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• The value of climate forecasts can be defined and 
evaluated in different ways. 

• Most studies have focused on the potential effect 
of climate information on the financial 
performance (revenues, profit, etc.) of a farm. 

• However, the use of economic performance 
measures, such as productivity, input 
substitution, inefficiency, etc., have received 
much less attention in the literature. 

Introduction



• Farm productivity and efficiency are important 
from a practical as well as from a policy point of 
view. 

• Farmers could use this information to improve 
their performance. 

• Policymakers could use this knowledge to 
identify and target public interventions to 
improve farm productivity and farm income. 

Introduction



• A review of the agricultural productivity and efficiency
literature reports few studies include climate in their 
models (Bravo-Ureta et al., 2007)

• Researchers have omitted climate from their empirical 
models by arguing that such variability is beyond the 
control of the producers; therefore, it should be treated 
as a random variable. 

• However, some argue that climate variability is not a 
pure random variable (Demir and Mahmud, 2002). 

Introduction



• Historical differences in climatic conditions are 
known with a reasonable degree of certainty. 

• Advances in climate forecasting and the ability 
to predict climate fluctuations provide 
opportunities to improve farm management. 

• Thus, omission of climate variables may lead to 
an inadequate representation of the production 
model.

Introduction



Main drops in productivity

1) Global energy crises of 1974 and 1979, 
2) Serious droughts in 1983, 1988 and 1995, and 
3) Agricultural policy intervention (in 1983 the Federal Government encouraged 

farmers -using the Payment-In-Kind, or PIK program- to reduce crop production to 
lower accumulated government-held commodity surpluses).



The overall purpose of this study is two-fold:

• The 1st goal of this study is to measure the effect of 
climatic variability on Agricultural Productivity and 
Efficiency using aggregate data and the Southeast 
US as a case of study.

• The 2nd goal is measure the value of climate 
information on the efficiency of US agriculture.

Objectives



• We implement the Stochastic Production Frontier 
(SPF) analysis, which is based on an econometric 
(parametric) specification of a production frontier.

• Frontier function provides the shape of the technology 
for the best performing decision making units. 

• The frontier approach allows us to evaluate the effective 
gap between current farm productivity and the 
potential productivity level given the existing 
technology in a particular region. 

• SPF is designed to incorporate stochastic disturbances 
into the model.

Methodology



Stochastic Production Frontier: A Graphical 
Representation
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Empirical model
Translog SPF

where VAit is the agricultural value-added for the State i in year t;
x are the inputs: cultivated land (A), labor (L) and capital (K); C is
a set of climate variables (Seasonal rainfall and seasonal max
temperature); and T is a time trend. The error term is composed of
two terms, v (stochastic shocks) and u which captures the
technical inefficiency (TI) relative to the stochastic frontier.



Empirical model
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where μi is the inefficiency effect, Ini is a vector of climate
information variables (ENSO, PP, Drought), the αs are
unknown parameters and ei is random noise.

To evaluate the effect of climate information on TE, we
regress the TI scores against selected climatic indexes



• Were collected from the USDA-ERS.
• We construct a state-by-year panel, 

covering 5 contiguous states in the 
SE US over 46 years from 1960-2006 
inclusive.

• Ball et al (2001) was follow to 
account for differences in quality 
and value of inputs and outputs.

Data



• We estimated 4 alternative models:
– Model 1 does not include any climatic variables. 
– Model 2 includes climatic variables only in the inefficiency 

function with neutral effects. 
– Model 3 is a non-neutral specification with climatic 

variables in the inefficiency function.
– Model 4 is a non-neutral specification with climatic 

variables in the production frontier and the inefficiency 
function (Full specification).

Results (climate biased)



• Three separate null hypotheses were tested using the 
likelihood ratio test (LRT):

– The null hypothesis that all production coefficients 
associated with the climatic variables are zero is strongly 
rejected.

– The null hypothesis that all efficiency coefficients associated 
with the climatic variables are zero is strongly rejected.

– Based on a LRT Model 4 (full representation) is the best 
representation for the data .

Results (climate biased)



• It tells how much the level of production changes when we 
change one of the parameter in the SPF

Elasticities

• The introduction of climate 
variable significantly affects 
the elasticity of inputs.

• RTS decreases by including 
climate



State Rank in 2004

California 1

Florida 2

Iowa 3

Illinois 4

Delaware 5

Idaho 6

Indiana 7

Rhode Island 8

Georgia 9

Massachusetts 10

Arizona 11

Arkansas 12

North Carolina 13

Connecticut 14

Oregon 15

New Jersey 16

Maryland 17

Minnesota 18

Ohio 19

Alabama 20

Nebraska 21

Maine 22

Washington 23

New York 24

Mississippi 25

South Carolina 26

Ranking by level of productivity

USDA/ERS Official Ranking

Without Including 
Climate variability

Including Climate 
Variability

State Ranking

Florida 1

Georgia 2

N. Carolina 3

Alabama 4

S. Carolina 5

State Ranking

Florida 1

Georgia 2

N. Carolina 3

S. Carolina 4

Alabama 5



• We estimated 5 alternative models
– Model 1: Knowing that the cropping season  is either El 

Niño or La Niña
– Model 2: Knowing that the cropping season  is not normal 

(Neutral)
– Model 3: Knowing the predicted annual rainfall and

average  MAX TEMP
– Model 4: Knowing the predicted seasonal rainfall and MAX 

TEMP
– Model 5: Knowing that the cropping season  is not normal 

(neutral) and the predicted seasonal rainfall and MAX 
TEMP

Results (the value of climate information )



Results (the value of climate information )

 El Niño La Niña Enso Annual 
Rainfall 

Summer 
Rainfall 

Spring 
Rainfall 

Average 
Max T° 

Summer 
Max T° 

Spring 
Max T° 

Model 1 + -        
Model 2   +       
Model 3    +***   +   
Model 4     +*** +***  +* + 
Model 5   + +***   +   
 
***, p>0.01; **, p>0.05, *, p>0.1



Conclusions
• Productivity and efficiency studies on agriculture using 

regional data tend to ignore environmental effects, assuming 
that such variables are random.

• But it is found that agricultural production is under the 
influence of variations of climatic variables that are location-
specific.

• If these environmental variables are ignored, it may cause 
improper specification of the TIE in models of agricultural 
production.

• Results shows that climatic variables affect directly and 
indirectly through interactions, mean output elasticities, 
economies to scale and technical efficiencies.



Conclusions
• When the climatic conditions are taken into account, States at 

locations with relatively unfavorable environmental conditions, 
are able to gain in terms of TE.

• Significant changes are observed in the size and spread of TE 
scores when climatic variables are incorporated in the 
production and ineficiency functions. 

• The effect of Climate Information on agricultural efficiency 
present mixed results.

– Non-significant results were found when ENSO was used as the climate 
indexes.

– However information on seasonal rainfall and Max Temp display a 
positive and significant effect on reducing the inefficiency in this sector. 



• Re estimate this model by production sectors 
(crops, livestock and forestry) and check the impact 
of climate variability and information by sector.

• Estimate the elasticity of climate information on TE.

• Conduct a sensitivity analysis of the impact of 
seasonal rainfall and max temp forecasts on TE

Work in progress
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