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Abstract
Many conditions have been introduced to ensure equilibrium existence

in games with discontinuous payoff functions. This paper introduces a new
condition, called regularity, that is simple and easy to verify. Regularity
requires that if there is a sequence of strategies converging to s∗ such that
the players’ payoffs along the sequence converge to the best-reply payoffs
at s∗, then s∗ is an equilibrium. We show that regularity is implied both by
Reny’s better-reply security and Simon and Zame’s endogenous sharing rule
approach. This allows us to explore a link between these two distinct meth-
ods. Although regularity implies that the limits of ε-equilibria are equilibria,
it is in general too weak for implying equilibrium existence. However, we
are able to identify extra conditions that, together with regularity, are suffi-
cient for equilibrium existence. In particular, we show how regularity allows
the technique of approximating games both by payoff functions and space
of strategies.
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1 Introduction
Many classical problems in economics are modeled as games with a continuum
of actions, but discontinuous payoffs. In this category are Bertrand’s duopolistic
competition, Hotelling’s spatial competition, auctions and many other games. The
discontinuities in these games pose a difficulty for establishing equilibrium exis-
tence. Given the importance of discontinuous games, such difficulties have been
stimulating efforts towards weakening the sufficient conditions for (pure strategy)
equilibrium existence.

In an innovative paper, Simon and Zame (1990), henceforth SZ, observe that
many cases of discontinuities arise from the specification of a tie-breaking or shar-
ing rule. Although there is a usual way of breaking ties (splitting the prize in equal
proportions), this is not always the only natural sharing rule. To illustrate this
point, they offer the example of two psychologists choosing locations on a portion
of Interstate 5 running through California and Oregon. The relevant position is
represented by a point in the interval [0,4]; the California portion is represented by
[0,3] and the Oregon part by [3,4]. There is a continuum of potential clients uni-
formly distributed along the Interstate and, as in the classical Hotelling’s model,
each client chooses the psychologist located closest to him. In Simon and Zame’s
example, the psychologists are constrained to be in their own state. In this game,
the natural equilibrium seems to be for both to be on the border (point 3). How-
ever, the standard sharing rule (that splits in equal proportions the clients) does
not support this choice as equilibrium. In fact, with this sharing rule the game
does not have an equilibrium. SZ then propose that the sharing rule is modified
to reflect the limit of the proportion of clients (the psychologists’ payoffs) from
strategies that approximate the point 3, but that are not in a tie. That is, the Cali-
fornian psychologist gets 3/4 of the patients if both choose to be in the border. In
this way, one obtains a sharing rule under which there is an equilibrium.

In the important case of auctions, the use of special tie-breaking rules goes
back at least to Lebrun (1996), who provides an example of an asymmetric private-
value first-price auction with mass points such that no equilibrium exists with the
standard tie-breaking rule. He then defines an augmented first-price auction where
bidders are required to send a message together with their bids and shows equilib-
rium existence with this rule.1 Maskin and Riley (2000) used a “second price auc-
tion tie-breaking rule”, which consisted of running a second price auction in case

1Lebrun (1996) also states a general theorem (his Theorem 3) for games with discontinuous
payoffs, whose assumptions have some relation with Reny (1999)’s.
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of a tie. Jackson, Simon, Swinkels, and Zame (2002), henceforth JSSZ, provided
an example of a symmetric interdependent-values auction where no equilibrium
exists under the standard tie-breaking rule. From this, they extended SZ’s ideas
to games with incomplete information. Jackson and Swinkels (2005) applied this
method of proof for establishing equilibrium existence in multi-unit private value
auctions.2 Araujo, de Castro, and Moreira (2008) showed that special tie-breaking
rules may also be necessary when types are multidimensional and utilities are non-
monotonic, even in the symmetric case. They showed equilibrium existence under
the all-pay auction tie-breaking rule, which consisted in running an all-pay auction
as the tie-breaking mechanism. Araujo and de Castro (2009) considered asym-
metric single and double auctions, and showed that special tie-breaking rules are
necessary in general. They were able to show that monotonic tie-breaking rules
are sufficient for equilibrium existence.

A usual criticism of SZ’s approach relies on its insistence on the endogenous
definition of the sharing rule. This problem was explicitly indicated by Reny
(1999, p. 1050): “in a mechanism design environment where discontinuities are
sometimes deliberately introduced (auction design, for example), the participants
must be presented with a game that fully describes the strategies and payoffs. One
cannot leave some of the payoffs unspecified, to somehow be endogenously de-
termined. In addition, this method is only useful in establishing the existence of a
mixed, as opposed to pure, strategy equilibrium.” However, these two shortcom-
ings are not essential to the “special tie-breaking rule” approach, broadly defined.3

Indeed, Araujo, de Castro, and Moreira (2008) showed that a special, but exoge-
nously specified tie-breaking rule (the all-pay auction tie-breaking rule) is enough
to guarantee equilibrium existence in a class of discontinuous games. Also, both
Araujo, de Castro, and Moreira (2008) and Araujo and de Castro (2009) present
results in pure strategy equilibrium.

Another approach to equilibrium existence in discontinuous games was de-
veloped by Reny (1999). See also Simon (1987), Dasgupta and Maskin (1986)
and Baye, Tian, and Zhou (1993).4 This approach is based on the better-reply

2Since they worked with private values with no mass points, they were able to prove that the
definition of the tie-breaking rule was not important.

3Reny (1999)’s comments were fair, nevertheless, since these two shortcomings were essential
in SZ and also in Jackson, Simon, Swinkels, and Zame (2002).

4There is yet a third approach to equilibrium existence in discontinuous games, which uses
fixed point theorems that take advantage of a natural order in the space of strategies. See for
instance Vives (1990), Milgrom and Roberts (1990), Athey (2001), McAdams (2003), Fudenberg,
Mobius, and Szeidl (2007) and Araujo and de Castro (2009). Although we will not discuss much
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security condition, which roughly requires that whenever a point is not equilib-
rium, one player can secure a payoff above her limit of payoffs, even if other
players are allowed to slightly change their actions. This method seems to have
absolutely no connection with the “special tie-breaking rule” approach described
above. However, Jackson and Swinkels (2005) noticed that there are, indeed, a
deep connection between these two methods:

It is interesting that the tricky part of the proof using better-reply-
security is to get a handle on the u∗’s in the closure of the game.
The fact that they are those generated by omniscient tie-breaking sug-
gests a deeper connection between the machinery of Reny and that of
JSSZ. That is, a proof of existence via “apply JSSZ and check that
some equilibria correspond to nice tie-breaking” and “check better-
reply-security” are closely related. Because of the requirement that
better-reply-security apply relative to all points in the closure of the
graph, rather than just the graph, one has to understand exactly what
might be in that closure; and the points in the closure are precisely
the points that come from omniscient choices at points of discontinu-
ity. On the other hand, in applying JSSZ, one has to understand the
equilibria that might be generated under omniscient choices at points
of discontinuity. In the auction setting, these two tasks are closely
related. How these approaches turn out to be related and which might
be more efficient in other settings is an open question.5

This paper was motivated by this open question. We identify a condition,
named regularity, that is implied by both Reny’s and SZ’s methods.6 Whether
regularity is or not a solution to the above question depends, of course, on the
interpretation of what should be considered a relation between the two methods
and since this is somewhat subjective, we leave to the reader to judge on this.7

However, we illustrate how regularity plays an important role in both approaches.

this third approach, our regularity condition seems important for this method to apply.
5Jackson and Swinkels (2005, p. 121). The emphasis is ours.
6Regularity is used for many different mathematical concepts. For instance, we have regular

topological spaces, regular measures, regular probability spaces, etc. Thus, the word is not very
informative on its own, but do convey a single idea: if the concept in question is not regular, then
weird behavior or properties are expected. That is, “regular” just means typical or canonical. This
is exactly the idea that we want to convey with our regularity condition. Also, we were not able to
find a more informative name, which was not too long or awkward.

7It is transparent from the above quote that the “open question” refers to understanding what
is the relation between the methods. Thus, we believe that regularity is a solution to that open
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Regularity is simple, easy to verify and is satisfied for most games with equi-
libria. Regularity requires that if there is a sequence of strategies converging to
s∗ such that the players’ payoffs along the sequence converge to the best-reply
payoffs at s∗, then the payoffs at s∗ are equal to these limits, that is, s∗ is an equi-
librium (see definition 3.1 for a formal statement). This captures the idea that the
payoffs even at discontinuity points should be equilibrium payoffs, if there is a
sequence of “almost” optimal points converging to it. Note that if the utility func-
tions are continuous this is always the case, although regularity is much weaker
than continuity.

By analyzing some examples that do not have equilibrium but satisfy other
standard assumptions, we show that the failure of regularity may explain the fail-
ure of equilibrium existence in many cases. This is helpful, because it can indicate
what should be the adaptation in the standard sharing rule of some games (such as
the tie-breaking rules in auctions) necessary to ensure equilibrium existence.

On the other hand, regularity is too weak for guaranteeing equilibrium ex-
istence. However, under some extra-conditions (which amount to some kind of
upper-semicontinuity as we will discuss later), regularity implies equilibrium ex-
istence. For instance, whenever one has ε-equilibria for all ε > 0, regularity
implies equilibrium existence (Theorem 4.1). In particular, if the value function
is continuous,8 then there exists an equilibrium (Corollary 4.3).

Instead of working with ε-equilibria, we can consider approximating games.
Since a game is characterized by a pair of entities for each player—the strategy
space and the payoff function—there are two ways to approximate a game. The
first one is to consider a sequence of payoff functions; the second is to consider a
sequence of restricted strategy spaces.9

In the first case, the sequence of continuous functions is required to approx-
imate the original function in a sense defined in section 4.2, which is also im-
plied by weak payoff security.10 We show (Proposition 4.6) that the weak payoff
security implies the existence of an approximating sequence of continuous func-

question exactly because it is a simple requirement that allows us to understand what both methods
are doing with the points in the closure of the graph.

8The value function is the supremum of payoffs that a player can achieve, given the strategies
by the others. See formal definition in the beginning of section 3.

9Of course, it would be possible to have the two kinds of approximations at the same time, as
we comment at the end of section 4.

10 Payoff security was introduced by Reny (1999) to characterize better-reply security and re-
quires that any player is able to choose a single strategy and yet ensures that his payoff is at least
vi(si, s−i)− ε, even if the opponents choose strategies s′i in a neighborhood of s−i. Weak payoff
security allows the player to choose different strategies for each s′−i in the neighborhood of s−i.

5



tions. Then, if this approximating sequence is sufficiently well-behaved (not too
much above the original payoff function), then compact and regular games have
an equilibrium (Theorem 4.8). Finally, we show (Theorem 4.11) that regular-
ity and lower-semicontinuity of the payoff function are sufficient for equilibrium
existence if there is a sequence of games whose space of allowed actions approx-
imates the original game, in a sense formalized in section 4.3.

The technique of approximating discontinuous games by sequence of contin-
uous ones is clearly not new. It probably goes back to the first attempts to prove
equilibrium existence in discontinuous games. Also, the results of this paper are
closely related to those obtained by Prokopovych (2010) and Carmona (2010b).
We discuss the relation with these papers in section 7.

The rest of this paper is organized as follows. In section 2 we describe the
basic setup and introduce the notation. Regularity is introduced in section 3, which
also discusses its basic properties. Section 4 collects our equilibrium existence
results, while section 5 illustrates the assumptions with some examples. Section 6
discusses the endogenous sharing rule method and clarifies its relation with Reny’s
method. A review of related literature is to be found in section 7 and a conclusion,
in section 8.

2 Preliminaries
Let I = {1, . . . , N} be the set of players. Each player chooses a strategy from
a compact convex subset Si of a locally convex Hausdorff topological vector
space.11 Actually, we will implicitly assume that each Si is metric, so that we
can talk about sequences instead of nets. This restriction, however, is made only
for simplicity, since the results and proofs also hold in the previously mentioned
general setting. We summarize the profile of strategies by s = (si, s−i) ∈ S =
Si×S−i,where S−i =

∏
j 6=i Sj.Naturally, we endow S with the product topology.

Since each Si is compact, S is also compact, by Tychonoff Theorem.
The payoff of player i is given by the function vi : S → R, bounded above.12

11A vector space is topological if it is endowed with a topology where the addition and multipli-
cation by scalars are continuous transformations. A topological vector space is said to be locally
convex if it possesses a base for its topology consisting of convex sets. This setup is slightly more
restrictive than the one considered by Reny (1999).

12We use this assumption mainly for convenience. Since we are concerned with the points
that maximizes the function, it is convenient that the value at this point is not infinite. As noted
by Reny (1999), we can transform unbounded payoffs ui in bounded ones, by adopting vi =
expui/ (1 + expui).
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Occasionally, we will refer to v : S → RN , understanding that the i-th coordinate
of v (s) is denoted as vi (s). We denote the game by (Si, vi)i∈I but occasionally it
will be convenient to refer to it only as v.

We say that v is quasiconcave if the sets {si ∈ Si : vi (si, s−i) ≥ α} are convex
for all i ∈ I , s−i ∈ S−i and α ∈ R. We say that v is compact if S is compact as
described above. We denote the set of equilibrium points of (Si, vi)i∈I by E(v),
that is,

E(v) ≡ {s ∈ S : vi(s) > vi(s
′
i, s−i),∀i ∈ I, s′i ∈ Si} . (1)

It will be convenient to define the best reply correspondence as follows:

Γv (s) ≡

{
s̃ ∈ S : ∀i ∈ I , vi (s̃i, s−i) = sup

s′i∈Si

vi (s
′
i, s−i)

}
.

Of course, s ∈ E(v) if and only if s is a fixed point of Γv.

3 Regular games
Given v : S → RN , let us denote by v̂ : S → RN the function whose coordinates
v̂i : S−i → R are the value functions, given by v̂i (s−i) ≡ sups′i∈Si

vi (s
′
i, s−i), for

each i ∈ I . Although v̂i is a function only of s−i, it will be convenient to abuse
notation by considering v̂i as a function of s. This shall not cause confusion. Of
course, v (s) 6 v̂ (s), where the inequality is in the coordinate-wise sense, that is,
vi (s) 6 v̂i (s), for each i ∈ I . This function is used in the following:

Definition 3.1 Given v : S → RN , the regularization of v is the function v̄ : S →
RN defined by:

v̄ (s) =

{
v̂ (s) , if ∃sn → s such that limn v (sn) > v̂ (s)
v (s) , otherwise (2)

If v(s) = v̄(s), we say that v is regular at s. If v is regular at s for all s ∈ S, we
simply say that v is regular.

The functions v (s) and v̄ (s) have different values only in the points that are
not equilibrium, but would be equilibrium if the game was continuous. In fact,
if v is continuous at s then v(s) = v̄(s). Now, regularity does not require v to
be continuous, but if a point is a candidate to be equilibrium because there is a
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sequence of points approximating a candidate for equilibrium, then it must be an
equilibrium. It is useful to observe that the regularization of a function is the same
as the regularization of its regularization. In other words, we have the following:

Lemma 3.2 If u : S → RN is the regularization of v : S → RN , then u is regular.

Proof: First observe that v(s) 6 u(s) 6 v̂(s),∀s ∈ S. Therefore, û(s) =
v̂(s). Now, suppose that there is a sequence {sn}n∈N converging to s such that
limn u (sn) > û (s). If u(sn) = v(sn) for infinite many n, then u(s) = v̂(s) =
û(s) = ū(s). Otherwise, we can assume that u(sn) = v̂(sn) > v(sn) for all
n. This means that for each n, there exists a sequence {sn,m}m∈N such that
limm s

n,m = sn and limm v(sn,m) > v̂(sn) = u(sn). Since limn u (sn) > v̂ (s),
we can find a subsequence {xj}j∈N of {sn,m}n,m∈N that satisfies xj → s and
limj v (xj) > v̂(s). But this implies that u(s) = v̂(s) = û(s) = ū(s). Therefore,
u is regular.

Regularity is implied by better reply security introduced by Reny (1999). To
see this, let us recall some definitions. A player i can secure a payoff of α ∈ R
at s ∈ S if there exists s∗i ∈ Si such that vi(s∗i , s

′
−i) > α for all s′−i in some

open neighborhood of s−i. A game (vi, Si)i∈I is better reply secure if whenever
(s∗, u∗) ∈ cl(graph(v)), and s∗ is not an equilibrium, some player i can secure a
payoff strictly above u∗i at s∗.

Proposition 3.3 If v satisfies better reply security, then v is regular, that is, v = v̄.

Proof: It is clear that v̄ > v. Suppose that v̄ (s∗) = v̂ (s∗) > v (s∗). Thus,
s∗ is not an equilibrium point. By definition, there is sn → s∗ such that u∗ ≡
limn v (sn) > v̂ (s∗). Thus, (s∗, u∗) ∈ cl (gr (v)). By better reply security, there is
a player i ∈ I , s′i ∈ Si, a neighborhood U of s∗−i and δ > 0 such that vi (s′i, s̃−i) >
u∗i + δ for all s̃−i ∈ U . Since s∗−i ∈ U ,

u∗i = lim
n
vi(s

n) > v̂i (s
∗) = sup

s̃i∈Si

vi
(
s̃i, s

∗
−i
)
> vi

(
s′i, s

∗
−i
)
> u∗i + δ,

which is an absurd. The contradiction establishes that v̄ (s∗) = v̂ (s∗) = v (s∗),
that is, v is regular.

Recall thatE(v) denotes the set of equilibrium points of v, see (1). The follow-
ing result clarify the relation between regularity and the existence of equilibrium:
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Proposition 3.4 E (v) = E (v̄) ∩ {s : v̄(s) = v(s)} .

Proof: It is easy to see that whenever s is an equilibrium point, v(s) = v̄(s) and
s is also an equilibrium of v̄, that is, E (v) ⊂ E (v̄) ∩ {s : v̄(s) = v(s)}. Now if
s ∈ E (v̄) ∩ {s : v̄(s) = v(s)}, then vi(s) = v̄i(s) > v̄i(s

′
i, s−i) > vi(s

′
i, s−i), for

all s′i ∈ Si and i ∈ I , which shows that s ∈ E(v).

Proposition 3.4 establishes that a point s is equilibrium for a game v if and only
if s is equilibrium for the game v̄ and v is regular at s. This implies that regularity
is satisfied at all equilibria points, that is, regularity is “almost” necessary for
equilibrium existence. We say “almost” because, as it turns out, a game may fail
to be regular at some point s ∈ S, that is, v(s) < v̄(s), but the game has an
equilibrium in another point s′ (at which, the game will be regular). However,
if the game is not regular, standard topological methods will need adaptations for
ensuring equilibrium existence in such a game. The required adaptations and what
we mean by “standard topological methods” are discussed below.

3.1 Topological methods and transfer conditions
By “standard topological methods,” I loosely mean methods that find a sequence
(or net) of strategies sn (perhaps equilibrium of some approximating games vn),
use a compactness condition to find a subsequence converging to a point s∗ and
argue through some kind of continuity property that s∗ is equilibrium. Many
available approaches to equilibrium existence are topological in this sense, in-
cluding Simon and Zame (1990), Reny (1999), Athey (2001) and Jackson, Simon,
Swinkels, and Zame (2002).

However, one can see that a slight modification of the above described ap-
proach can still ensure equilibrium existence. Instead of requiring an assumption
that would imply that that specific s∗ is an equilibrium, it would be sufficient to
conclude that some s′ is an equilibrium. That is, one requires that the property
holds not in the natural candidate point, but in some “transfer” point. Transfer
conditions were introduced by Baye, Tian, and Zhou (1993), but are also used in
more recent papers, although not always explicitly. See for instance Prokopovych
(2010) and McLennan, Monteiro, and Tourky (2009). Instead of discussing the
use of this kind of assumption in other papers, we will limit ourselves to show
how “transfer” conditions can be applied also to regularity, leading to a condition
that is necessary for equilibrium existence.
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Definition 3.5 A game v : S → RN is transfer-regular if the existence of a se-
quence {sn}n∈N converging to s and satisfying limn v (sn) > v̂ (s) implies that
there exists s′ such that v(s′) = v̂(s′).

It is easy to see that if a game is regular then it is transfer-regular. We also
have the following:

Proposition 3.6 If a game v : S → RN has an equilibrium then it is transfer-
regular, but the converse is not necessarily true.

Proof: Let s′ be an equilibrium. Then, v(s′) = v̂(s′) and the game is automatically
transfer-regular. To see that the converse does not hold, consider a game between
two players, with S1 = S2 = [0, 1], v1 : S → R given by:

v1 (s1, s2) =

{
−1, if s1 = s2;
1, if s1 6= s2;

and v2 : S → R given by:

v2 (s1, s2) =

{
1, if s1 = s2;
−1, if s1 6= s2;

(This is just a continuous version of matching pennies.) In this case, v̂(s) =
(1, 1) while v(s) ∈ {(1,−1), (−1, 1)},∀s ∈ S. Therefore there is no sequence
satisfying limn v(sn) > v̂(s), which shows that v is transfer-regular.

All equilibrium existence results shown below are also valid for transfer-regular
games, instead of just regular games. As we will see, regularity is used at the
end of the proof, when we find a sequence {sn}n∈N converging to s such that
limn v (sn) > v̂ (s). At this point, we can use transfer-regularity instead of reg-
ularity to ensure equilibrium existence. See Corollaries 4.9 and 4.12. However,
the paper is focused on regularity rather than transfer-regularity. There are two
reasons for this. The first is for simplicity. The second is that it does not seem
easier to check transfer-regularity than to check regularity itself, despite the fact
that the former is weaker.

4 Pure Strategy Equilibrium Existence
As we previously mentioned, regularity is not enough to guarantee equilibrium
existence. See for instance the example contained in the proof of Proposition 3.6.
In this section, we show how other conditions, together with regularity, ensure
equilibrium existence.
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4.1 Sequence of ε-equilibria
The first one is based on obtaining equilibrium through a sequence of ε-equilibria.
The result is as follows:

Theorem 4.1 If a game (Si, vi)i∈I is compact, regular, v̂ is lower-semicontinuous
and the game admits ε-equilibria for each ε > 0, then it has an equilibrium.13

Proof: Suppose that sn is a sequence of 1
n

-equilibria, that is, v̂(sn)− 1
n
6 v(sn) 6

v̂(sn).14 Compactness allows us to assume that sn → s∗ for some s∗, passing to a
subsequence if needed. Since v̂ is lower-semicontinuous, lim infn v̂(sn) > v̂(s∗).
But we also have lim infn v(sn) > lim infn

[
v̂(sn)− 1

n

]
= lim infn v̂(sn). Passing

sn to an appropriate subsequence (but still denoting this subsequence by sn), we
obtain limn v(sn) > v̂(s∗). Since v is regular, this implies that v(s∗) = v̄(s∗) =
v̂(s∗), that is, s∗ is an equilibrium.

Thus, Theorem 4.1 allows to obtain equilibrium existence under sufficient con-
ditions for existence of ε-equilibria. For completeness, we state a set of sufficient
conditions: the one provided by Prokopovych (2010). To state the result, we need
the following definition, due to Reny (1999): the game (Si, vi)i∈I is payoff secure
if for all ε > 0, each player i can secure a payoff of vi(s) − ε at s, that is, there
exists s′i ∈ Si and a neighborhood U of s−i such that vi(s′i, s−i) > vi(s)− ε for all
s′−i ∈ U .

Proposition 4.2 (Prokopovych (2010)) If v is compact, quasiconcave, payoff se-
cure and v̂ is continuous, then it possesses a pure strategy ε-equilibrium for every
ε > 0.

This gives the following:

Corollary 4.3 If a game (Si, vi)i∈I is compact, quasiconcave, regular, payoff se-
cure and v̂ is continuous, then it has a pure strategy equilibrium.15

13 Dasgupta and Maskin (1986) were the first to use lower-semicontinuity of v̂.
14Recall that v(s) and v̂(s) are vectors, so that v̂(s)− 1

n is an abuse of notation, with the obvious
meaning v̂(s)− ( 1n , ...,

1
n ). We will repeat this abuse of notation in other places.

15This result is actually true without the assumption that v̂ is continuous, as shown by Carmona
(2010b)—see discussion in section 7.
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4.2 Approximating payoff functions
A setting in which regularity is particularly useful occurs when there is a sequence
of games approximating the original one, each of which has an equilibrium. In
this case, regularity can be used to show that the limit of the equilibria of the
approximating games is an equilibrium of the original game.

There are two ways to define approximating games: by approximating payoff
functions and by approximating spaces. In this section we consider approximation
of the payoff functions; next section deals with space approximation.

Definition 4.4 (Approximating functions) A sequence of continuous quasicon-
cave functions {vn : S → RN}n∈N is an approximating sequence of the game
G = (Si, vi)i∈I if it satisfies the following:

1. vn(s) 6 v̂(s) for all s ∈ S and n ∈ N;

2. If sn → s∗, then lim infn v
n
i (sn) > v̂i(s

∗).

It is clear that if v̂ is continuous then vn = v̂ defines an approximating se-
quence.16 However, the existence of approximating sequences requires less than
this. Consider the following definition, which is weaker than payoff security:

Definition 4.5 (Weakly payoff secure) We say that v is weakly payoff secure if
for all i ∈ I , ε > 0 and s ∈ S, there exists an open neighborhood U of s−i such
that for each s′−i ∈ U , there exists s′i ∈ Si such that vi(s′i, s

′
−i) > vi(s)− ε.17

Weak payoff security implies the existence of an approximating payoff se-
quence:

Proposition 4.6 Assume that v is weakly payoff secure and S is compact metric.
Then, there exists a sequence of approximating functions of v.

Proof: First, let us show that v̂i is lower-semicontinuous, that is, the set {s−i ∈
S−i : v̂i(s−i) > α} is open for all α ∈ R and i ∈ I . Indeed, fix s−i in this set and
choose ε > 0 such that v̂i(s−i)− ε > α. Recall that v̂i(s−i) = sups̃i∈Si

vi(s̃i, s−i).

16Note that v̂ is trivially quasiconcave.
17In other words, there is a nonempty correspondence ϕi : U → Si that gives s′i ∈ ϕi(s

′
−i)

for each s′−i ∈ U satisfying the required inequality. Note, however, that we do not require this
correspondence to have convex values or be upper or lower-semicontinuous.
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Then, there exists s̃i such that vi(s̃i, s−i) > v̂i(s−i)− ε. Since the game is weakly
payoff secure, there exists open neighborhood Us−i

of s−i such that:

v̂i(s
′
−i) > vi(s

′
i, s
′
−i) > vi(s̃i, s−i) > v̂i(s−i)− ε,∀s′−i ∈ Us−i

.

This shows that all s′−i in U are also in {s−i ∈ S−i : v̂i(s−i) > α}, that is, v̂i is
lower-semicontinuous.

By Reny (1999), Lemma 3.5, there exists a sequence of continuous functions
vni : S−i → R satisfying conditions 1 and 2 of the definition of approximating
payoff sequence. Since each vni does not depend on si, it is quasiconcave. This
concludes the proof.

Now, consider the following:

Definition 4.7 (function-approximated game) We say that v is function- approx-
imated if there is an approximating payoff sequence vn such that, if sn is a se-
quence of equilibria for (Si, v

n
i )i∈I then for each ε > 0, there exists nε such that

vn(sn) 6 v(sn) + ε for all n > nε.

This condition guarantees that the approximating payoff sequence can be taken
not too above v, at least for equilibrium points of the approximating game. With
these definitions in place, we have the following:

Theorem 4.8 If a game (Si, vi)i∈I is compact, regular and function-approximated,
then it has a pure strategy equilibrium.

Proof: Take an approximating payoff sequence vn : S → RN that function-
approximates v. Since (Si, v

n
i )i∈I is compact and quasiconcave and the function

vn is continuous, there exists a pure strategy equilibrium sn. By compactness, we
may assume (passing to subsequences if necessary) that sn → s∗. Since vn is
an approximating payoff sequence, v̂(s∗) 6 lim infn v

n(sn). Using the fact that
sn is equilibrium for vn, we have vn(sn) = v̂n(sn). Therefore, we can choose a
subsequence (denoted again by sn) such that

v̂(s∗) 6 lim inf
n

vn(sn) 6 lim inf
n

(
v(sn) +

1

n

)
= lim inf

n
v(sn),

where the second inequality holds because v is function-approximated. We can
now pass to a subsequence, if necessary, to obtain v̂(s∗) 6 limn v(sn). Since v is
regular, this implies that v(s∗) = v̂(s∗), that is, s∗ is equilibrium.

13



From the proof, we can see that function-approximation and regularity guar-
antee that the limit of equilibrium points in the approximating games is an equilib-
rium of the original game. After the discussion at the end of section 3, we obtain
the following:18

Corollary 4.9 Let G = (Si, vi)i∈I be compact and function-approximated. Then
G has a pure strategy equilibrium if and only if it is transfer-regular.

4.3 Approximating the strategy space
The second way of defining approximating games is through the set of strategies
available for each player.

Definition 4.10 (space-approximated game) Given a game G = (Si, vi)i∈I , a
sequence of games (Sni , v

n
i )i∈I is an approximating-spaces sequence (for G) if it

satisfies the following for each r:

1. Sni ⊂ Si;

2. vni is the restriction of vi to Sn ≡
∏

i S
n
i . Thus, we can write only vi instead

of vni from now on;

3. the game (Sni , vi)i∈I has an equilibrium, that is, there exists sn ∈ Sn such
that vi(sn) > vi(x

n
i , s

n
−i),∀xni ∈ Sni .

4. ∀xi ∈ Si, there exists a sequence {xni } such that xni ∈ Sni and xni → xi.

If G has an approximating-spaces sequence, then we say that G is space- approx-
imated.

SZ approximate the original spaces Si using finite sets Sni . However, this is
not necessary for the definition above. The spaces Sni can be infinite sets with re-
stricted available strategies, so that an equilibrium exists. We have the following:

Theorem 4.11 Assume that a game G = (Si, vi)i∈I is compact, regular, space-
approximated and lower-semicontinuous.19 Then G has an equilibrium.

18The converse comes directly from Proposition 3.6.
19We say that G = (Si, vi)i∈I is lower-semicontinuous if vi is lower-semicontinuous, ∀i ∈ I .
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Proof: Let sn be such that vi(sn) > vi(x
n
i , s

n
−i), for every xni ∈ Sni . By com-

pactness of S, sn converges (passing to subsequences if needed), to some s∗. For
each xi ∈ Si, fix a sequence xni ∈ Sni , such that xni → xi. Since vi is lower-
semicontinuous and (xni , s

n
−i)→ (xi, s

∗
−i),

lim inf
n

vi(s
n) > lim inf

n
vi(x

n
i , s

n
−i) > vi(xi, s

∗
−i).

Since xi was arbitrary, this implies that lim infn vi(s
n) > v̂i(s

∗). Passing to a
subsequence if needed, we have limn vi(s

n) > v̂i(s
∗), for all i. Since v is regular,

s∗ is an equilibrium.

As section 6 discusses, Theorem 4.11 is related to the argument used in the
proof of SZ’s main result. The following result is parallel to Corollary 4.9:

Corollary 4.12 Let G = (Si, vi)i∈I be compact, space-approximated and lower-
semicontinuous. ThenG has a pure strategy equilibrium if and only if it is transfer-
regular.

A final remark is that we could in principle combine the ideas of approxima-
tion of payoff functions and of space of strategies at the same time. Since this
would be a simple variation of the ideas above, we refrain from spelling out the
correspondent details.

5 Examples
In this section, we illustrate how the failure of equilibrium existence is related to
the failure of regularity. The first example is example 1 of Carmona (2005):

Example 5.1 Let I = {1, 2}, S1 = S2 = [0, 1], v1 : S → R given by:

v1 (s1, s2) =


0, if s2 6 1

2
− s1;

2, if s1 = 0 and s2 > 1
2
;

1, otherwise

and v2 : S → R given by:

v2 (s1, s2) =


0, if s1 6 1

2
and s2 > 0;

1, if s1 6 1
2

and s2 = 0;
1, if s1 > 1

2
and s2 6 1

2
;

2, if s1 > 1
2

and s2 > 1
2
;
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Carmona (2005, Proposition 1) shows that the game in example 5.1 is quasi-
concave and payoff secure, but has no pure strategy equilibrium or ε-equilibrium
for ε > 0 sufficiently small. It is not difficult to see that:

v̂1 (s2) =

{
2, if s2 > 1

2
;

1, otherwise

and

v̂2 (s1) =

{
1, if s1 6 1

2
;

2, if s1 > 1
2
;

so that v̂i is not continuous for i = 1, 2. On the other hand, since the game is
payoff secure, it is also weakly payoff secure and it has an approximating payoff
sequence. However, it is not regular. To see this, observe that v̂(1

2
, 1
2
) = (1, 1),

but limn v(1
2

+ 1
n
, 1
2

+ 1
n
) = (1, 2) 	 (1, 1) = v̂(1

2
, 1
2
) 	 (1, 0) = v(1

2
, 1
2
).

Now we consider example 3 of Prokopovych (2008).

Example 5.2 Let I = {1, 2}, S1 = S2 = [0, 1], v1 : S → R given by:

v1 (s1, s2) =

{
1− s1, if s ∈ [0, 1]× {0};

1 + s1s2, if s ∈ [0, 1]× (0, 1];

and v2 : S → R given by:

v2 (s1, s2) =

{
s2, if s ∈ {0} × [0, 1];

1 + s1(1− s2), if s ∈ (0, 1]× [0, 1];

As Prokopovych (2008) observes, this game is compact, quasiconcave, payoff
secure and v̂ is continuous, but it does not have a pure strategy equilibrium. Let
us verify that it is not regular. It is easy to see that:

v̂1 (s2) =

{
1, if s ∈ [0, 1]× {0};

1 + s2, if s ∈ [0, 1]× (0, 1];

and

v̂2 (s1) =

{
1, if s ∈ {0} × [0, 1];

1 + s1, if s ∈ (0, 1]× [0, 1];

and v̂(0, 0) = (1, 1) = limn(1 + 1
n2 , 1− n−1

n2 ) = limn v( 1
n
, 1
n
). However, v(0, 0) =

(1, 0) 6= (1, 1) = v̂(0, 0), that is, regularity is not satisfied.
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6 The endogenous sharing rule method
This section examines the “endogenous sharing rule” approach introduced by SZ
and later developed by Jackson, Simon, Swinkels, and Zame (2002) and Jackson
and Swinkels (2005). This approach’s main ideas are also present in Araujo and
de Castro (2009) and Araujo, de Castro, and Moreira (2008), although the last
paper defines an explicit (special) sharing rule.

Let us begin by describing SZ’s framework, which is slightly different from
Reny’s. After we understand SZ’s framework, we can see how the two are re-
lated. Instead of a utility function v : S → RN as before, SZ consider a payoff
correspondence Q : S → RN . They interpret Q(s) “as the universe of utility
possibilities given the strategy profile s” (p. 864). They then assume that Q is
bounded and upper-semicontinuous, with nonempty, convex, compact values.

A natural way to think about Q is as follows. Suppose that we have a game
(Si, vi)i∈I as previously defined, where each vi can be discontinuous. Say that
a correspondence P : S → RN extends v : S → RN if v is a selection of P
and that P is standard if it is bounded and upper-semicontinuous, with nonempty,
convex, compact values. Now define V : S → RN as the smallest standard
correspondence that extends v, that is, if P is standard and extends v then V (s) ⊂
P (s) for every s ∈ S. Of course we have to establish that this definition is not
vacuous. This comes from the following:

Lemma 6.1 V is well defined.

Proof: Let S denote the set of standard correspondences P : S → RN which
extend v. The above definition is equivalent to put V (s) ≡ ∩P∈SP (s). Since
v(s) ∈ P (s), for all s ∈ S and P ∈ S , then v(s) ∈ V (s), that is, V is non-
empty and extends v. Moreover, it has convex compact values, since each P ∈ S
has and arbitrary intersections preserve convexity, compactness and closedness. It
remains to verify that it is upper-semicontinuous, which is equivalent to having a
closed graph (since its image is in RN ). However,

graph(V ) = {(s, u) ∈ S × RN : u ∈ V (s) = ∩P∈SP (s)},
= ∩P∈S{(s, u) ∈ S × RN : u ∈ P (s)}
= ∩P∈Sgraph(P ).

Since all P ∈ S have closed graphs, this concludes the proof.
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Thus, we can interpret the primitive correspondence Q in SZ’s framework just
as the correspondence V that could be defined in a Reny’s framework as above.
This shows that the two setups are essentially interchangeable. To fix ideas, from
now on, let Q be just the correspondence defined as a primitive by SZ.

As said above, SZ assume that Q is standard. For our purposes, the key prop-
erty is that Q is upper-semicontinuous. According to SZ, this assumption “means
that the set of utility possibilities for each strategy profile is at least as large as
the set of limits of utility possibilities of nearby profiles.” This already gives a
sense on how our regularity condition will be related to SZ’s approach. But be-
fore making this formal, we need to understand another important concept in SZ’s
framework: that of sharing rule; for this, we find nothing better than to quote SZ:
“A sharing rule is a Borel measurable selection q : S → RN such that q(s) ∈ Q(s)
for each s ∈ S. SinceQ(s) is the universe of utility possibilities given the strategy
profile s, a sharing rule is just a particular choice of payoff at each point of the
space of strategy profiles” (p. 864).

Now, the way that the two approaches are related should be more or less clear.
When Reny fixes a utility function v : S → RN , he is already fixing the selection
q of Q in SZ’s terminology. When he requires that v satisfies some properties (in
his case, better-reply security), this is akin to require that there exists a selection
q of Q that has that property. If equilibrium can be proved for that selection, then
an equilibrium with endogenous sharing rule exists.20

Proposition 6.2 Let Q be a standard correspondence. Then there is a selection q
of Q such that q is regular.

Proof: Let Q̄ denote the sub-correspondence of Q formed by the maximal points
with respect to the component-wise order in RN , that is,

Q̄(s) ≡ {y ∈ Q(s) : ∀x ∈ Q(s), x > y ⇒ x = y}.

Since Q(s) is non-empty, so Q̄(s) is. Let v be a selection of Q̄. We claim that v
is regular. For, let sn be a sequence converging to s∗ such that y ≡ limn v (sn) >
v̂(s∗) > v(s∗). Since Q is upper-semicontinuous and {(sn, v(sn))}n is in the
graph of Q, y ∈ Q(s∗). Since v(s∗) ∈ Q̄(s∗) ⊂ Q(s∗), this means that y = v(s∗),
that is, v is regular at s∗. This completes the proof.

20While Reny uses a space of strategies and the equilibrium is in pure strategy in that space,
SZ work only with mixed strategy. One may think that this is a fundamental difference, but this
is not quite true. First, SZ’s idea can be adapted to work with pure strategies; see Araujo and
de Castro (2009). Second, the strategy space in Reny’s framework can already be the space of
mixed strategies.
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Therefore, as in the Reny’s method, regularity is implied by SZ’s assumptions.
Also as before, the converse is not necessarily true, since regularity is obviously
too weak to imply something about the upper-semicontinuity of Q.

Now consider SZ’s framework with payoff correspondence Q and consider
that each selection v of Q defines a game G = (Si, vi)i∈I as specified before. We
say that Q has an endogenous sharing rule equilibrium if there is a selection v of
Q such that G has an equilibrium. Then, the following is an immediate corollary
of Theorem 4.11.

Corollary 6.3 Assume that there is a selection v of Q such that G = (Si, vi)i∈I
is compact, space-approximated, regular and lower-semicontinuous. Then Q has
an endogenous sharing rule equilibrium.

Now we review SZ’s proof and show that it amounts, essentially, to verify
the assumptions of Corollary 6.3 and to prove Theorem 4.11, although in a dif-
ferent form. Their proof is divided into six steps: (1) finite approximation—
the game is approximated by finite games; (2) limits—the approximation games
are taken to their limits; (3) selections; (4) better responses; (5) perturbation;
(6) solution. The first step is the establishment of a sequence of approximat-
ing games Gn = (Sni , v

n
i )i∈I which have a (mixed strategies) Nash equilibrium

αn = (αn1 , ..., α
n
N).21 These games form a space-approximating sequence. Step

2 uses a kind of compactness property to show that a subsequence of these equi-
librium profiles converges to a mixed strategy profile α = (α1, ..., αN) and an
appropriate subsequence of payoff functions for the approximating games also
converges to a payoff function q. Step 3 shows that q corresponds to a sharing
rule, that is, a selection ofQ. Step 4 proves that the set of strategies that are strictly
better than the limit α is a zero-measure set. Since the strategies are mixed, this
amounts to prove that q is regular at α.22 Step 5 then modifies q by punishing
the players that play in the set of strictly better alternatives to α, by establishing
the lowest possible payoff at those points. Thus, this step constructs a perturbed
sharing rule q̃ which is lower-semicontinuous. Finally, step 6 is essentially the
argument used in the proof of Theorem 4.11, which directly leads to Corollary

21They use mixed strategies essentially for two reasons. The first one is just that the approxi-
mating games are finite. Second, this space of strategies is compact in its natural (weak) topology.

22The equilibrium α is also fixed in their proof, not only the sharing rule. This is perhaps the
more important difference between their result and Corollary 6.3, but this is not essential, since
the proof of Theorem 4.11 also works for a particular point.
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6.3. As we can see, the proof verifies the assumptions of Corollary 6.3 (for a fixed
equilibrium α): that q̃ is a selection of Q (step 3) that is space-approximated (step
1), compact (step 2), regular (step 4) and lower-semicontinuous (step 5).

Jackson, Simon, Swinkels, and Zame (2002) (JSSZ) extend SZ’s result for
games with incomplete information. For this, they require that players announce
their types, obtaining an augmented game similar to the one used by Lebrun
(1996). JSSZ’s proof is similar to SZ’s, consisting also of six steps, although
there are some subtle and difficult differences. It is natural to expect that Theorem
4.11 and Corollary 6.3 could be similarly extend to deal explicitly with games
of incomplete information, but since the adaptations were already made clear by
JSSZ and would require lengthy technical arguments, we refrain to undertake this
extension here.23

7 Relation with other methods
This section discusses relation with the more recent literature. For a more com-
prehensive review of the literature, see Carmona (2010a).24

In a recent paper, Carmona (2010b) generalizes the pure strategy equilibrium
existence results of Reny (1999) and Barelli and Soza (2009) for metric spaces.
First, he defines a game (Si, vi)i∈I to be better-reply closed relative to a function
u : S → RN if s∗ is an equilibrium whenever (s∗, u∗) ∈ cl(graph(v)) and u∗i >
ûi(s

∗
−i) for all i ∈ I . Maybe the weakest form of better-reply closeness occurs

when the game (Si, vi)i∈I is better-reply close relative to v itself. This is actually
equivalent to regularity, as the following lemma clarifies.

Lemma 7.1 A game is regular iff it is better-reply closed relative to itself.

Proof: Sufficiency: let u∗ ≡ limn v(sn), for some sequence sn → s∗, which
means that (s∗, u∗) ∈ cl(graph(v)). Since the game is better-reply closed relative
to itself, then “u∗i > v̂i(s

∗) for all i” implies that s∗ is equilibrium. This means
that regularity is satisfied.

23In some sense, Corollary 6.3 already deals with games of incomplete information if we see
the strategy spaces as function spaces from types to the original actions and the announced types.
The only difference is that the specific strategy space, the notions of convergence and the aspects
of allowing announcement of types are not explicitly considered in Corollary 6.3.

24I am extremely grateful to Guilherme Carmona for many comments relevant to this section,
including the proof of the “only if” (necessity) part of Lemma 7.1 .
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Necessity: let (s∗, u∗) ∈ cl(graph(v)) be such that u∗i > v̂i(x
∗
i ). Since

(s∗, u∗) ∈ cl(graph(v)), there is a sequence {sn} converging to s∗ such that
vi(s

n)→ u∗i for all i ∈ I . By regularity, s∗ is an equilibrium.

Therefore, one of the results in Carmona (2010b) implies our Corollary 4.3:
if G is compact, quasiconcave, regular and payoff secure, then G has a Nash
equilibrium.

Carmona (2010b) says that (Si, vi)i∈I is generalized payoff secure if for all
i ∈ I , ε > 0 and s ∈ S, there exists an open neighborhood Vs−i

of s−i and
a nonempty, closed, convex valued, upper or lower hemicontinuous correspon-
dence ϕi : Vs−i

⇒ Si such that vi(s′) > vi(s)− ε for all s′ ∈ graph(ϕi). A game
(Si, vi)i∈I is approximately payoff secure relative to u if, for all i ∈ I , ui 6 vi, ui
is quasiconcave and (Si, ui)i∈I is generalized payoff secure. As Carmona (2010b)
shows in his Lemma 2, if (Si, vi)i∈I is approximately payoff relative to v itself,
then v̂i is lower semi-continuous. Therefore, by the proof of our Lemma 4.6 this
property is sufficient for the existence of an approximating payoff sequence. (Inci-
dentally, weakly payoff secure is strictly weaker than generalized payoff secure.)
A close look at Carmona (2010b)’s proof suggests that the function-approximation
property is also implied by his assumptions, although such assumptions refer to a
function u, which makes the comparison not straightforward. On the other hand,
weakly reciprocal upper-semicontinuity (wrusc) implies regularity. This comes
from the proof of Theorem 5 in Carmona (2010b), which establishes that a game
is better-reply closed relative to itself (hence regular, by Lemma 7.1), if and only
if it is wrusc at s for all s that are not equilibrium.

Another relevant paper is that of Prokopovych (2010). It is possible to say
that the three papers (this one, Prokopovych (2010) and Carmona (2010b)) make
a similar point: that a condition akin to lower-semicontinuity (either payoff secu-
rity or approximation of the game) suffices to obtain a sequence of strategies that
are “almost-equilibria.” Then, an upper-semicontinuity property like weak recip-
rocal upper-semicontinuity or regularity implies that the limit of the sequence of
“almost-equilibria” is an equilibrium. Although similar, the approaches also have
some differences. In the other two papers, there is no approximation of the game,
rather one obtains directly a sequence of generalized approximate equilibria as a
consequence of payoff security. In contrast, in this paper, we consider directly the
approximation of the game in two forms: approximation of the payoff functions
and approximation of the space of strategies. We also emphasized one condition
(regularity) over the companion lower-semicontinuity-type conditions, because of
our primary purpose to establish a link between Reny’s and SZ’s methods. As
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it turns out, the lower-semicontinuity strategy in these two results are relatively
different, while regularity is common to both.

In another recent paper, Reny (2009) introduces a new condition, called lower
single-deviation property, and proves that it generalizes better-reply secure and it
is sufficient for equilibrium existence. This condition also implies regularity.

8 Conclusion
This paper offered a new assumption, regularity, which is both simple, easy to
verify and central to equilibrium existence. Many examples that fail to have equi-
librium, fail precisely because of the failure of satisfying regularity. However,
regularity is too weak for being sufficient for equilibrium existence. We provide
extra conditions under which one can ensure equilibrium existence.

As we have argued, regularity is a property implied both by better-reply se-
curity and by the SZ’s approach. Jackson and Swinkels (2005) have previously
noted the connection between the endogenous tie-breaking method and Reny’s
better-reply, but they left open the understanding what both methods have in com-
mon: “How these approaches turn out to be related and which might be more
efficient in other settings is an open question.” (p.121) This paper contributes to
clarify and understand the connection between these different methods.
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