‘optimal’ priors, which in turn, needs to be optimized over the period
for which we compute the out-of-sample forecasts. However, there is no guarantee that the chosen
parameter values specifying the prior will continue to be ‘optimal’ beyond the period for which it
was selected. Nevertheless, the role of BVARs in forecasting macroeconomic variables accurately
cannot be underestimated.

5 Predicting the turning points
In what follows, we look at the ability of the large-scale BVAR model with (w = 0.1, d = 2.0)
in predicting the recent downturn in the real house price growth rate over 2003:01 to 2008:02, in
comparison to the AR(8), the VAR, the DFM and those BVARs, univariate and multivariate, that
on average produces the minimum average RMSEs for specific values of w and d, specifying the
Minnesota prior. As with the large scale BVAR, the univariate and multivariate small-scale BVARs
that outperforms the other models within its own category also has a value of w = 0.1, d = 2.0. The
decision to choose 2003:01 as the starting date for the models to predict the turning points is simply
because the real house price growth rates in the middle-segment of the housing peaked at 2003:04
as depicted in Figure 1. Given that ideally one would want to use available information prior to the
turning point, following the methodology of Gupta and Das (2008b), all the ‘optimal’ models are
estimated till 2002:04 and then we forecast over the period of 2003:01 till 2008:02.
As can be observed from Figures 2 through 4, the ‘optimal’ large-scale BVAR with (w = 0.1,

d = 2.0) is clearly the best suited model in predicting the recent downturn in the real house price
growth rates of the large-, medium- and small-middle-segment housing over the period of 2003:01
to 2008:02. In general, the optimal large-scale BVAR tends to underpredict over the period of
2003:01 till 2006:04 and over predict the downturn especially when the real growth rate becomes
negative in case of the large- and small-middle-segment housing in the latter half of the horizon.
The fact that the ‘optimal’ large-scale BVAR does so well in predicting the recent downturn relative
to the ‘optimal’ small-scale univariate and multivariate BVARs, is clearly an indication of the role
fundamentals play in affecting real house prices, over and beyond the information contained in the
growth rates of the lagged real house prices. Moreover, given that the large-scale BVAR model
allows for the domestic variables to have a minimal effect on foreign and world variables, while the
latter set of variables to have a strong influence on the South African variables, might be causing
it to perform better than the DFM, which also includes the same set of variables, both in terms of
forecasting and predicting the recent downturn.

[INSERT FIGURES 2 THROUGH 4]

6 Conclusions
This paper develops large-scale BVAR models, based on 268 quarterly series, for forecasting annu-
alized real house price growth rates for large-, medium- and small-middle-segment housing for the
South African economy. Given the in-sample period of 1980:01 to 2000:04, the large-scale BVARs,
estimated under alternative hyperparameter values specifying the priors, are used to forecast real
house price growth rates over a 24-quarter out-of-sample horizon of 2001:01 to 2006:04. The forecast
performance of the large-scale BVARs are then compared with classical and Bayesian versions of
univariate and multivariate VAR models, comprising of the real growth rates of the large-, medium-
and small-middle-segment houses only, and a large-scale DFM, which comprises of the same 268
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variables included in the large-scale BVARs. Once we determine a model that produces, on average,
the minimum one- to four-quarters ahead RMSEs over the out-of-sample horizon, we evaluate how
well the same would have been able to predict the recent downturn in the real house price growth
rates for the three categories of the middle-segment-housing over the period of 2003:01 to 2008:02.
Our results indicate that, irrespective of the hyperparameters specifying the tightness of the prior

and the size of the houses within the middle segment category, the large-scale BVARs outperform all
the other models by a distance for each of the one- to four-quarters-ahead out-of-sample forecasts.
However, within the large-scale BVARs, the model with the most tight priors (w = 0.1, d = 2.0) is
the best performing model on average. Moreover, this ‘optimal’ large-scale BVAR is also capable of
tracking closely the recent downturn in the real house price growth rates for the three categories of the
middle-segment-housing over an ex ante period of 2003:01 to 2008:02. In summary, we find a tight-
priored large-scale BVAR model, which not only includes the widest possible set of fundamentals
that tends to affect the housing market, but also treats South Africa as a small open economy by
allowing for asymmetry in the specification of the prior, is the overwhelming favorite to forecast
and predict turning points for the middle-segment category of housing. At this juncture, we must
elaborate that given the type of models that we use, the study can easily be carried out for any
country(ies).
There are however, as noted earlier, limitations to using the BVAR approach. First, the forecast

accuracy depends critically on the specification of the prior, and second, the selection of the prior
based on some objective function for the out-of-sample forecasts may not be ‘optimal’ for the time
period beyond the period chosen to produce the out-of-sample forecasts. Besides these, there are two
other major concerns, which are however general, to the traditional statistically estimated models
used, like the VARs– both Classical and Bayesian and the DFM, for forecasting at the business cycle
frequencies. First, such procedures perform reasonably well as long there are no structural changes
experienced by the economy. Such changes, whether in or out of the sample, would then entail
the models inappropriate. Alternatively, these models are not immune to the ‘Lucas Critique’15 .
Furthermore, the estimation procedures used here are linear in nature, and hence, they fail to take
into account of the nonlinearities in the data. One and, perhaps, the best response to these objections
has been the development of micro-founded DSGE models, which are capable of handling both the
problems arising out of the structural changes and the issues of nonlinearities16. As in Iacoviello
and Neri (2008), future research should concentrate on using DSGE models to model the housing
sector of an economy, and then using the same to forecast house prices.
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Table 1. RMSEs of One- to Four-quarters Ahead (Large Middle-Segment, 2001:01-2006:4) 
        
 QA 1 2 3 4 Average  
 UOLS 7.6251 11.1535 12.4930 14.6719 11.4859  
 VAR  8.2894 13.2600 16.3651 21.7194 14.9085  
 DFM 10.7001 11.8895 12.3906 13.6091 12.1473  

w=0.3,d=0.5 
UBVAR  7.6507 10.8855 12.3250 14.0990 11.2400  
SBVAR  7.1261 10.0614 11.5019 13.6714 10.5902  
LBVAR  2.5138 0.8128 1.7729 0.9020 1.5003  

w=0.2,d=1 
UBVAR  7.6156 10.2381 11.5509 13.1236 10.6320  
SBVAR  7.8267 10.7540 12.1414 13.6428 11.0912  
LBVAR 2.3499 0.3116 2.1669 1.0100 1.4596  

w=0.1,d=1 
UBVAR  7.7395 10.3749 11.4148 12.8624 10.5979  
SBVAR  7.7199 10.3497 11.3774 12.8060 10.5633  
LBVAR 2.5542 0.4357 1.7550 0.7009 1.3614  

w=0.2,d=2 
UBVAR  7.9524 10.8216 12.2585 13.7656 11.1995  
SBVAR  7.8224 10.3813 11.6917 13.1564 10.7630  
LBVAR  1.7410 0.2447 2.2942 1.0257 1.3264  

w=0.1,d=2 
UBVAR  7.7368 10.2601 11.2240 12.6499 10.4677  
SBVAR  7.7718 10.3328 11.3300 12.7285 10.5408  
LBVAR 2.1479 0.2178 1.7364 0.5203 1.1556  

UBVAR: Univariate BVAR; SBVAR: Small-Scale BVAR; LBVAR: Large-Scale BVAR  
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Table 2. RMSEs of One- to Four-quarters Ahead (Medium Middle-Segment, 2001:01-2006:4) 
        
 QA 1 2 3 4 Average  
 UOLS 6.6699 11.1283 13.7053 15.9012 11.8512  
 VAR  7.6226 13.2491 17.7929 22.7807 15.3613  
 DFM 11.0542 12.3504 13.1730 14.5277 12.7764  

w=0.3,d=0.5 
UBVAR  6.6217 10.8245 13.5545 15.5817 11.6456  
SBVAR  6.5071 10.5573 13.2145 15.4633 11.4355  
LBVAR 1.3811 1.7065 0.3441 1.2291 1.1652  

w=0.2,d=1 
UBVAR  6.5061 10.4036 13.0992 15.1067 11.2789  
SBVAR  6.5437 10.4656 13.2209 15.1911 11.3553  
LBBAR 1.345286 1.668599 0.215229 1.421703 1.1627  

w=0.1,d=1 
UBVAR  6.2777 9.8641 12.4356 14.3960 10.7434  
SBVAR  6.2935 9.9233 12.5298 14.5264 10.8183  
LBVAR 1.228055 1.45676 0.252001 1.29891 1.0589  

w=0.2,d=2 
UBVAR  6.4954 10.2068 12.8802 14.8433 11.1064  
SBVAR  6.4512 10.1520 12.7567 14.7452 11.0263  
LBVAR 0.808409 1.32817 0.125094 1.331778 0.8984  

w=0.1,d=2 
UBVAR  6.2212 9.6563 12.1248 14.0596 10.5155  
SBVAR  6.2391 9.7022 12.2007 14.1637 10.5764  
LBVAR 0.731027 1.00139 0.002744 0.933318 0.6671  

UBVAR: Univariate BVAR; SBVAR: Small-Scale BVAR; LBVAR: Large-Scale BVAR  
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Table 3. RMSEs of One- to Four-quarters Ahead (Small Middle-Segment, 2001:01-2006:4) 
        
 QA 1 2 3 4 Average  
 UOLS 7.1218 10.9471 13.3339 16.0891 11.8730  
 VAR  7.9998 13.5224 18.1246 23.6199 15.8167  
 DFM 11.3963 11.6307 12.1631 14.2256 12.3539  

w=0.3,d=0.5 
UBVAR  7.0812 10.9023 13.4321 15.8916 11.8268  
SBVAR  6.7764 10.6527 13.4899 16.2816 11.8001  
LBVAR 2.2690 5.2247 3.5924 3.7260 3.7030  

w=0.2,d=1 
UBVAR  7.0021 10.7143 13.2513 15.5501 11.6295  
SBVAR  7.1894 10.9627 13.4611 15.6902 11.8259  
LBVAR 1.6219 3.9732 2.3725 2.8725 2.7100  

w=0.1,d=1 
UBVAR  7.1012 10.6804 12.9729 15.2257 11.4951  
SBVAR  7.0560 10.6301 12.9526 15.2829 11.4804  
LBVAR 1.6947 3.8056 2.6036 2.8698 2.7434  

w=0.2,d=2 
UBVAR  7.2474 10.9464 13.3839 15.5598 11.7844  
SBVAR  7.0765 10.6763 13.1243 15.3775 11.5637  
LBVAR 1.0821 3.0972 2.1133 3.0300 2.3307  

w=0.1,d=2 
UBVAR  7.0911 10.5807 12.8007 15.0435 11.3790  
SBVAR  7.0804 10.5700 12.8116 15.1174 11.3948  
LBVAR 1.2918 3.1277 2.1990 2.6840 2.3256  

UBVAR: Univariate BVAR; SBVAR: Small-Scale BVAR; LBVAR: Large-Scale BVAR  
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Recent Downturn in the Middle-Segment Housing Market (2003:01-2008:02)
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Figure 2. Predicting the Turning Points in Real House Price Growth(Large Middle-Segment, 2003Q1-
2008Q2)
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Figure 3. Predicting the Turning Points in real House Price Growth( Medium Middle-Segment, 
2003Q1-2008Q4)
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Figure 4. Predicting the Turning Points in Real House Price Growth(Small Middle- Segment, 2003Q1-
2008Q2)
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