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Abstract: 

Wheat regression models that account for the effect of weather are developed to forecast wheat 

yield and quality.  Spatial lag effects are included.  Wheat yield, protein, and test weight level are 

strongly influenced by weather variables.  The forecasting power of the yield and protein models 

was enhanced by adding the spatial lag effect.  Out of sample forecasting tests confirm the 

models’ usefulness in accounting for the variations in average wheat yield and qualities.   
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1. Introduction 

Winter wheat production in the Southern Plains is a mostly dry land crop with substantial 

year-to-year variation in yields and quality due to rainfall, temperature and other weather events.  

If wheat yield and wheat quality response to weather conditions could be predicted early and 

accurately, the information could be widely used.  The information could be particularly 

important to farmers optimizing late season agronomic and marketing decisions and to grain 

elevators and millers for purchasing decisions.  Thus, there has been increasing interest in the use 

and development of robust crop weather response models.   

Numerous models have been estimated to predict crop yield based on weather conditions.  

Two main prediction approaches are simulation models and multiple regression models.  A 

number of comprehensive agricultural simulation models are now available to predict yield and 

variability of wheat.  Jones and Kinir (1986) suggested a model to simulate the effects of 

genotype and weather conditions on crop yield, Duchon (1986), Claborn (1998), Bannayan, 

Crout, Hoogenboom (2003), and Tsvetsinskaya et al. (2003) predicted yields using weather 

forecasts and scenarios using the Crop Environment Resource Synthesis (CERES) simulation 

model.  For the Great Plains, Eastering et al. (1998) and Wang et al. (2006) used the Erosion 

Productivity Impact Calculator (EPIC) model and Eastering et al. (1998) found spatial 

disaggregation of climate data enhance predictions.  Using CERES-Wheat model, Weiss et al. 

(2003) investigated the responses of wheat yield and end-use quality using nitrogen management 

and planting dates data.  The simulated results depended on spatial locations and climate changes, 

and also soil water stress and management of nitrogen strongly influenced yield distributions and 

kernel nitrogen content.  Walker (1989) combined simulation and multiple regression to develop 

physiologically and regionally weighted drought indices from temperature and precipitation data.  
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The forecasts showed the indices well explain the variation of inter-regional and annual yield 

within a growing season.   

A simulation model is designed to simulate crop yield using details about crop biology.  

However, as noted by Walker (1989), a simulation approach requires extensive information such 

as soil type, plant parameters, and weather data related with crop development stage, which are 

often not readily available.  Tannura, Irwin, and Good (2008) argue that an important limitation 

of crop simulation models is that they are likely to ignore the influence of technology 

development over time.  Bechter and Rutner (1978) and Just and Rausser (1981) found single-

equation models forecast more accurately than large econometric models and we should expect a 

similar result for agronomic models.   

Thus, many previous studies have preferred a regression approach rather than a large 

simulation model when the goal is forecasting.  Studies using the multiple regression approach 

include Yang, Koo, and Wilson (1992), Dixon et al. (1994), Kandiannan et al. (2002), and Chen 

and Chang (2005) who used various production functions to capture the effect of climate 

variables on observed crop yield level and to predict crop yield.  Irwin, Good, and Tannura 

(2008) and Tannura, Irwin, and Good (2008) modified Thompson’s (1964) corn and soybean 

regression model and found crop yield strongly related to weather conditions such as 

temperature, rainfall, technology, and other weather variables.  As Tannura, Irwin, and Good 

(2008) and other studies have proven, multiple regression models have high explanatory power 

and can represent relationships between weather conditions and crop yield.  Thus, the multiple 

regression model approach is not only easier to use, it is also likely more accurate than the 

simulation model approach.   
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Several studies investigated the influences of weather conditions, genotype, and their 

interaction on wheat quality.  The crop maturation period, such as milk development, heading, 

and ripening stages are the critical stages in determining wheat quality (FAO, 2002).  Graybosch 

et al. (1995), Johansson and Svensson (1998), Smith and Gooding (1999) and Guttieri et al. 

(2000), and Johansson, Prieto, and Gissen (2008) developed quality models that showed the 

effect of weather and environment strongly influenced protein content and test weight of wheat.  

Smith and Gooding (1999) argued predicting grain quality before wheat harvest would be 

important information to grain buyers, and to farmers to help optimize agronomic activity, 

particularly, a late application of nitrogen fertilizer to increase protein content (Woolfolk et al., 

2002).  Britt et al. (2002) estimated six yield and quality of cotton response functions and profit 

functions as a function of weather information and input and output prices.  Regnier, Holcomb, 

and Rayas-Durate (2007) investigated the variations in flour and dough functionality traits 

associated with environmental factors and found the interaction between crop years and 

production regions was a significant factor for flour and dough qualities since growing 

conditions and climate conditions differ among the regions and across years.   

 Unlike previous yield regression models, most quality-related model studies did not 

measure prediction performance of their models and also used analysis of variance (ANOVA), 

Spearman rank correlation analysis or simple regression models without precise diagnostic tests 

for model misspecification.Therefore their methods may lead to biased and inconsistent 

estimates (McGuirk, Driscoll, Alwang, 1993).   

The extensive previous studies have limitations.  One is that the previous regression 

studies cited have solely estimated the impacts on yield and quality level, respectively, and did 

not deal with agronomic tradeoffs between yield and quality of wheat.  Also few focused on 
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prediction and most studies did not consider out of sample forecasts but measured in sample fit.  

In-sample fit can be inaccurate because most models, including ours, are developed from 

pretesting over a large number of alternative specifications.     

The other is that many of the above studies have either used data from a single location or 

have not used the extra information provided by spatial data.  The increasing availability of 

spatial climate information makes it important to incorporate this new level of information to 

improve forecasts. Anselin (1988) explained that when using spatial data, the dependent variable 

at each location may be correlated with observations of the dependent variable at neighboring 

locations.  This is defined as spatial contiguity (lag) effect.  If this effect is ignored in a model 

specification, the estimates in the general model are likely to be biased.  Therefore, in order to 

get more accurate forecasts, the crop response model using spatial data needs to include a spatial 

lag effect.   

In addition, Oklahoma has two unique resources for examining the relationship between 

weather and wheat yields and quality.  The Oklahoma Mesonet consists of 120 automated 

stations covering Oklahoma with one or more stations in each of Oklahoma's 77 counties.  Plains 

Grains, Inc.  (PGI) is a private, nonprofit wheat marketing organization based in Stillwater, 

Oklahoma.  PGI evaluates wheat quality, including milling and baking quality from an extensive 

network of samples at the county level.  These two unique data sets provide the opportunity to 

examine the ability to predict wheat yield and quality with weather data.  These two data sets 

(meso-scale weather data and elevator scale quality data) are highly disaggregated.  Thus, the 

disaggregated data sets could provide more precise wheat yield and quality predictions than was 

possible with the data sets used in past research.   
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The objective of the study is to develop wheat regression models to account for the 

impact of weather on wheat yield and quality and to predict (forecast) wheat yield and quality 

level accurately.  In other words, the primary purpose of the study is to use weather information 

to predict wheat yield and wheat quality and to select variables and functional forms to estimate 

parameters and then measure how well the developed models forecast.   

 

2. Conceptual framework 

Previous studies have used knowledge about biological development stages of crops to help 

select the explanatory variables.  Dixon et al. (1994) and Kafumann and Snell (1997) specified 

weather variables for their corn yield regression models that were based on biophysical stages of 

corn1.  On the other hand, Yang, Koo, and Wilson (1992) and others used planting season and 

growing season precipitation and average temperature.  Hansen (1991), Tannura, Irwin, and 

Good (2008) and others estimated the effect of calendar month precipitation and temperature 

variables on soybean and corn yield during crucial development periods to forecast potential 

crop yield.  Even though biological stages of crops do not precisely correspond with calendar 

months, a number of previous regression response models have used weather variables defined 

on a monthly average calendar basis.  Previous studies also assume every cross sectional location 

has the same development stages since it is very difficult to match the precise time point of crop 

development stages at every location.  Another reason is the estimated results using monthly 

weather variables were similar with that of stage basis variables.  For example, Dixon et al. 

(1994) compared weather variables based on biological stages with variables that based on fixed 

                                                            
1 The corresponding weather variables were specified based on the six weeks before and three weeks after silking 
point rather than calendar months basis because corn is critically sensitive to precipitation in June and mid‐July in 
Midwestern U.S.  
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calendar months and found the forecasting performance and R2 of the two models only changed 

slightly. 

Weather strongly affects four stages2 of wheat development that determine wheat production 

level and qualities (FAO, 2002).  Aitken (1974), Miralles and Slafer (1999), and Acevedo et al. 

(2002) argued mainly temperature and precipitation influence wheat development; the most 

crucial stages of wheat yield are from double ridge to anthesis (flowering) (GS2) and from 

anthesis to maturity (GS3) since kernel number and weight are being determined at that time 

(figure 1).  Meanwhile, the influence of temperature and precipitation during grain filling are 

widely known to influence wheat quality characteristics.  Graybosch et al. (1995), Johansson and 

Svensson (1998), Stone and Savin (1999), and Smith and Gooding (1999) found weather has 

deep impacts on grain quality; for instance, increased temperatures during grain filling tend to 

increase protein and reduce mean grain weight.  Stone and Savin (1999) argued that 70-80 % of 

total protein is accumulated during the grain filling period.   

Winter wheat of the southern Great Plains is typically planted in early September through the 

middle of November.  In general winter wheat harvest begins toward the end of May in southern 

Oklahoma and continues until about the middle of July (IPM Center, 2005).  According to crop 

weather summary in Oklahoma (DOA, 2000), wheat begins to double ridge and joint in 

February.  Southwestern counties begin to head by the end of March.  In April, anthesis is begun 

and some wheat in south Oklahoma begins the grain filling period, and finally wheat harvest 

begins approximately May 20th in the southern counties.    

                                                            
2 The stages can be categorized as germination to emergence (E), from germination to double ridge (GS1), from 
double ridge to anthesis (GS2), and grain filling period from anthesis to maturity (GS3) (FAO, 2002). 
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Using the above described general relation of weather variables and wheat by growth stages, 

the study selects calendar months during GS2 and GS3 and specifies appropriate calendar month 

weather variables for growing periods that correspond to these biological wheat development 

stages.   

Eastering et al. (1998) used a fine spatial scale to reduce statistical bias from aggregation and 

confirmed the difference between the observed and estimated yield was greatly reduced when 

data scale was disaggregated to around 37mile × 50mile.  Unfortunately, their method requires a 

very fine data scale and cannot be used with our data.  On the other hand, Anselin (1988) 

assumed generally the dependent variable or residual at each location may be correlated with 

neighboring locations’ dependent variables or residuals.  For this spatially correlated data or 

residuals, the dependence is termed as spatial autocorrelation or spatial lag (contiguity) effect.  

This indicates that dependents or residuals are spatially autocorrelated and then violate the 

general assumption of statistically independent observations.  If the spatial lag effect is not 

considered, estimates will be biased and inconsistent.   

In addition, in order to estimate crop response to weather conditions previous studies have 

used regional models using regional cross-sectional data.  However, the regional data such as 

observed yield, quality level, and weather variables are generally aggregated considerably 

beyond the county level.  If point estimates (weather, yield, quality) are observed near the border 

of neighboring regions, there is an opportunity for spatial autocorrelation.  For instance, grain 

produced in one county could be shipped to an adjoining county (this would only affect the 

quality data since the yield data are based on ARS yields which are in turn based on producer 

reports of harvested production).  Some cropland will be closer to a weather station in a 

neighboring county than weather stations in its own county.  Thus, weather measures in a 
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neighboring county should help predict yield.  Thus, a spatial lag model is superior and ignoring 

this lag would cause parameter estimates to be biased and inconsistent.   

Anselin et al. (2008) and Anselin and Bera (1998) express the neighbor relation with a spatial 

weights matrix,  and the elements  of  reflect the potential spatial relations between 

observations that correspond to the spatial weights structure.  The spatial weights matrix can be 

expressed as binary contiguity sharing a common border, distance contiguity including nearest 

neighbor locations, and inverse distance between two observations.   

  Anselin and Bera (1998) suggest two main alternative models of spatial autocorrelation: the 

spatial lag model, and the spatial error model.  The main purpose of the former is to predict the 

spatial patterns such as cluster and random correlation, while the latter is to increase the 

efficiency of estimates (Bongiovanni and Lowenberg-DeBoer, 2001).  A spatial lag model is 

used here since the explanatory variables in neighboring counties are expected to help predict our 

dependent variables.  The general regression function can be expressed as: 

1    

where  is a vector of dependent variables,  is the matrix of independent variables, and 

~ 0,  is a vector of stochastic error terms.  The spatial lag model is 

2    

where  is the spatial autoregressive coefficient,  is N × N spatial weight matrix (Greene, 

2008).  This is similar to including a lagged dependent variable in a time series model, except 

that endogeneity is created because the lagged effects go both directions.  The weights matrix is 

standardized so that rows sum to 1 such as  = / ∑  where  are elements of .  If  

0, the dependent variable at each location is positively correlated with other location’s 
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dependent variables.  Hence, the spatial lag model can be estimated with instrumental variables 

such as two stage least square (2SLS) and generalized method of moments (GMM ) or with 

maximum likelihood (ML) (Lambert and Lowenberg-DeBoer, 2001), and 2SLS is used here (see 

appendix 1).    

 

3. Data  

The wheat yield data (from 1994-2009) are from 67 counties in Oklahoma and  were 

obtained from ‘Crop Production Report’ of United States Department of Agriculture (USDA) 

National Agricultural Statistics Service (NASS).  Oklahoma has 77 counties, but ten of them are 

not included due to having little wheat acreage.  The cross-sectional time-series data is composed 

of 1,072 observations (16 years*67 counties).   

The wheat quality data are obtained from Plains Grains, Inc (PGI)3.  PGI tests 96 samples 

that were collected on a “grainshed” basis from grain elevators when at least 30% of the local 

harvest was completed.  The term “grainshed” was developed by PGI and represents regions 

within each state in which the majority of the wheat is marketed through a terminal elevator, 

river elevator or train loading facility (figure 2).  There are 8 grain sheds in Oklahoma.  PGI 

collects representative wheat quality samples from country or terminal elevators.  Generally 

elevators take samples from each truckload arriving at the elevator and the grain is sampled 

using a hand grain probe.  Each elevator directly tests these samples about test weight and 

moisture content and then these samples typically accumulate in a barrel.  Lastly, the elevators 

barrel is sampled by PGI’s representative using a hand grain probe.   

                                                            
3 Plains Grains Inc.(PGI) is located in Oklahoma that does a wheat quality survey and quality testing of hard red 
winter wheat to provide end‐use quality information to the wheat buyer and producer and publish Wheat Quality 
Report PGI (2009). 
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The samples from county and terminal elevators are sent to USDA, ARS hard winter 

wheat Quality Lab in Manhatan, KS.  Twenty-five quality parameters are analyzed in order to 

provide data that specifically describes the quality of wheat (PGI, 2009).  These quality data 

were used for the quality models and correlation analysis.  The available historical quality data 

set from 2004 to 2010 crop years.  For more precise analysis, the study matched elevators’ 

quality data with weather data from the closest Mesonet stations.  This means one weather 

station per elevator was used to estimate wheat quality models, not a county average.  Wheat 

quality characteristic data are protein content (% mb: moisture base) and test weight (lb/bu); the 

quality data were from 96 elevators based on 2010 (figure 3).   

Weather data (from January 1, 1994 to May 31, 2010) were obtained from the Oklahoma 

Mesonet.  Each of Oklahoma’s 77 counties has one or more Mesonet stations.  The selected daily 

data are daily rainfall (in), daily maximum (minimum) air temperature (°F), daily average air 

temperature (°F), total solar radiation (MJ m-2d-1), and growth degree days (GDD)4.  For all 

Mesonet stations, the daily observations are aggregated to monthly averages.  Generally there is 

one station per county.  For counties with multiple stations an average of all stations in the 

county is used for yield models; however, quality models use only data from the closest weather 

station.  Several weather stations were added during the study period so the closet weather 

station sometimes varied by year.   

 
4. Empirical model specification 

To specify accurately the underlying relationships between yield and quality variables and 

weather variables, the study first examined the relationships between weather variables and yield 
                                                            
4 GDD=[(Tmax+Tmin)/2]‐Tb, 32˚F or 39.2˚F as the base temperature (Tb) for physiological process in wheat(Cao 
and Moss, 1989), the GDD vary with growing stage and allow a rough estimation of when a given growth stage is 
going to occur at a particular site. 



13 
 

and quality level using the correlation coefficients and graphical displays using proc GAM in 

SAS (SAS Institute Inc.  2004).  GAM allows exploration of data and visualizing structure, and 

is useful for investigating the relations between dependent and independent variables (see 

appendix table 1, figures 4-15).  Appendix table 1 shows all weather variables have a high 

correlation with dependent variables: yield and quality level during the growing season.  

Precipitation shows less correlation with yield than do average temperature while both variables 

are associated with yield.  Maximum temperature and minimum temperature have all low 

correlation coefficients and negatively signed with protein and test weight, however, the two 

variables in quality models were statistically significant.  Even though solar radiation and GDD 

have high correlation coefficients, the variables in the models were not statistically significant 

and therefore those variables were excluded in the model specification.  That disagrees with 

Dixon et al. (1994) since the solar radiation variable in their model specification is essential.  

Precipitation is quadratically related with yield; however, temperature has a linear relation with 

yield.  Thus, the yield response model used linear and quadratic terms of precipitation and a 

linear term for temperature (see figures 4and 5).  On the other hand, in the quality response 

model there is no evidence that weather variables have a nonlinear relation with quality.  

Therefore, the quality response model used a linear specification.   

Meanwhile, the study considered several alternative functional forms such as parametric 

methods: linear, Cobb-Douglas, translog, square root, spline, and semi-parametric method which 

does not assume a specific functional form.   

Cobb-Douglas and linear model estimates showed not only statistically significant individual 

coefficients, but also relatively high pseudo R2 (variance ratio) between in sample annual 

predicted yield and annual actual yield during 1994-2009, therefore, we selected linear form and 
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Cobb-Douglas form for yield response model, meanwhile, the quality response model adopted a 

linear form.  The models have the same individual fixed effect and random effect; the functional 

form can be written as5  

3                 Linear form  

4   ln      Cobb Douglas form  

and also can be expressed as spatial lag model form using spatial lag term:   

3.1                   

4.1   ln ln      

where   is the wheat yield of county i and time t,   are individual fixed effects for 

counties,  are the weather variables, and  is a N × N spatial weights for cross-sectional 

dimension,  ~ 0,   is a stochastic error term,  0,  is year random effect, and 

these error terms are assumed to be independent and identically distributed.  The yield response 

model is composed of county fixed effect, year random effect, and three weather variables from 

February to April such as monthly average rainfall, squared average rainfall, and average 

temperature that correspond to before and after the anthesis period in Oklahoma because yield is 

mostly determined before the grain filling stage.   

                                                            
5 Linear form equation (3) and Cobb‐Douglas form equation (4) can be represented as matrices and vectors: 

  and  ln ,   ~ 0, σ  and be also rewritten in expected mean form as E  

and E exp σ /2  respectively. Therefore, when we compare predictions (expected values) between 

two functional forms accurately, these mean forms are carefully considered. 
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As discussed, wheat quality depends on the growth periods such as milk development, 

heading, and ripening stages.  In Oklahoma the wheat growth stages during March to May or 

June in the northern region contribute to grain filling which relates strongly to wheat quality.  

Additionally, the quality model employed agronomic tradeoff relationship between yield and 

quality of wheat using the predicted yield level from yield response model and can be expressed 

as 

5    

 5.1     

where   is composed of either protein content (12 % mb: moisture base) and test weight 

(lb/bu), and  is a N × N spatial weights for cross-sectional dimension and time t since the 

number of elevators vary by year, therefore weight structure also varies from year to year, for 

protein; weather variables are monthly average maximum and the monthly average rainfall from 

March to May, for test weight; weather variables used in this model included monthly average 

rainfall for March, April, and May and maximum and minimum temperatures for April and May 

were based on the heading and ripening period such as before and after anthesis season.   

Estimation method and procedure  
 

The study first tests spatial autocorrelation using proc VARIOGRAM in SAS (SAS 

Institute Inc.  2004).  The most generally used test for spatial autocorrelation is Moran’s I test6 

                                                            
6  Moran’s I statistic is I

N

S
  where,   is a vector of dependent values for each time period  ,   is a 

spatial weights matrix, N is observations, and S is the aggregation of all elements in  . In general, a Moran's I 
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(Griffith, 1987).  Proc VARIOGRAM is used to calculate the Moran's I statistic, Z score, and p-

value for testing the hypothesis of no spatial autocorrelation.   

The study second adopts maximum likelihood estimation method (Greene, 2008, p. 400) 

and tests the heteroskedasticity and nonnormality of residuals using a likelihood ratio test, and 

Shapiro–Wilk test.  If hereroskedasticity is formed in the wheat response models’ error terms, 

multiplicative heteroskedasticity 7 will assumed (Greene, 2008, p. 170).  If non-normality is 

formed, the GMM or alternative estimation ways which do not require specific distribution, or a 

transformation method can be used to modify.   

If the dependent variable values are correlated with values of nearby locations based on 

the Moran’s I statistic results, the models will include the weighted dependent variable of 

equation (2) and be estimated using instrumental variables (see appendix 1).  Using proc IML in 

SAS (SAS Institute Inc. 2004) spatial weights matrix for first ( ) and second order ( ) are 

constructed based on inverse distance between two observations  and  where inverse distance 

matrices:  = 1/  up to cut off miles.  At that time, GeoDa software (Luc Anselin, 

2004) was used to measure Arc distances among observations for yield and cut off distance using 

the Oklahoma counties is 49.6 miles, otherwise 0.For quality observations, cut off distances vary 

over every year since the number of elevators differs by year, and therefore actual distances were 

used.   

In addition, the developed models need to be evaluated for accuracy using out-of-sample 

forecasting test rather than only a fitness test using historical data.  Since the models were 

selected by pretesting, in sample tests will overestimate their accuracy.  To test the out-of-sample 
                                                                                                                                                                                                
statistic positive and large near one indicates positive autocorrelation while that is negative near one indicates 

negative autocorrelation (ESRI 2006). 
7 If residuals are heteroskedastic, residual term (ε ) can be expressed as general multiplicative heteroskedasticity 

form: ε ~N 0,  or  exp α    where α and   are a vector of parameters and the matrix of independent 
variables. 
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forecasting power for the developed models, the yield and quality forecasts will be evaluated for 

2010 out of sample.  Also the forecasts will benchmark against previous actual six year average.  

These tests are truly out-of -sample since the models were developed before the 2010 harvest.  

RMSE, MAE, and Theil’s U1 coefficient8 as measures of forecasting accuracy for all developed 

models were used to evaluate the forecasting performance of the models.  The first two forecast 

error statistics (RMSE and MAE) depend on the scale of the dependent variable as relative 

measures.  The Theil coefficient is scale invariant and always lies between zero and one, that is, 

zero means a perfect fit (Eviews 2000).   

 
5. Empirical Results 

The study first tested spatial autocorrelation for dependent variables. Table 1shows a 

strong spatial lag effect for yield and protein data with a Moran’s I statistic of 0.0078 and 0.0254 

and p-values of 0.0001.  For test weight data, however, the p-value is 0.2642, indicating the null 

hypothesis : 0 no spatial lag effect could not be rejected.  Therefore, the study needed to 

employ the yield response models in (3.1) and (4.1), and the protein response models in (5.1).   

Table 1. Tests of No Spatial Autocorrelation for Wheat Yield, Protein, and Test Weight  

 
Moran's 

Index 
Expected 

Index
       SD z-score p-value

Yield 0.00784 *** -0.00091 0.000512 17.09 <.0001

Protein 0.02540 *** -0.00219 0.00106 26.03 <.0001

Weight -0.00101 *** -0.00219 0.00106 1.12 0.2642
Note: *** significant at 1%, Ho: no spatial autocorrelation. 

  

The study second estimated equations (3) – (5.1) using SAS proc MIXED (SAS Institute 

Inc.  2004) and then the residuals of the estimated models were tested for heteroskedasticity and 

                                                            

8    = 
∑

∑   ∑
  where   and   are the prediction value and the corresponding actual value of county i 

respectively (Eviews, 2000, p. 337).   
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nonnormality (appendix table2).  The test results showed linear yield models’ LR statistics are 

smaller than    critical value at the 5% level ( ,   . 7.82) that is, the null hypothesis of 

homoskedasticity was not rejected for linear yield models; while, the Cobb-Douglas yield 

models’ calculated LR statistics were 19.1 for general model and 16.1 for spatial model, and thus 

the null hypothesis was rejected at the 5% level.  On the other hand, all quality models’ LR 

statistics were greater than  critical value at the 5% level ( ,   . 9.47).  The null that 

residuals are homoskedastic was rejected, we assume multiplicative heteroskedasticity (see 

Greene, 2008 p. 523).  Nonnormality tests showed we can reject the null of normality for all 

models except test weight, the only linear yield model that did not have heteroskedasticity.  As 

appendix table 2 shows, normality of residuals is still present after correction for 

heteroskedasticity9.   

 

Comparing Yield Response Models and Spatial Yield Response Models  

Table 2 shows the estimated yield response models and spatial yield response models.  

Log likelihood statistics were used to select the proper model and in this case (-2 log likelihood), 

smaller is better.  LR test was also used to test for spatial lag effect in the models.  The null 

hypothesis of no spatial lag effect ( 0) was rejected.  The estimated coefficients indicate how 

weather variables affect wheat yield.  The weather variables were all significant at a critical level 

of 5% for all yield models.  Precipitation has a positive relation with yield; while, squared 

                                                            
9 However, proc MIXED procedure does not provide for nonnormal residuals. Hence, in order to handle 

nonnormality and heteroskedasticity of residuals proc GLIMMIX procedure in SAS (SAS Institute Inc. 2004) was 
used.  If the EMPIRICAL option (FIRORES) is specified, the procedure provides MacKinnon and White (1985)’s 
heteroscedasticity‐consistent covariance matrix estimators (HCMM) to estimate standard errors.  The GMM 
procedures in GLIMMX only give OLS parameter estimates and those are not efficient.  We use proc MIXED and 
correct for heteroskedasticity to increase efficiency.  Our standard errors are not adjusted for nonnormality, but 
that is of less concern here since our objective is forecasting. 
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precipitation and temperature are negatively related to yield.  This is consistent with Yang et al. 

(1992).  Finally, spatial yield response model’s log likelihood statistic indicated the accuracy of 

the yield response models could be significantly improved by adding the spatially lagged 

dependent variable (appendix table 3).    

Table 2.  Yield Model and Spatial Yield Model Estimates, 1994-2009 
 Yield Response    Spatial Yield  Response 

 Linear  Cobb-Douglas Linear  Cobb-Douglas 
Variable Coeff. p-value Coeff. p-value Coeff. p-value Coeff. p-value

Intercept  98.621 <.0001 12.732 <.0001 66.790 0.0012 9.879 0.0004
Precipitation 0.569 <.0001 0.379 <.0001 0.301 0.0018 0.164 0.0196
Precipitation2 -0.008 <.0001 -0.049 <.0001 -0.005 0.0002 -0.025 0.0225
Temperature -1.610 <.0001 -2.605 <.0001 -1.362 <.0001 -2.547 <.0001
Spatial lag 0.790 0.0002 0.915 <.0001
-2 Log Likelihood  6496.2 -696.8 6481.5 -717.4 
Note: A first-order and second-order spatial weight matrices were used as instruments for the spatial lag term as WX, W2X.   

To measure readily how weather variables affect yield, the elasticity for weather 

variables was calculated.  Table 3 shows the estimated coefficients in Cobb-Douglas form are 

elasticities.  Therefore, precipitation elasticity at mean precipitation is calculated as 0.067 to 0.12 

for yield response models and 0.069 to 0.144 for spatial yield response models, that is, as the 

precipitation is increased by 1%, the average yield level would be expected to rise by 0.067% to 

0.12% and 0.069 % to 0.144% in the yield response models and the spatial response models 

respectively.  Temperature elasticity was measured as -2.6 to -2.74 in yield models, that is,1% 

rise in temperature decreases the average yield level by 2.6% to 2.74%, however, for spatial 

yield models, temperature elasticity was estimated as -2.32 to -2.55, so we cannot decide which 

variables more affect yield level of wheat due to the units on variables are arbitrary.   

Table 3. The Elasticity of Weather Variables 
 Yield Response Spatial Yield Response 
 Linear Cobb-Douglas    Linear Cobb-Douglas 
Precipitation 0.116 0.067      0.144 0.069 
Temperature        -2.738 -2.605     -2.316 -2.547 
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Forecast error statistics for all yield models are summarized in table 4.  The calculated 

statistics showed forecasts from the yield response model were similar or slightly less accurate 

than spatial yield response models.  The linear model was slightly less accurate out of sample 

just as it was in sample.  The models for yield performed better relative to the benchmark 5year 

year average. 

Table 4. Out of Sample Forecast Error Statistics for Yield Models, 2010 
 Average (2005-2009)  Yield Response                 Spatial Yield Response 
Forecast Errors wo/weather effects Linear Cobb-Douglas Linear Cobb-Douglas

RMSE 7.436 4.420 4.087 4.172 4.035
MAE 6.136 3.410 3.146 3.247 3.095

Theil U1 0.0081 0.00379 0.00370 0.00364 0.00364
Note: County level data were not yet available, so these evaluations were done with the available district data.   

 

Protein Response Model and Weight Response Model  

 The estimated quality response models of equations (5) and (5.1) for wheat 

characteristics: protein and test weight level are reported in table 5.  Yield and weather variables 

were all significant at the 5% level.  Precipitation and maximum temperature positively affect 

protein and test weight.  Minimum temperature is negatively related with test weight.  High yield 

reduces protein, while, yield positively influenced test weight.  These relationships between 

weather variables and wheat quality are consistent with the findings of Johansson and Svensson 

(1998), and Smith and Gooding (1999), who found warm temperature affects crude protein 

positively and precipitation at the end of the season has significant positive correlation with 

protein concentration.  For test weight temperature positively influences test weight and rainfall 

also is partially associated with test weight.  Even though the spatial lag term was not significant 
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using Wald test, the more reliable likelihood ratio test does reject the null hypothesis of no 

spatial lag.   

Table 5. Protein Model and Test Weight Model Estimates, 2004-2009  
 Protein (12%, mb)  Test Weight (lb/bu)  

 No-Spatial Spatial No-Spatial  
Variable Coeff. p-value Coeff. p-value Coeff. p-value

Intercept 2.986 0.0587 2.708 0.1417 35.075 0.0058
Yield -0.103 <.0001 -0.096 <.0001 0.1152 <.0001
Precipitation 0.014 0.0006 0.017 0.0009 0.0533 0.0003
Max. temp. 0.149 <.0001 0.130 <.0001 0.4651 0.0001
Min. temp.  -0.2922 0.0108
Spatial lag 0.138 0.3843  
-2 Log Likelihood  1045.5 1019.1 1482.9 
Note: A first and second-order spatial weight matrices were used as instruments for the spatial lag term as WX, W2X.  

The estimated results express the tradeoffs between quality of wheat and yield using the 

calculated elasticity (figure16).  The elasticity is similar to Dahl and Wilson (1997)’s trade-off 

coefficients, which take the derivative with respect to protein and then multiply by average 

yields10.  It indicates how much protein levels affect yield, while, this study is about how much 

yield affects quality levels.  In other words, yield elasticity indicates that increases in yield lead 

to lower protein levels and higher test weight.  Table 6 shows a 1% rise in yield decreases 

average protein by 0.25% and increases average test weight by 0.28%.  Precipitation affects 

protein and test weight, however, maximum and minimum temperatures have a stronger 

influence on quality levels.  Meanwhile, the spatial protein model is more sensitive to weather 

conditions than the no spatial protein model.  Additionally, the study treated crop year as a 

random effect and the counties as fixed effects and the estimated results showed specific region 

or crop year of wheat also affects the quality level (appendix table 4).   

 

                                                            
10 The relationship between protein and yield was estimated using  , , , and trade‐

off coefficients =  (Dahl and Wilson, 1997). 
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Table 6.  The Elasticity of Weather Variables for Quality Model 
 Protein response Test Weight Response 
 No-Spatial Spatial No-Spatial 
Yield ‐0.247  ‐0.266 0.275 

Precipitation 0.039  0.052 0.144 

Max.  Temperature 0.924  0.940 2.747 

Min.  Temperature ‐1.434 

Forecasting accuracy of the quality models was evaluated over the 2010 crop year.  Table 7 

shows the forecast error statistics with protein and test weight response models.  Firstly, the 

study estimated the general quality models combining predicted yield from Yield Response 

Models.  Secondly, the spatial quality models were estimated by using predicted yields.  The 

forecast error values indicate that the accuracy of the quality models can be improved by adding 

predicted yield from the spatial protein response model rather than that of the no spatial protein 

response model.  Also RMSE values showed that the forecasting performance of the models 

combining spatially predicted yield were improved.  Additionally, average values (2004-2009) 

were used as benchmark forecasts and as expected, all forecast error values for average values 

were slightly higher than those of the weather models.  The models for protein performed better 

relative to the benchmark six year average than did the test weight models.   

Table 7. Out of Sample Forecast Error Statistics of Wheat Quality, 2010  
 Average 

(2004-2009) 
2010  

  No-Spatial Spatial 
 wo/weather 

effects 
W/ spatially 

predicted yield
W/ generally 

predicted yield
W/ spatially 

predicted yield 
W/ generally 

predicted yield
Protein     
     RMSE 1.080 0.727 0.731 0.702 0.717
       MAE 0.870 0.588 0.594 0.582 0.583
       Theil U1 0.0074 0.00530 0.00530 0.005135 0.005197
Test Weight     
     RMSE 1.495 1.305 1.361  
      MAE 1.196 1.117 1.174  
      Theil U1 0.00041 0.000357 0.000372  
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6. Summary and Conclusion 

       The study developed wheat regression models to account for the effect of weather on wheat 

yield, protein, and test weight and to forecast wheat yield and the two wheat quality measures.  

The explanatory variables included precipitation and temperature for growing periods that 

correspond to biological wheat development stages.  The models included county fixed effects, 

crop year random effects, and a spatial lag effect.  Yield and quality level are strongly influenced 

by weather variables.  For yield, precipitation has a positive relation with yield, while, 

precipitation squared and temperature are negatively related to yield.  Precipitation and 

maximum temperature positively affect protein and test weight.  Minimum temperature is 

negatively related with test weight.  Yield affects negatively protein level, while, yield positively 

influenced test weight.  In the forecast evaluation, the forecasting ability of both yield and 

protein models was enhanced by adding the spatial lag effect.  Out of sample forecasting tests 

showed the developed models are more accurate than using a benchmark six-year average.  
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Appendix 1.  The Estimation Procedures of Spatial Lag Model 

In equation (2), Anselin and Bera (1998) point out the dependent variable may be influenced by 

spatially lagged dependent variables (  in the other locations.  The spatially lagged term is 

also not only correlated with the same location’s error term, but also the other locations’ error 

terms.  The consequence is violation that error terms are assumed to be independent and 

identically distributed, therefore the OLS estimates of a spatial lag model will be biased and 

inconsistent (Land and Deane, 1992).  Instead of OLS estimation, alternative estimation methods 

are needed to estimate consistent estimators and the procedure follows.  Equation (2) can be 

represented as a reduced form; a function of explanatory variables and error terms at all locations 

by using an inverse matrix11 

A1      

under general assumptions, ε is independent of , and E | 0, therefore (A1) is rewritten as 

conditional mean form as 

A2   E |  

and, specifically (A2) can be written as 

A3      =  

                      =   … 

and then empirically to estimate (2) using (A1) - (A3), Anselin (1988), Land and Deane (1992), 

and Kelejian and Robinson (1993) suggested instrumental variables approach to estimation and 

the study selected Kelejian and Robinson (1993)’s instrumental variables and two-stage least 

squares estimate (2SLS) approach.  Hence, equation (2) can be rewritten as 

 
                                                            
11  Inverse matrix can be expanded as   = (1 +  ) 
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A4    

 

where ,  and  ,  , E | 0, and  is a two-stage least squares 

estimator and those can be expressed using (A2) and (A3) as 

A5   | I  

and specifically (A5) can be rewritten as 

A6      = I  

                                =   … 

where , … are instrumental variables, and thus, the 2SLS estimator (  is expressed as 

A7     =        

where   , , indicating =  and ,  as a matrix of 

instruments, and then a matrix of fitted values   can be rewritten as 

    

and also A7  can be expressed as  

A8     =   .   

In addition, the variance-covariance matrix is 

Var σ     

where σ  is residual variance and can be estimated from σ 1/      

, thus, we can obtain consistent estimates and standard errors of spatial lag model.   

In summary, since OLS estimation in spatial lag model leads to biased and inconsistent 

estimators, as the alternative method, 2SLS estimation was adopted here and empirically the 

procedures as follows.   
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In the first stage, regress equation (A5)’s the right hand side spatially lagged dependent variable 

 on all instrumental variables  , … and draw out the estimated  of equation (A6), 

in other words,   is obtained from that regress  on ,  and then in the second 

stage, replace  in equation (2) with the estimated  in the first stage, then rewrite (2) as 

A9     

and finally, regress (A9) on  and X and then obtain the 2SLS estimator (δ  of (A7) and (A8).  

The estimators is consistent and uncorrelated with error term (  and independent variables ( ).   
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Appendix 2.  The Calculation Procedures of Elasticity of Weather Variables 

 As is well known, the elasticity of dependent variable ( ) with respect to independents 

variables ( ) is equal to the slope value of the first derivative of dependent variable with respect 

to independent variables (d  /d ) multiplied by mean ( / ) and the elasticity of equation(1) 

can be written as 

B1       
d
d

 

and using equation (A1), the elasticity of equation (2) spatial lag model can be defined as 

B2        
d
d 1

 

and 1  is similar to including long run coefficient in long run elasticity, on the other 

hand, in the Cobb-Douglas (CD) case12, (B1) and  (B2) can be demonstrated by total 

differentiation:  

B3       
∂ ln

∂
d

∂ ln
∂

d  
∂ ln

∂
d  

       
1

d
1

d  
1

d  

                                                               
d
d

 

and in the spatial model, 

B4       
∂ ln

∂
d 1

∂ ln
∂

d  1
∂ ln

∂
d  

                                                            
12 For general CD form,  ln ln , and for spatial CD form,  ln ρ ln ln  
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Appendix Table 1. Correlation Coefficients among Yield, Protein, Weight and Weather 
Variables 
  Yield p-value Protein p-value Weight p-value

Yield 1.00 <.0001 -0.47 <.0001 0.15 0.0019
Precipitation (in)           
     February 0.49 <.0001 -0.52 <.0001 0.06 0.1912
     March 0.04 0.4098 -0.20 <.0001 -0.15 0.0014
     April -0.05 0.3255 -0.16 0.0005 0.08 0.1028
     May -0.22 <.0001 -0.09 0.0613 0.10 0.0406
Avg. temperature (˚F)         
     February -0.43 <.0001 0.06 0.1734 -0.05 0.2891
     March -0.31 <.0001 -0.02 0.6924 -0.12 0.0094
     April -0.42 <.0001 0.34 <.0001 0.20 <.0001
     May -0.02 0.6899 0.00 0.9968 0.06 0.1994
Max. temperature (˚F)         
     February -0.50 <.0001 0.29 <.0001 0.08 0.0815
     March -0.35 <.0001 0.10 0.0396 -0.07 0.1247
     April -0.38 <.0001 0.45 <.0001 0.27 <.0001
     May 0.19 <.0001 0.08 0.0742 0.13 0.0071
Min. temperature (˚F)         
     February -0.14 0.0029 -0.22 <.0001 -0.13 0.0045
     March -0.25 <.0001 -0.11 0.0174 -0.18 0.0001
     April -0.35 <.0001 0.11 0.0171 0.10 0.0417
     May -0.20 <.0001 -0.16 0.0004 -0.07 0.1368
Growing degree days         
     February -0.55 <.0001 0.07 0.1295 -0.12 0.0136
     March -0.32 <.0001 -0.01 0.8454 -0.13 0.0069
     April -0.39 <.0001 0.32 <.0001 0.22 <.0001
     May 0.02 0.7532 -0.06 0.1994 0.06 0.2246
Solar radiation (MJ m-2d-1)         
     February -0.50 <.0001 0.35 <.0001 0.14 0.0027
     March 0.51 <.0001 -0.12 0.0129 0.13 0.0056
     April 0.16 0.0013 0.22 <.0001 0.30 <.0001
     May 0.40 <.0001 0.06 0.177 0.28 <.0001
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Appendix Table 2. Diagnostic Test Statistics: Yield, Protein, and Test Weight Response 
Models  
  Normality Normality Heteroskedasticity
 Method Shapiro-Wilk (1) Shapiro-Wilk (2) Likelihood ratio 
  W p-value W p-value X2 

Yield response modela Linear 0.9958 0.0047**     0.5** 
 Cobb 0.9903 0.0001** 0.9884 0.0001** 19.1** 
Spatial yield response modela Linear 0.9965 0.0157*     0.1** 
 Cobb 0.9895 0.0001** 0.9883 0.0001** 16.1** 
Quality response modelb Protein 0.9919 0.0231* 0.9890 0.0033** 27.7** 
 Weight 0.9933 0.0614 0.9912 0.0150* 22.2** 
Spatial quality modelb Protein 0.9989 0.0030** 0.9856 0.0004** 26.6** 
Notes: *(*) significant at 1% ( 5%),   critical value( =7.82)  at the 5% level,  critical value( =9.47)  at the 5% level, and 
(1) and (2) indicate normality tests of standardized residuals before and after correction for heteroskedasticity, respectively. 

 
 
Appendix Table 3. Yield Model and Spatial Yield Model Estimates, 1994-2009 
     Yield Response Model                Spatial  Yield Response Model 
 Linear Cobb-Douglas Linear Cobb-Douglas

Variable F Value F Value F Value  F Value 

Precipitation  79.26 43.94 14.48 20.97
Precipitation2 67.36 22.52 9.83 5.46
Average temperature  29.98 23.72 14.27 5.23
County fixed effect 3.8 3.41 3.71 3.25
Spatial lag  20.67 23.19
-2 Log Likelihood  6496.2 -696.8 6481.5 -717.4
Notes: Values of precipitation variable was scaled by multiplying one hundred due to unit of rainfall. 
 
 
Appendix Table 4. Protein Model and Test Weight Model Estimates,  2004-2009  
     Protein Model      Test Weight Model 

 No-Spatial Spatial No-Spatial 

Variable F Value Pr > F F Value Pr > F F Value Pr > F

Yield (bu/acre) 281.44 <.0001 110.94 <.0001 40.06        <.0001

Precipitation (in)  11.87 0.0006 11.25 0.0009 13.62 0.0003

Max. temperature (˚F)  101.61 <.0001 34.5 <.0001 15.28 0.0001

Min. temperature (˚F)  6.56 0.0108

County fixed effect 8.9 <.0001 7.25 <.0001 2.76        <.0001

Spatial lag  0.76 0.3843  

-2 Log Likelihood 1045.5  1019.1 1482.9 
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Appendix Table 5. Descriptive Statistics for Yield Model Variables, 1994-2009 

Variable     N Mean             SD   Minimum Maximum

Year 1232 2002 4.61 1994 2009
Yield 1097 30.06 7.87 6.50 53.10

Precipitation 1218 27.02 12.09 0.47 83.47

Avg. temp.(Feb.-April) 1225 51.13 2.58 42.48 57.14
Precipitation2 1218 876.31 769.19 0.22 6966.68
Log yield 1097 3.36 0.29 1.87 3.97
Log precipitation 1218 3.16 0.59 -0.76 4.42
Log Avg. temp. (Feb.-April) 1225 3.93 0.05 3.75 4.05

Log precipitation2 1218 10.36 3.21 0.02 19.58

 
 
Appendix Table 6. Descriptive Statistics for Quality Model Variables, 2004-2009 

Variable      N Mean SD Minimum Maximum

Year 457 2006.6 1.67 2004 2009
Longitude 457 -98.72 1.32 -102.50 -94.80
Latitude 457 36.10 0.74 34.17 36.90

Protein 457 12.18 1.40 8.90 16.00

Test weight 453 59.79 1.96 52.80 64.60
Yield 421 29.45 7.80 6.50 46.00
Precipitation 454 27.40 13.54 3.40 65.97

Max. temp. (Mar-May) 456 71.80 2.60 65.98 80.47

Min. temp. (Mar-May) 456 46.27 3.36 35.68 55.43
Max. temp. (April-May) 456 75.81 3.52 69.05 85.88
Min. temp. (April-May) 456 50.41 3.10 39.78 59.53
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Appendix Table 5. Comparing Actual and Prediction Values for Quality Models  
Protein (12% mb) Test weight (lb/bu) 

County 
 No. 

2010 
Actual 
Value 

Average 
(2004-2009) 

Predict 
Value 

Spatial 
Predict 
Value 

2010 
Actual  
Value 

Average 
(2004-2009) 

Predict Value 

2 11.9 12.6 11.7 11.5 60.1 60.0 59.2 

4 12.6 14.1 13.3 13.5 61.5 59.5 59.1 

6 12.2 11.7 11.3 11.3 62.7 60.2 60.5 

8 11.3 13.1 11.5 11.2 61.8 58.9 60.1 

9 11.1 12.2 10.3 10.3 61.2 60.5 62.5 

13 12.4 13.5 12.8 12.5 61.8 60.0 58.9 

17 12.1 12.0 11.4 11.3 60.0 60.1 60.6 

20 11.4 12.1 11.6 11.0 62.7 60.2 61.5 

22 11.5 10.4 10.0 10.0 60.0 58.2 60.3 

23 12.2 12.2 12.1 11.9 60.4 58.5 58.7 

24 12.3 11.9 11.2 11.3 59.2 59.5 59.3 

27 12.2 11.8 11.7 11.6 59.6 59.1 58.5 

28 11.8 13.7 12.1 12.0 62.2 61.0 61.2 

29 11.2 12.1 12.4 12.5 63.3 60.8 62.1 

30 11.9 13.1 12.2 12.0 60.2 59.7 58.7 

33 11.6 12.6 12.3 12.1 61.7 61.6 60.9 

38 11.5 11.9 11.4 11.2 62.2 60.0 60.6 

42 11.5 12.0 11.6 11.6 60.2 59.4 59.4 

44 12.0 12.1 11.4 11.4 60.0 59.4 59.7 

52 12.3 12.2 11.6 11.6 57.2 58.6 57.9 

70 11.7 13.2 12.6 12.3 61.0 59.9 60.2 

71 11.6 12.6 11.6 11.5 60.9 61.2 61.2 

75 10.0 12.7 11.4 10.9 62.2 60.4 61.3 

76 12.5 11.8 11.5 11.5 60.6 60.4 59.6 

77 11.8 12.1 11.7 11.4 59.3 59.0 58.9 

Avg. 11.8 12.4   11.7     11.6       60.9 59.8 60.0 

RMSE 1.080 0.727    0.702 1.495 1.305 

MAE 0.870 0.588    0.582 1.196 1.117 
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Figure 1. Wheat Growth and Development Stages 
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Figure 2.  The Study Area of Grainshed Basis

 
 
Source: 2009 Oklahoma wheat quality report. (2010)  
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Figure 3.  Location of Oklahoma Mesonet Stations and Elevators 

 
Notes: the study matched elevators’ quality data( points) with Mesonet stations’ weather data (flags) on each the closest distance 
basis. 
 

 
Source: Oklahoma Mesonet 
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Figure 4. Plot Yield and Precipitation                Figure 5. Plot Yield and Avg. Temp.  
 

    
 
Figure 6.  Plot Protein and Precipitation               Figure 7.  Plot Protein and Max. Temp.  
 

    
 
Figure 8.  Plot Protein and Yield                        Figure 9.  Plot Weight and Precipitation  
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Figure 10. Plot Weight and Maximum Temp.  Figure 11. Plot Weight and Minimum Temp.  
 

    
 
Figure 12.  Plot Weight and Yield                       Figure 13.  Plot Protein and Solar Radiation 
 

   
 
Figure 14.  Plot Weight and Solar Radiation       Figure 15.  Plot Yield and Solar Radiation  
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Figure 16.  Calculated Relationship between Yield and Protein and Test Weight Using 
Elasticity  

 
 


