
Revista Informatica Economică nr.2(46)/2008

80

Secure Electronic Cards in Public Services

Cristian TOMA, Marius POPA, Cătălin BOJA
Department of Economic Informatics, Academy of Economic Studies, Bucharest
Miruna VASILACHE Department of IT R&D Oxygen Vision, Bucharest cris-
tian.toma@ie.ase.ro, marius.popa@ase.ro, catalin.boja@ie.ase.ro, mirunavasi-

lache@gmail.com

The paper presents the electronic wallet solution implemented within a GSM SIM
technology for accessing public services. The solution is implemented in the medical field to
provide information on the patient’s medical history and payment for private medical services.
The security issue is a very important one as the patient’s history is confidential and the pay-
ment has to be safe.
Keywords: public services, mobile, security, m-application, smart card.

Introduction
The chapter presents concepts that used

in the designed solution for the electronic
card (wallet) used in medical services. The
main issue is to design and implement a solu-
tion which helps the hospitals to manage the
patient’s history information and can help in-
surance companies to do the billing with
hospitals’ systems. The paper presents a dif-
ferent solution as the ones existing in the
market (in Germany the most known is KVK
– Deutsch Krankenversichertenkarte). The
medical electronic wallet is a Java card ap-
plication (called also cardlet) which is run-
ning within the mobile SIM. The cardlet
communicates with the “external world” via
a Java midlet. The GSM – Global System for
Mobile Communication includes many tech-
nologies for voice and data transmission. For
GSM there are few distinctive types of appli-
cations: Pull typical applications (Web); Push
typical applications (SMS/MMS); SIM Tool-
kit – Subscriber Identity Module Toolkit ap-
plications that are running in the SIM Smart
Card using native code or Java Card technol-
ogy [3], [4], [5], [6]; Native applications
(which are running on the top of operating
system of the mobile device); Applications
written in Java Micro-Edition or in C#
for .NET Compact Framework (that are run-
ning in proper virtual machines on the mobile
device); and Hybrid Applications. Hybrid
Applications provide complex services such
as SIM Sentry for Multimedia Mobile Con-
tent Digital Rights Management, Midlets

with Java Smart Card technology solution for
mobile banking or electronic purses, Web
WAP applications for mobile streaming over
RTP and RTSP in GSM networks [3], [4], [5],
[6], [7], [8].
In this paper we focus on hybrid applications
because the electronic wallet for the medical
services is a cardlet that is running in mobile
SIM and it communicates via a midlet appli-
cation with a desktop application using Blu-
etooth or WiFi technology. The desktop ap-
plication accesses information from distri-
buted databases using web services over se-
cure communication protocols such as SSL.
The main concept used in GSM for end-user
device, the mobile is a two in one computer.
The first computer is represented by the SIM
– Subscriber Identity Module. Actually, the
SIM is a smart card with a microcontroller,
three types of memory area (ROM, EE-
PROM and RAM) and I/O ports for outside
communication (usually in half duplex mode).
The mobile device itself is the second com-
puter. It also includes a microprocessor, dif-
ferent types of memory areas and an operat-
ing system.
The electronic wallet that is running in GSM
mobile SIM is a Java card application.

2. Java Card Technology used for medical
electronic wallet
A Java card application is an applet which is
running in smart card. But often the applet
needs to interact with different systems and
applications. That’s why in specialty litera-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6673218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Revista Informatica Economică nr.2(46)/2008 81

ture a complete application for Java smart
card is composed from the java applet which
is running on smart card, a host application
and back-end application systems which pro-
vide to the end-user a service.
With SATSA, a Java midlet can access a Ja-
va Card application using either Message-
Passing Model or JCRMI model. Our Java
application, which is run by the mobile Java
Micro-edition virtual machine (which is ma-
naged by the mobile device operating sys-
tem), communicates with our electronic wal-
let, which is run by the SIM Java Virtual
Machine (which is managed by the SIM-
smart card operating system), using JSR 177
over Message-Passing model. The communi-
cation between host application (mobile Java
midlet) and the applets (Java smart card ap-
plication) from smart card suppose to trans-
mit some APDU – Application Protocol Data
Unit from host to CAD – Card Acceptance
Device, and then the same bytes strings are
sent from the CAD to the card applet. The
card applet (has nothing to do with Java ap-
plets which are run by Internet browsers)
receives those bytes strings, it is parsing the
bytes and then will send back following the
reverse path: Applet-CAD-Host (see Figure
2). An APDU is composed from standard
bytes blocks conform ISO/IEC 7816-3 and
7816-4. Respecting the standards the applet
receives directly from CAD, APDU Com-
mands and sends back to CAD, APDU Res-
ponses. The communication between the card
reader and the card is physically realized
through data link protocol. This protocol is
likely data link level protocol from protocol
stack ISO/OSI. The link protocol, defined in
ISO/IEC7816-4, has four alternatives: T=0 –
byte oriented, T=1 – bytes arrays oriented,
T=USB – oriented Universal Serial Bus or
T=RF – radio wave oriented, Radio Frequen-
cies. The classes from Java Card API and
JCRE specifications embed the physical de-
tails for APDU communication protocol.
The general template for an ADPU Com-
mand is depicted in figure 2.
There are other four specific structures for an
APDU Command, but these structures are
used only in data link protocol T=0.

APDU Command
CLA INS P1 P2 Lc Data Field Le

Header-mandatory Body-optional
Fig.2. General structure for an APDU Com-

mand.

The explication for the fields from the APDU
command is the following:
 CLA – is one byte – 2 hexadecimal digits,

and has different predefined values conform
standard ISO7816. For instance, between the
value 0x00 and 0x19 are values for accessing
file system and security operations, from
0x20 to 0x7F are reserved for future using,
and from 0x80 to 0x99 can be used for ap-
plets’ specific instructions implemented by
developers but between 0xB0 and 0xCF are
specific instructions for all applets and not
for a particular one. As matter of fact the
most used value for this field is 0x80. We use
0x88.
 INS – is one byte, and the standard defines

a specific instruction in the field CLA. For
instance, when CLA has the value between
0x00 and 0x09, but INS has the value 0xDC
– means card’s records update. In personal
applications which are installed on the card,
the field INS could have predefined values
established by developers but according with
the standard. For example, the developer
chooses for this field the value 0x20 for
checking sold amount from card if and only
if the CLA field is 0x80;
 P1 – this represents the first parameter for

an instruction and it has one byte. This field
is used when the developers want to send
some parameters to the applet or want to
qualify the INS field;
 P2 – this is the second parameter for an in-

struction and it has one byte. It is used for the
same goal like P1;
 Lc – has one byte, it is optional and

represents the bytes length for the field Data
Field;
 Data Field – is not fixed and has a bytes’

length equal with the value from the field’s
value Lc. In this field data and parameters are
stored and they are sent from host application
to applet;
 Le – stores the maxim number of bytes that

should have Data Field from APDU Re-

Revista Informatica Economică nr.2(46)/2008

82

sponse (the number of bytes from response
could be any value from the range 0 and the
value from this field).
Practically a host application sends to the
CAD but the CAD sends to the applet the
same APDU commands with structures and
values which respect the standards.
The structure for an APDU Response is sim-
ple and is depicted in the figure 3:

APDU Response
Data Field SW1 SW2

Body-optional Trailer-mandatory
Fig.3. Structure for an APDU Response.

The fields’ explication for APDU Response
is the following:
 Data Field – has variable length which is

determined by the value of the byte field Le
from the APDU Command;
 SW1 – has one byte and represent the sta-

tus word 1;
 SW2 – has one byte and represent the sta-

tus word 2.
The fields SW1 and SW2 are parsed and in-
terpreted together, but a communication
process is called complete if there were no
problems (SW1=0x61 and SW2=0x90 or
any-0xnn) or if there were only warnings
(SW1=0x62 or SW1=0x63 and SW2 contain
the warning code). A communication process
is called failed if there were execution errors
(SW1=0x64 or SW1=0x65 and SW2 have
the error code for execution) or checking er-
rors (SW1=from 0x67 to 0x6F and SW2
have the code for checking error).
A typical code of a Java midlet that commu-
nicates with the cardlet is in table 1:

Table 1. A Java midlet JSR177 code
...
try {
// Create an APDUConnection
String url =
"apdu:0;AID=A1.0.0.67.4.7.2F.3.2C.3";
byte[] commandAPDU = new
byte[]{(byte)0x88, (byte)0x20, …};
//debit command

APDUConnection ac = (APDUConnec-
tion)Connector.open(url);

//Send a APDU command and receive a

APDU
//response
byte[] responseAPDU =
ac.exchangeAPDU(commandAPDU);
...
// Close connection.
ac.close();
} catch(IOException e){
 ...
}
...

The midlet creates a JSR177 connection with
the cardlet. The connection properties are en-
capsulated by the ac object. The APDU
command is sent from the midlet to the card-
let using the method exchangeAPDU() of
object ac. The life cycle of JCVM and of a
Java Card applet should be understood by
anyone involved in Java smart card field. The
life duration of JCVM is the same with that
of the card. If the power supply of the card
stops, the entire content of JCVM is saved in
the persistent memory, non-volatile. Every-
thing in the internal memory-RAM-volatile
of the card at the moment of the interruption
of power is lost. Moreover, the objects
created in the Java Card platform are non-
volatile, and if it is sometime intended that an
octet string should be in the volatile memory
because, for instance, it holds only temporary
data, we should use the method makeTran-
sientByteArray() of the class java-
card.framework.JCSystem.
The methods by which the applet life cycle is
realized and that the applet should implement
are presented in figure 4:

Applet Java Card

JCRE
Card operating system

1. install()
2. register()

3. select()
4. process()

5. deselect()

Fig.4. Methods to be implemented by an app-

let to execute the complete life cycle

Each applet is uniquely identified by an octet
string – between 5 and 16, as defined in
ISO7816-5. The octet string is named AID –

Revista Informatica Economică nr.2(46)/2008 83

Application ID in the standard. As well, each
applet should extend the abstract Applet class
and implement the methods – install(), regis-
ter(), select(), process(), deselect(), that
represent the applet life cycle. The applet life
cycle starts immediately after it is down-
loaded into the card and JCRE forces the ex-
ecution of the static method Applet.install()
and at its turn the applet is registered in
JCRE by calling the static method App-
let.register(). After the applet is installed and
registered, it exists on the card as „not se-
lected”, the equivalent denomination being
inactive applet. An applet is activated to
process APDU Commands only after the host
type application sends to JCRE by CAD an
APDU command of type SELECT or MAN-
AGE CHANNEL. JCRE complies and noti-
fies the concerned applet by forcing the ex-
ecution of select() method which the applet
implements. After the selection is done, all
the APDU commands received from the host
type application by CAD of JCRE are sent to
the applet by forcing calling the method
process() implemented by the applet. The life
cycle of the applet ends when the host appli-
cation intends to select another applet for
processing the APDU commands, moment
when JCRE notifies the applet by forcing the
execution of deselect() method of the applet.
A typical code of a Java cardlet that commu-
nicates with the Java midlet is in table 2:

Table 2. A Java Card code
package
com.sun.javacard.samples.wallet;
import javacard.framework.*;
public class MedicalWallet extends
Applet {

private static byte[] name = new
byte[] {(byte)0x85, (byte)0x03,
(byte)0x49, (byte)0x6F, (byte)0x6E};
private static byte[] surname = new
byte[] {(byte)0x86, (byte)0x07,…}

...
//constructor
private MedicalWallet (byte[] bAr-
ray,short bOffset,byte bLength)
{...}
//Life-cycle methods
 public static void install(...)
{...}

 public void select() {...}
 public void deselect() {...}
 public void process(APDU apdu)
{...}
//private methods
 private void payConsult(APDU ap-
du) {...}
 private void sendMedRec(APDU ap-
du) {...}
 private void verify(APDU apdu)
{...}
 private void getInfo(APDU apdu)
{...}
 private void setInfo(APDU apdu)
{...}
...
}

Another important issue in the listing from
table 2 is that the personal medical informa-
tion is stored in ASN.1 – Abstract Syntax
Notation (TLV – Tag Length Value). For in-
stance, the variable name from table 2 is
identified by tag 0x85 with 0x03 length chars.
The chars represent the string “Ion” in ISO-
8859-1 which is the name of the medical pa-
tient.

3. The Secure Electronic Card Solution for
Medical Services
Once we established the technical details, we
can discuss our SECMS – Secure Electronic
Card for Medical Services solution.
The designed SECMS – Secure Electronic
Card for Medical Services solution for an
electronic wallet used in medical services
will exploit the presented concepts in the
previous chapters. The architecture of
SECMS solution is presented in figure 5. In
figure 5 the business flow is clear. The pa-
tient goes to the doctor for a medical consul-
tation. In order to have a complete view be-
fore diagnosis, the doctor may request to see
and to update the medical records of the pa-
tient. On the patient’s mobile device are run-
ning two applications (both digitally signed
by Health Insurance Company): the Java
midlet on the phone and the smart card appli-
cation ‘MedicalWallet’ on the SIM. The
communication between the ‘MedicalWallet’
and the Java midlet is JSR177. The medical
record information is sent to the doctor appli-
cation only if the patient inserts the applica-

Revista Informatica Economică nr.2(46)/2008

84

tion PIN. The medical record information is
very sensitive and therefore the communica-
tion between the Java midlet and doctor ap-
plication uses SSL – TCP/IP over WiFi. Af-
ter the medical consultation the doctor appli-
cation of our solution called over HTTPS a
web service (first implementation was XML-
RPC).
The doctor application sends encrypted and
authenticated SOAP – Simple Object Access
Protocol messages (briefly described in [10])
which will contain:
 the patient SIM IMSI;
 the patient SSN – Social Security Number;
 the patient digitally signed hash with the

SIM RSA secret key over first two informa-
tion plus a nonce generated by the SIM;
 the doctor IBAN and ID card number;
 the money amount to debit.

The web service called EJB from the billing
system and send payment order via Web ser-
vices over HTTPS to the Health Insurance
Company of the patient. The Health insur-
ance server application receives over HTTPS
the electronic payment order from various
billing systems. The Health Insurance Com-
pany has two powerful interconnected sys-
tems: PKI – Public Key Infrastructure system
and the processor application of payment or-
ders called also Payment Gateway. The trans-
fer of money between the banks is not in-
cluded in SECMS goals. Because the de-
scription of each segment of communication
in detail needs more pages, we will present
some details of communication between pa-
tient application and doctor application.
The communication between the patient mid-
let and doctor application is inspired in terms
of security concept from SET – Secure Elec-
tronic Transaction [2], [4]. The communica-
tion uses dual signature concept. Dual signa-
ture is an innovative method for resolving
the following aspect:
 The patient needs to send the SIM IMSI

and SSN included in “owner information”
(OI) to the merchant and the “payment in-
formation” (PI) to the billing system;
 Ideally, the patient does not want the bank

to know the OI and the doctor to know PI;

 However, PI and OI must be linked to re-
solve disputes if necessary (e.g., the patient
can prove that the medical consultation has
been paid);

Fig.5. SECMS – Secure Electronic Card for

Medical Services Architecture

The steps for dual signatures are:
 The message digests – using one of MD5,

SHA-1 message digest function – of PI and
OI are found : PIMD=MD(PI),
OIMD=MD(OI);
 The message digests are combined and the

resultant message digest is found:
POMD=MD(PIMD +OIMD);
 POMD is encrypted by using the custom-

er’s private key to produce the dual signature:
DS=E(POMD, Priv_key).

The predicted scenario is based on:
 The doctor application is provided with OI,

PIMD and DS. The signature can be verified
by computing MD(MD(OI)+PIMD);
 The Health Insurance payment gateway is

provided with PI, OIMD and DS. The signa-
ture can be verified by computing
MD(MD(PI)+OIMD);
 By using dual signature, the patient can

provide the linkage between OI and PI;

The reason for which the OI and PI are
linked is the dual signature. The procedure
for checking the bound established by the
dual signature is:
 The doctor only knows OI but not PI;
 Payment gateway only knows PI but not OI;
 Nevertheless if either the OI or the PI is

Revista Informatica Economică nr.2(46)/2008 85

changed, the dual signature will be changed;
 That means, OI and PI are linked together.

The figure 6 is comprehensive to depict how
a payment request by medical patient and ve-
rification by doctor application are being
created.

Encrypt
data

Digital
Envelope

PIMD

OI

Dual
Signature

Patient
Certificate

Request message

Legend:
PI = Payment Information
OIMD =OI message digest
POMD = PO message digest
MD = Message Digest
KUc = Patient’s public signature key

Send to the Health
Insurance payment
gateway via doctor
application

II

MD OIMD

MD POMD

POMD Decrypt
KUc

COMPARE

Fig.6. Verification process by doctor applica-

tion

All the components are loosely coupled be-
cause each component of our SECMS can be
implemented by different companies as long
as they respect the designed specifications.
The specifications are in draft form and we
expect to be published in third quarter of
2008.

4. Conclusions
The suggested secure architecture is based on
concepts like electronic signature and en-
cryption with symmetric keys (described in
detail by [1], [4], [5]), SSL – Secure Sockets
Layer and IP tracking (described in [4]).
Based on the analysis that were made in lab
using a Nokia N95 device and a NetFront
mobile browser it has been highlighted that
the difference between processing time and
access time is not significant. On average the
process of digital signing takes at most three
seconds. The project is still in development
phase and the SIM application has been
tested. This approach is developed to be ac-
cessed by a Java Micro-Edition Midlet, de-
fined by JSR177. The solution presented here
has many advantages for medical services
which are extended on mobile devices be-
cause it allows developing secure environ-
ments with fewer resources because every-

thing is taking place at software level and it
doesn’t interfere with the existing infrastruc-
ture.
Regarding the impact on mobile business so-
lutions and on mobile services, the authors
are continuing this research in two important
research contracts that are financed by the
Romanian Government through two complex
development research projects, module
MATNANTECH (Materials and Nanotech-
nologies) and module AMCSIT of Romanian
Excellence Research Program.

References
[1] Rankl and Effing Wolfgang, Smart Card
Handbook, 3/E, John Wiley & Sons, 2003.
[2] Bruce Schneier, Applied Cryptography
2nd Edition: protocols, algorithms, and
source code in C, John Wiley & Sons, Inc.
Publishing House, New York 1996.
[3] Douglas Stinson, Cryptography – Theory
and Practice–2nd Edition, Chapman &
Hall/Crc, NY 2002.
[4] William Stallings, Cryptography and
Network Security, 3/E, Prentice Hall, 2003.
[5] Zhiqun Chen, Java Card Technology for
Smart Cards, Addison-Wesley, 2004.
[6] Cristian TOMA, “Tutorial on Java Smart
Card electronic Wallet Application”, Infor-
matics Security Handbook, AES Publishing
House, Romania 2006.
[7] Cristian TOMA, Secure architecture used
in systems of distributed applications, The 7-
th International Conference on Informatics in
Economy, May 2005, pp. 1132-1138.
[8] Ion IVAN, Cristian TOMA, Catalin BO-
JA, Marius POPA, “Secure Architecture for
the Digital Rights Management of the M-
Content”, ISP'06 of the WSEAS Conference
in Venice, Nov. 2006.
[9] Ion IVAN, Cristian TOMA, Catalin BO-
JA, Marius POPA, “Secure Platform for Dig-
ital Rights Management Distribution”,
WSEAS Transaction on Computers, 2007.
[10] SOAP Tutorial on www.w3schools.com

