
Analysis of interactive fixed
effects dynamic linear panel
regression with
measurement error

Nayoung Lee
Hyungsik Roger Moon
Martin Weidner

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP37/11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6673483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Analysis of Interactive Fixed Effects Dynamic

Linear Panel Regression with Measurement Error∗

Nayoung Lee†

CUHK

Hyungsik Roger Moon

USC & U of Maryland

Martin Weidner

UCL and CeMMAP

March 12, 2012

Abstract

This paper studies a simple dynamic linear panel regression model with interactive

fixed effects in which the variable of interest is measured with error. To estimate

the dynamic coefficient, we consider the least-squares minimum distance (LS-MD)

estimation method.
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1 Introduction

This paper studies a simple dynamic linear panel regression model with interactive fixed

effects in which the variable of interest, say Y ∗it , contains measurement error:

Y ∗it = α0Y
∗
it−1 + λ0

i f
0
t + εit, i = 1, ..., N, t = 1, ..., T, (1)

Yit = Y ∗it + ηit. (2)

∗We thank Badi Baltagi and an anonymous referee for helpful comments and suggestions. Moon thanks
the NSF for financial support.
†Lee (Corresponding Author): Department of Economics, Chinese University of Hong Kong; Shatin,

New Territories, Hong Kong; Email: nayoung.lee@cuhk.edu.hk; Telephone: (852) 3943-8004; Fax: (852)
2603-5805. Moon: Department of Economics, University of Maryland, Tydings Hall, Room 3105, College
Park, MD 20742; E-mail: moon@econ.umd.edu. Weidner: Department of Economics, University College
London, Gower St., London, WC1E 6BT, U.K.; E-mail: m.weidner@ucl.ac.uk.

1



Here Yit is the observed variable and ηit represents measurement error. The term λ0
i f

0
t

describes unobserved interactive fixed effects.1,2 The goal of the paper is to estimate α0

when both the number of individuals N and the number of time periods T are large.3

The dynamics of the observed variable Yit can be written as

Yit = α0Yit−1 + λ0
i f

0
t + Uit, (3)

where Uit = εit + ηit − α0ηit−1. There are two noticeable features in equations (1) and

(3) compared to the widely studied dynamic panel regression model. First, the individual

effects take an interactive form instead of the time invariant form. Secondly, the variable

of interest Y ∗it is not observed but measured with error. To our knowledge, combining these

two features in dynamic linear panel regression models has not been studied in the large

N,T panel literature.

We expect two hurdles in estimating α0. One is the presence of the interactive fixed

effects λ0
i f

0
t which might cause a so-called incidental parameter problem in both the cross

section and the time dimension. The second one is that the composite error Uit in the

observed variable equation (3) is correlated with the lagged dependent variable Yit−1 and

we may therefore need to use instrumental variables (IVs).

The main contribution of the paper is to find a valid estimation method that overcomes

these two problems. The proposed estimator is a nested two-step estimator based on least

squares minimization in the first step and distance minimization for some of the first step

parameter estimates in the second step4. Following Moon, Shum and Weidner (2012)

(hereafter MSW), we call this method the LS-MD estimation method. This approach was

used in estimating endogenous quantile regression models by Chernozhukov and Hansen

(2006, 2008) and in estimating the random coefficient logit demand model by MSW.

1In this paper, we consider a single factor, that is, the dimensions of ft and λi are equal to one. The
extension to the multiple factor case is straightforward, but omitted due to space limitation.

2When interpreting λ0
i as individual specific fixed effects, the term f0

t represents the (time-varying)
linear projection coefficient of Y ∗it on λ0

i (holding Y ∗it−1 constant). This allows the effect of the unobserved
individual characteristic λ0

i on Y ∗it to be time-varying. Alternatively, one can interpret f0
t as a common time

specific shock (a common factor) and λ0
i then describes reaction to the common shock (a factor loading).

3We consider large N,T approximations to characterize the bias due to the incidental parameters λ0
i f

0
t ,

see e.g. Bai (2009) and Hahn and Kuersteiner (2004).
4An alternative approach would be to use the common correlated effect methods suggested by Harding

and Lamarche (2011). Both approaches have their own merits and weaknesses. Comparing these different
methods is not our interest in this paper.
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2 LS-MD Estimation

The properties of the quasi-maximum likelihood estimator (QMLE), which minimizes the

sum of squared residuals, for largeN , T linear panel regressions with interactive fixed effects

were discussed in Bai (2009), and Moon and Weidner (2010). However, this estimation

method cannot be used to estimate model (3) since the regressor Yit−1 is endogenous

w.r.t. the error Uit through the lagged measurement error ηit−1. In this case, we may

use instrumental variables. Since Uit has an MA(1) type serial dependence structure, we

have E (UitYit−1−s) = 0 for all s ≥ 1. This suggests to choose Zit = (Z1,it, ..., ZL,it)
′ =

(Yit−2, ..., Yit−1−L)′ for the IVs of the endogenous regressor Yit−1. The question, then, is

how to use the instrumental variables Zit to estimate α0 in the presences of interactive

fixed effects λ0
i f

0
t when both N and T are large.

The estimation method we consider in this paper is a two-step least-squares minimum

distance (LS-MD) estimation. This was recently proposed by MSW for estimating the BLP

demand model. A similar multi-step estimation idea was also used in Chernozhukov and

Hansen (2006, 2008) in estimating endogenous quantile regressions with IVs.

The LS-MD estimation consists of the following two steps: Step 1: For given α, we

solve the least squares problem augmented by the instrumental variables Zit, that is, we

run the OLS regression of Yit − αYit−1 on Zit with interactive fixed effects λift and solve

(
γ̂ (α) , λ̂ (α) , f̂ (α)

)
= arg min

(γ,λ,f)

N∑
i=1

T∑
t=1

(
Yit − αYit−1 − γ′Zit − λift

)2
,

where γ = (γ1, ..., γL)′, λ = (λ1, ..., λN )′ and f = (f1, ..., fT )′ . Step 2: For some positive

definite weight matrix W γ
NT , we estimate α by minimizing the length of γ̂ (α) as

α̂ = arg min
α
γ̂ (α)′W γ

NT γ̂ (α) .

The idea of the LS-MD method is that since Zit is excluded in the regression equation (3)

the coefficient of Zit should be zero when α = α0. When there is no interactive fixed effect

one can show that the LS-MD estimator is equivalent to the conventional 2SLS estimator

for an appropriate weight matrix W γ
NT .
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3 Asymptotic Results

Assumption 3.1 (i) The unobserved error terms {εit} ∼ iid
(
0, σ2

ε

)
and {ηit} ∼ iid

(
0, σ2

η

)
across i and over t and E |εit|κ , E |ηit|κ < ∞ for some κ > 8. Also, {εit} and {ηit} are

independent. (ii) Assume that f0
t are strictly stationary and ergodic with supt |ft| <∞ and

1
T

∑T
t=1(f0

t )2 →p Σf > 0, and λi are iid with supi |λi| < ∞ and 1
N

∑N
i=1(λ0

i )
2 →p Σλ > 0.

Also assume that
{
f0
t

}
,
{
λ0
i

}
, {εit} , {ηit} are independent. (iii) W γ

NT →p W
γ > 0. (vi)

|α0| < 1 and α0 6= 0.

The iid assumptions of εit and ηit are made for simplicity of the analysis. Later, an

extension to a non-iid case will be discussed. Assumption 3.1(i) also assumes that the

measurement error ηit is classical in the sense that ηit has zero mean and is uncorrelated

with Y ∗it . Later we discuss how to extend our method to some special cases of non-classical

measurement error. Assumption 3.1(ii) assumes that the factors are strong, which is stan-

dard in the factor analysis literature. Assumption 3.1(vi) assumes that α0 6= 0, otherwise

the IVs become irrelevant.

Before we present the next assumption, we introduce some further notation. We use

[ait]it to denote an N × T matrix with elements ait. For a full column rank matrix A,

let PA = A (A′A)−1A′ and MA = I − PA. We use notation Y = [Yit]it , Y−k = [Yit−k]it ,

Z = [Zit]it , U = [Uit]it , ε = [εit]it , η = [ηit]it , and η−1 = [ηit−1]it . Define λ0 =
(
λ0

1, ..., λ
0
N

)′
and f0 =

(
f0

1 , ..., f
0
T

)′
. We also define the NT -vectors y−1 = vec (Y−1) and z = vec (Z) .

Assumption 3.2 Assume that there exists a positive constant c > 0 such that 1
NT y

′
−1Pzy−1−

maxλ
1
NT y

′
−1PIT⊗λ̃y−1 > c with probability approaching one as N,T → ∞, where λ̃ =(

λ0, λ
)
.

Assumption 3.2 is a relevance condition on the instruments. It demands that the

explanatory power of the instruments Zit for the endogenous regressor Yit−1, given by
1
NT y

′
−1Pzy−1, is larger than the joint explanatory power for Yit−1 of the true factor load-

ing λ0 together with any other factor loading λ, given by 1
NT y

′
−1PIT⊗λ̃y−1. If there are

no interactive fixed effects included in the model, then the assumption simplifies to the

standard relevance condition 1
NT y

′
−1Pzy−1 > 0, which is satisfied for α0 6= 0.

Suppose that Assumption 3.1 holds, and consider the special case where f0
t has mean
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zero and is distributed independently over t. Then, Assumption 3.2 is equivalent to5

α2
0 >

1 + σ2
ε

ΣλΣf
+

σ2
η

ΣλΣf(
1 + σ2

ε
ΣλΣf

)2
+

σ2
η

ΣλΣf

. (4)

Thus, by imposing an appropriate lower bound on |α0|, one can guarantee that the lagged

values of Yit are sufficiently relevant instruments. The conclusion that an appropriate lower

bound on |α0| is sufficient for the relevance assumption Assumption 3.2 can be extended

to cases where f0
t is correlated across t, but in general it is not possible to give such a

convenient analytic expression as in (4) for the lower bound.6 Note that the lower bound

in (4) goes to zero when ΣλΣf becomes small relative to σ2
ε , i.e., the bound is not restrictive

when the relative influence of the factors on Yit is small.

Theorem 3.1 Under Assumption 3.1 and 3.2 we have α̂→p α0 as N,T →∞.7,8

To present the limiting distribution of α̂, we need to introduce some further notation.

Define theNT -vectors yλf−1 and zλfl by yλf−1 = vec
(
Mλ0Y−1Mf0

)
, and zλfl = vec

(
Mλ0ZlMf0

)
,

where l = 1, ..., L. Let u = vec (U) and zλf =
(
zλf1 , ..., zλfL

)
.

Define G = plimN,T→∞
1
NT y

λf ′
−1 z

λf = σ2
ε

1−α2
0

(
α0, α

2
0, ..., α

L
0

)′
, and

W = plim
N,T→∞

(
1

NT
zλf ′zλf

)−1

W γ
NT

(
1

NT
zλf ′zλf

)−1

=


σ2
ε

1− α2
0


1 · · · αL−1

0
...

. . .
...

αL−1
0 · · · 1

+ σ2
ηIL

W γ


σ2
ε

1− α2
0


1 · · · αL−1

0
...

. . .
...

αL−1
0 · · · 1

+ σ2
ηIL

 .

5For the proof of this, we refer to the supplementary appendix which is available at
http://www.cemmap.ac.uk/publications.php.

6A non-zero mean of f0
t can result in situations where Assumption 3.2 is not satisfied for any value

of α0. The assumption that f0
t is mean zero would not be restrictive if we would include a conventional

individual specific fixed effect in the model, in addition to the interactive fixed effect — or equivalently
(from an asymptotic perspective), one can demean Yit separately for each i before estimating the model
with only interactive effects.

7The proof is omitted due to space limitation. It is a special case of MSW where their δ (α) = Y −αY−1

and the conditions in Assumptions 3.1 and 3.2 are sufficient for the consistency conditions in MSW (see
the supplementary appendix available at http://www.cemmap.ac.uk/publications.php.)

8Note that Assumption 3.2 is a sufficient condition for the relevance of the instruments, but nothing is
known about the necessity of this assumption. The LS-MD estimator may also give consistent parameter
estimates in some situations where the assumption is violated.
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Notice that under Assumption 3.1, the limits G and W are well defined. Also, notice that

under Assumption 3.1, we have GWG′ > 0.

Define

c(2) =
[
C(2) (Zl, U)

]
l=1,...,L

,

where

C(2) (Zl, U)

= − 1√
NT

[
tr
(
UMf0U

′Mλ0Zlf
0
(
f0′f0

)−1 (
λ0′λ0

)−1
λ0′
)

+ tr
(
U ′Mλ0UMf0Z

′
lλ

0
(
λ0′λ0

)−1 (
f0′f0

)−1
f0′
)

+ tr
(
U ′Mλ0ZlMf0U

′λ0
(
λ0′λ0

)−1 (
f0′f0

)−1
f0′
)]
.

MSW showed that under Assumption 3.1, as N,T →∞ with N
T → κ2, where 0 < κ <∞,

we can approximate

√
NT (α̂− α0) =

(
GWG′

)−1
GW

[
1√
NT

(
zλf
)′
u+ c(2)

]
+ op (1) . (5)

Notice that as N,T →∞ with N
T → κ2, where 0 < κ <∞, under Assumptions 3.1 we can

show that
1√
NT

(
zλf
)′
u+ c(2) ⇒ N (−κb,Ω) , (6)

where b = (b1, ..., bL)′, and

bl = plim
N,T→∞

1

N
tr
[
Pf0

[
E
(
ε′ε̃−l−1

)
+ E

(
(η − α0η−1)′ η−l−1

)]]
+ plim
N,T→∞

1

N
tr
[
E(U ′U)Mf0 f̃

0
−l−1 (f0′f0)−1 f0′

]
,

ε̃−l = [ε̃it−l]it , ε̃it−l =

∞∑
s=0

αs0εit−l−s, f̃0
−l−1 =

[ ∞∑
s=0

αs0ft−1−l−s

]
t

,

Ω =
(
σ2
ε + (1− α0)2 σ2

η

)
σ2
ε

1− α2
0


1 · · · αL−1

0
...

. . .
...

αL−1
0 · · · 1

+ σ2
ηIL

 .

Combining (5) and (6) , we have the following theorem.
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Theorem 3.2 Suppose that Assumptions 3.1 hold. As N,T → ∞ with N
T → κ2 and

0 < κ <∞, we have

√
NT (α̂− α0)⇒ N

(
−κ
(
GWG′

)−1
GWb,

(
GWG′

)−1
GWΩWG′

(
GWG′

)−1
)
.

Notice that the bias b in the limit distribution is due to the incidental parameters

λ0
i f

0
t and the lagged dependent variables as IVs, which is similar to the bias in Moon and

Weidner (2010). This bias can be consistently estimated and is correctable, for details we

refer to Moon and Weidner (2010) and Moon, Shum, and Weidner (2011).

4 Monte Carlo Simulations

In this section we investigate the finite sample properties of the LS-MD estimator α̂ through

small scale Monte Carlo simulations. The data generating process is

Y ∗it = α0Y
∗
it−1 + λ0

i f
0
t + εit,

Yit = Y ∗it + ηit,

where α0 ∈ {0.2, 0.5, 0.8} , {λi} , {ft} , {ηit} ∼ iid N (0, 0.4) and {εit} ∼ iid N (0, 1) .

We consider various combinations of N ∈ {20, 50, 100} and T ∈ {20, 50, 100} . We use

Zit = Yit−2 as an instrument. Notice that α0 = 0.2 violates the sufficient identification (4).

Table 1. Monte Carlo Simulation Results

α0= 0.2 α0= 0.5 α0= 0.8

N,T bias s.d. rmse bias s.d. rmse bias s.d. rmse

20,20 -0.173 0.694 0.715 -0.052 0.171 0.179 -0.030 0.090 0.095

20,50 -0.061 0.292 0.299 -0.004 0.077 0.077 -0.005 0.031 0.032

20,100 -0.005 0.168 0.168 -0.0004 0.055 0.055 -0.001 0.021 0.021

50,20 -0.129 0.440 0.458 -0.022 0.098 0.100 -0.015 0.061 0.063

50,50 -0.012 0.158 0.158 -0.003 0.048 0.048 -0.001 0.020 0.020

50,100 -0.007 0.102 0.102 -0.001 0.033 0.033 -0.0005 0.013 0.013

100,20 -0.092 0.303 0.316 -0.014 0.068 0.069 -0.014 0.057 0.059

100,50 -0.008 0.105 0.105 -0.003 0.034 0.034 -0.001 0.014 0.014

100,100 0.001 0.067 0.067 -0.0001 0.023 0.023 -0.0003 0.009 0.009
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The finite sample properties of α̂, obtained in simulations with 1000 repetitions, are re-

ported in Table 1. Except for the case of α0 = 0.2 with small samples, the LS-MD estimator

α̂ performs well in finite samples.9 When α0 = 0.2, the finite sample properties improve

as either N and T increases.

5 Discussions

Choice of Instrumental Variables: It is well known in the GMM literature that the

choice of moment conditions — the choice of the lag length (L) in our setup — is one

of the important factors that affect the finite sample properties of the GMM estimator.

Various moment condition selection procedures have been proposed in the literature. These

include, for example, the minimization of the (higher order) approximated mean squared

error (e.g., Donald and Newey (2001), Okui (2009), and Kuersteiner (2010)) or of the

asymptotic coverage error (e.g., Okui (2009)). However, it is not straightforward to apply

these procedures to the LS-MD estimator. First, the LS-MD estimator has a bias even

in the first order approximation. Secondly, the key approximation techniques used in the

literature (e.g., Nagar’s expansion and the Edgeworth expansion) are not available in the

exiting literature for the LS-MD estimator. Developing a procedure for selection of L is

therefore beyond the scope of this paper.

Extensions: Our LS-MD estimation can be used for more sophisticated cases. We briefly

discuss how to extend our simple model.

1. Inclusion of covariates: The LS-MD estimation procedure can be easily extended

to include a model with other exogenous regressors, say Xit. For example, in the first

step one can regress Yit − αYit−1 on Xit, Zit with interactive fixed effects λift for

fixed α. In the second step, minimize γ̂ (α)′W γ
NT γ̂ (α) w.r.t. α.

2. Heteroskedastic error: Until now, we assume that the errors εit and ηit are

homoskedastic for simplicity. If the errors are heteroskedastic, then the term c(2)

contributes additional bias terms to the limit distribution of α̂. These biases are

correctable (see e.g. Bai, 2009, and Moon and Weidner, 2010).

9We also investigated the finite sample properties of the bias corrected estimator and found that ana-
lytical bias correction simultaneously reduces the bias and the standard deviation of the estimator, except
when both α0 and T are small. We omit the detailed results due to space limitation, and since the biases in
Table 1 without bias correction are already quite small relative to the corresponding standard deviations.
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3. Non-classical measurement error: Measurement error so far is assumed to be

classical. In many applications, however, measurement error can be correlated with

the unobserved latent variable and the covariates. Our estimation method is still

valid under more general measurement error models. For example, suppose that

people tend to report income Yit proportionally to Y ∗it as

Yit = γ0i + γ1itY
∗
it + vit, (7)

where vit is an unobserved error. Note that the measurement error in model (7) is

non-classical since the measurement error, ηit = Yit − Y ∗it , could be correlated with

Y ∗it and the mean of the measurement error is not necessarily zero.10 Model (7) is a

modified version of a linear measurement error model that allows for a heterogeneous

relationship between Yit and Y ∗it across cross-section and over time.11 When the

coefficient γ1it is random satisfying γ1it = γ1 + wit, where {wit} and {vit} are iid

across i and over t with zero mean, and {wit} , {vit} , {εit} are independent of each

other, then we have the following dynamic equation with two factors (or one factor

and a time invariant fixed effect) as

Yit = αYit−1 + δ′iht + Uit,

where δi = (γ1λi, (1− α) γ0i, )
′ , ht = (ft, 1)′ and

Uit = γ1εit + vit − αvit−1 + Y ∗itwit − αY ∗it−1wit−1. (9)

Note that the composite error Uit in (9) has serial dependence structure similar to

an MA (1) process, and in this case Zit = (Z1,it, ..., ZL,it)
′ = (Yit−2, ..., Yit−1−L)′ still

remains uncorrelated with Uit.

10A special case of model (7) is γ0it = 0 and γ1it = 1, in which case vit is classical.
11Bollinger and Chandra (2005) and Kim and Solon (2005) developed a model allowing for a constant

linear relationship between Yit and Y ∗it , based on the evidence in surveyed income; i.e., those who earn
higher than average tend to report their earning less, while those who earn lower than average tend to
report higher. See also Bound, Brown and Mathiowetz (2001).
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6 Supplementary Appendix (Not for Publication)

6.1 Proof of Consistency

We show that Assumptions 3.1 and 3.2 in the current model are sufficient for Assumption 1

of Moon, Shum, and Weidner (2012) (MSW hereafter) with δ (α) in MSW replaced by

Y − αY−1, and Xk in MSW replaced by 0.

Notation: When A is a matrix, ‖A‖2 denotes the largest eigenvalue of A′A and ‖A‖2F
denotes the trace of A′A.

• Assumption 1(i) holds since uniformly in α outside of any neighborhood of α0 we

have

‖δ (α)− δ (α0)‖F
‖α− α0‖

= ‖Y−1‖F =

√√√√ N∑
i=1

T∑
t=1

Y 2
it−1 = Op

(√
NT

)
.

Also, it follows that

‖Zl‖F =

√√√√ N∑
i=1

T∑
t=1

Y 2
it−1−l = Op

(√
NT

)
.

• Assumption 1(ii) is satisfied because ‖U‖ = ‖ε+ η − α0η−1‖ ≤ ‖ε‖+‖η‖+|α0| ‖η−1‖ =

Op

(√
max (J, T )

)
because {εit} , {ηit} ∼ iid with mean zero and finite moments

higher than 4 (See Moon and Weidner (2010)).

• Assumption 1(iii)

1

NT

N∑
i=1

T∑
t=1

Yit−1−lUit = op (1)

follows for l ≥ 1 since E (Yit−1−lUit) = 0 if l ≥ 1.

• Assumption 1(iv) follows since any (nontrivial) linear combinations of Z ′ls have rank

higher than two under Assumption 3.1.

• Assumption 1(v) holds by Assumption 3.2 with ∆ξα,β = − (α− α0) y−1.

• Assumption 1(vi) holds by Assumption 3.1 (iii).
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6.2 Asymptotic Normality

• Assumptions 2 and 3 in MSW follow immediately under Assumption 3.1.

• Assumptions 4(i),(ii) and 5 in MSW follow since in this paper δ (α) = Y − αY−1 is

linear in α and by the conditions in Assumption 3.1.

• Assumption 4(iv) of MSW is satisfied with

Zstr
l,it = λi

∞∑
s=0

αs0ft−1−l−s

Zweak
l,it =

∞∑
s=0

αs0εit−1−l−s + ηit−1−l.

• Notice that the conditions in Assumption 4(iii) of MSW are satisfied except for that

Uit is an MA(1) type error over time, that is, Uit and Uit−1 are dependent, while Uit

and Uit−s are independent for s ≥ 2. Because of this, we need to modify the proof of

Theorem 5.2 of MSW and in what follows we give a sketch.

• Step 1: First we show that

√
N (α̂− α0) = Op (1) .

• Step 2: Using the asymptotic likelihood exansion derived in Moon and Weidner

(2010), we can approximate
√
NTγ̂ (α) as a linear function of

√
NT (α− α0) ;

√
NTγ̂ (α) =

(
1

NT
zλf ′zλf

)−1 [ 1√
NT

zλf ′u+ c(2) − zλf ′yλf−1

√
NT (α− α0)

]
+ op (1)

where op (1) holds uniformly in α with
√
N |α− α0| < c for all c.

• Step 3: We then approximate the second step objective function as a quadratic

function of
√
NT (α− α0) by plugging the linear approximation of

√
NTγ̂ (α) . Then,
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we deduce that

√
NT (α̂− α0)

=

[(
1

NT
yλf ′−1 z

λf

)(
1

NT
zλf ′zλf

)−1

W γ
NT

(
1

NT
zλf ′zλf

)−1( 1

NT
zλf ′yλf−1

)]−1

×
(

1

NT
yλf ′−1 z

λf

)(
1

NT
zλf ′zλf

)−1

W γ
NT

(
1

NT
zλf ′zλf

)−1 [ 1√
NT

zλf ′u+ c(2)

]
+ op (1)

=
(
GWG′

)−1
GW

(
1√
NT

zλf ′u+ c(2)

)
+ op (1) ,

as required for (5) . (Notice that Steps 1,2,3 are not affected by the MA(1) type

dependence of Uit.)

• Step 4: By definition

1√
NT

zλf ′u =


1√
NT

tr
(
Mf0U

′Mλ0Z1

)
...

1√
NT

tr
(
Mf0U

′Mλ0ZL
)
 =


1√
NT

tr
(
Mf0U

′Mλ0Z
weak
1

)
...

1√
NT

tr
(
Mf0U

′Mλ0Z
weak
L

)


=
1√
NT

T∑
i=1

T∑
t=1

UitZ
weak
it −

[
1√
NT

tr
(
Pf0E

(
U ′Zweak

l

))]
l=1,...,L

−
[

1√
NT

tr
(
Pf0

(
U ′Zweak

l − E
(
U ′Zweak

l

)))]
l=1,...L

+

[
1√
NT

tr
(
U ′Pλ0Zweak

l

)]
l=1,...,L

+

[
1√
NT

tr
(
Pf0U ′Pλ0Zweak

l

)]
l=1,...,L

= I + II + III + IV + V, say.

Then, by the CLT (e.g., Moon and Phillips (1999)) we have

1√
NT

T∑
i=1

T∑
t=1

UitZ
weak
it ⇒ N (0,Ω) ,

14



where

Ω = E

(
U2
it

(
Zweak
it

)(
Zweak
it

)′)
+ E

(
UitUit−1

(
Zweak
it

)(
Zweak
it−1

)′)
+ E

(
UitUit+1

(
Zweak
it

)(
Zweak
it+1

)′)
.

A direct calculation shows that

E

(
U2
it

(
Zweak
it

)(
Zweak
it

)′)
= E

(
U2
it

)
E

[(
Zweak
it

)(
Zweak
it

)′]

=
(
σ2
ε +

(
1 + α2

0

)
σ2
η

)
σ2
ε

1− α2
0


1 · · · αL−1

0
...

. . .
...

αL−1
0 · · · 1

+ σ2
ηIL


and

E

(
UitUit−1

(
Zweak
it

)(
Zweak
it−1

)′)
+ E

(
UitUit+1

(
Zweak
it

)(
Zweak
it+1

)′)

= −2α0σ
2
η


σ2
ε

1− α2
0


1 · · · αL−1

0
...

. . .
...

αL−1
0 · · · 1

+ σ2
ηIL

 ,

which leads

Ω =
(
σ2
ε + (1− α0)2 σ2

η

)
σ2
ε

1− α2
0


1 · · · αL−1

0
...

. . .
...

αL−1
0 · · · 1

+ σ2
ηIL


Also, a direct calculation shows that

− plim
N,T→∞

1√
NT

tr
(
Pf0E

(
U ′Zweak

l

))
= −κ plim

N,T→∞

1

N
tr
[
Pf0

[
E
(
ε′ε̃−l−1

)
+ E

(
(η − α0η−1)′ η−l−1

)]]
.
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By modifying Lemma C.2 (f), (j), and (m) in Moon and Weidner (2010), we can

show that

III, IV, V = op (1) .

• Step 5: By modifying Lemma C.2 (c), (d), (e), (g), (h), (i), (k), and (l) in Moon and

Weidner (2010), we can show that

plim
N,T→∞

c(2) = −κ

[
plim

N,T→∞

1

N
tr
[
E(U ′U)Mf0 f̃

0
−l−1 (f0′f0)−1 f0′

]]
l=1,...,L

.

• Step 6: Combining the limits in Steps 4 and 5 yields the desired result in (6) .

6.3 Sufficient Conditions for Assumption 3.2

In matrix notation we can write (3) as

Y = α0Y−1 + λ0f0′ + U.

By recursively applying the model we find

Y = λ0F 0′ + E + Y init,

where F is the T × 1 vector with entries Ft =
∑t−1

τ=0 α
τ
0f

0
t−τ , and E and Y init are the

T ×N matrices with entries Eit = ηit+
∑t−1

τ=0 α
τ
0εt−τ , and Y init

it = αt0Yi0. We denote lagged

versions of F 0 and E by F 0
−1 and E−1, etc.

In the following we assume L = 1. In that case Assumption 3.2 is satisfied if(
plimN,T→∞

1
NT y

′
−1z
)2

plimN,T→∞
1
NT z

′z
− plim
N,T→∞

(
max
λ

1

NT
y′−1PIT⊗λ̃y−1

)
> 0, (10)
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where λ̃ =
(
λ0, λ

)
. If ft is mean zero and independent across t we have

1

NT
y′−1z =

1

NT
tr(Y−1Y−2)

=
1

NT
tr(E−1E−2) +

1

NT
‖λ‖2(F ′−1F−2) + op(1)

=
α0

1− α2
0

(
σ2
ε + ΣλΣf

)
+ op(1),

1

NT
z′z =

1

NT
tr(Y−1Y−1)

=
1

1− α2
0

(
σ2
ε + ΣλΣf

)
+ σ2

η + op(1),

and

max
λ

1

NT
y′−1PIT⊗λ̃y−1 = max

λ

1

NT
tr(Y ′−1Pλ̃Y−1)

= max
λ

1

NT
tr(F−1λ

′Pλ̃λF
′
−1) + op(1)

=
1

NT
‖λ‖2‖F−1‖2 + op(1)

=
1

1− α2
0

ΣλΣf + op(1).

Plugging these results into condition (10) yields condition (4).
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