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Abstract: Farmland and capital are an important and rapidly expanding component of the agricultural

economy, and empirical evidence suggests that these assets are quasi-�xed in that adjustment costs are

incurred when holdings are altered. Increased interest in the rate of return for investing in farmland suggests

that an important consideration is the e�ect of adjustment costs on this return. A novel theoretical model

is developed that ties together contributions from the farmland pricing and adjustment cost literatures, and

the �rst order conditions for a utility maximizing decision maker are rearranged into intertemporal arbitrage

equations that are similar in spirit to traditional �nance models. The common assumptions that land and

capital are quasi-�xed assets, and that production is characterized by constant returns to scale are tested

and the evidence supports these assumptions. An empirical application of the arbitrage equations provides

evidence that risk aversion and adjustment costs are jointly signi�cant components of agricultural production,

and that adjustment costs generate signi�cant changes in the rate of return to farmland. The results have

important policy implications as sluggish supply response due to quasi-�xity can lead to dramitically in
ated

commidity prices, and an accurate measure of the farmland return can help determine how far the extensive

margin will expand or contract in response to a variety of policy scenarios, such as the subsidization of corn

for ethanol, an increase in the variety of subsidized crop insurance products, or the introduction of new

revenue support programs such as ACRE.



1 Introduction

1.1 Motivation

The United States Department of Agriculture's Economic Research Service (ERS) reports that near-record

harvests in 2008, coupled with improved farm product demand and high commodity prices, should result in

increased spending on farm real estate and capital investment. Since 2000, holdings of these assets at the

national level has more than doubled from $1:03 trillion to $2:16 trillion, and currently represent 92% of

all farm assets. These �gures indicate that farmland and capital are an important and rapidly expanding

component of the agricultural economy.

Empirical evidence suggests that farmland and capital are quasi-�xed in that adjustment costs are in-

curred when holdings are altered. A paper by de Fontnouvelle and Lence (2002) states that transaction

costs for buying/selling farmland are as high as 15% of the land price to cover brokerage fees, legal fees,

appraisals, and surveys.1 Research analyzing the quasi-�xity of capital is common in the agricultural produc-

tion literature (e.g. Vasavada and Chambers, 1986; Oude Lansink and Stefanou, 1997; and Gardebroek and

Oude Lansink, 2004), where examples of adjustment costs include lending fees, learning costs, building and

environmental licensing fees, and the value of time spent preparing investments. As a fraction of investment

expenditures for a sample of Dutch pig farms, Gardebroek and Oude Lansink (2004) �nd that adjustment

costs for buildings and machinery are as high as 1:6% and 5:1%, respectively.

There is considerable interest in the rate of return for investing in an acre of farmland. From 1960-1999,

sample data suggests that this return has averaged 6:2% in the United States. Compared to the 2:9% average

return on a relatively riskless security over the same period, this implies an equity premium just over 3%.

While not as large as the premium for investing in the S&P index, it has attracted attention from investors

outside of the agricultural sector. A recent New York Times article titled \Food is Gold, so Billions Invested

in Farming," reports that huge investment funds have poured hundreds of billions of dollars into commodity

markets and big private investors are buying farmland. However, an important question that has not been

addressed is how the presence of adjustment costs might a�ect the farmland rate of return.

Answering this question is not as simple as with other investment opportunities, where the rate of

return is determined exogenously (i.e. stocks, bonds, etc.). Investment in agriculture is composed of many

simultaneous decisions such as how much land to hold, how much capital and variable inputs to use, and

what farm products to produce. Additionally, farmers make these decision with an eye toward smooth

wealth accumulation over time (Jensen and Pope, 2004), and the costs and bene�ts of farming likely include

1The authors note that in the absence of a broker, land adjustments still carry implicit costs for services that include search,
advertising, showing of property, and provision of land market information.
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many latent measures that are not observable to the researcher. These include the marginal e�ects of land,

capital, and outputs on total variable inputs (intensive margin e�ects), and adjustment costs associated with

quasi-�xed inputs.

To address these issues, a theoretical model is developed that incorporates life-cycle household consump-

tion, agricultural production, �nancial economics, and adjustment costs for quasi-�xed inputs in one coherent

framework. This model ties together contributions from the farmland pricing and adjustment cost litera-

tures, and the �rst order conditions for a utility maximizing decision maker are rearranged into intertemporal

arbitrage equations that are similar in spirit to traditional �nance models.

The derivation of the theoretical arbitrage model relies on the assumptions that land and capital are

quasi-�xed assets, and that production is characterized by constant returns to scale. These assumptions

are empirically tested using parameter estimates from a system of variable input demands that is derived

from a 
exible speci�cation for variable costs of production. This speci�cation utilizes a new and innovative

approach for overcoming aggregation and unobservable variable issues in econometric models of production,

and was recently developed in LaFrance and Pope (2008a, 2008b).

An empirical application of the arbitrage system utilizes a 
exible speci�cation for variable costs of

production and an explicit representation of adjustment costs to estimate the parameters of the model.

These estimates are then used to address the following questions: Are risk aversion and adjustment costs

jointly signi�cant components of agricultural production? If adjustment costs are signi�cant, how is the rate

of return to farmland a�ected?

The main contributions of this paper are: the development of a novel theoretical model that synthesizes

approaches from the farmland pricing and adjustment cost literatures; empirical evidence from the demand

system estimation supporting the assumptions of constant returns to scale and quasi-�xity of land and capital;

evidence from the arbitrage system estimation suggesting that risk aversion and adjustment costs are jointly

signi�cant components of agricultural production, and that adjustment costs generate signi�cant changes in

the rate of return to farmland. The �ndings for the joint signi�cance of risk aversion and adjustment costs

represent a novel contribution, as this joint hypothesis has never been tested in the literature. The adjusted

rate of return �ndings are also novel, as the e�ects of adjustment costs on farmland returns have not been

previously calculated.

These �ndings have important implications for the agricultural economy and associated policy instru-

ments. The presence of non-zero adjustment costs for land and capital imply slower adjustments (i.e. not

instantaneous) to their the optimal levels. Since both assets are necessary components of output production,

slower adjustments will lead to lagged supply response to agricultural policy. This can result in dramatically

in
ated commodity prices as recently seen in the world economy. Understanding the e�ect that adjustment
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costs have on the farmland rate of return has considerable policy relevance as well. This rate of return deter-

mines how far the extensive margin will expand or contract in response to a variety of policy scenarios, such

as the subsidization of corn for ethanol, an increase in the variety of subsidized crop insurance products, or

the introduction of new revenue support programs such as ACRE. It can also be used to calibrate payments

for a variety of existing government programs, such as the conservation reserve program.2

Mishra et. al. (2004) note that the issue of farmland valuation for agricultural purposes is a perennial

topic of interest for agricultural policy makers and farmers. Indeed, a recent document from the ERS (ERS,

2008) reports that the Food, Conservation, and Energy Act of 2008 will govern the bulk of Federal agriculture

and related programs for the next �ve years, and includes programs that cover income and commodity price

support, farm credit, and risk management. The e�ectiveness of these programs crucially depends on an

accurate understanding of farmland valuation, and the empirical results presented in this paper support

previous �ndings that farmland valuation is driven by several factors including risk aversion, adjustment

costs, and the opportunity cost of on-farm investment (see Just and Miranowski, 1993; Lence and Miller,

1999; and references therein).

1.2 Literature Review

Starting with Just and Miranowski (1993) and followed by Lence and Miller (1999) and Chavas and Thomas

(1999), the farmland pricing literature was extended to include adjustment costs (referred to as transac-

tion costs in this literature) as an additional explanatory factor for the notorious boom/bust cycles of land

prices. In these papers, farmland is the only quasi-�xed input and the adjustment costs associated with

the buying/selling of farmland are modelled as a linear function of the land price or the change in acreage.

Importantly, these models were not extended to the case of multiple quasi-�xed inputs and nonlinear ad-

justment costs, which are common assumptions in the adjustment cost literature. The model developed in

this paper is similar to the above farmland pricing models, but includes multiple quasi-�xed inputs and a

nonlinear, everywhere continuous structural speci�cation for adjustment costs.3

The adjustment cost literature is reviewed in Gardebroek and Oude Lansink (2004). In the 1950's two

theories explaining adjustment of quasi-�xed factors were developed, Cochrane's (1955) treadmill theory and

Johnson's �xed asset theory (1956). Recently, Chavas (1994) reformulated the �xed asset model into a formal

model starting from the farmers' long-run objective function. Beginning in the 1980's, many agricultural

2It should be noted that the revenue data used in this analysis to construct the farmland rate of return, discussed more
fully in Section 3.2, includes the value of government payments. This approach is empirically bene�cial as it, at least implicitly,
incorporates the impacts of farm policy on the distribution of net returns in asset management decisions.

3Assuming that the nonlinear adjustment costs are everywhere continuous avoids derivation of unwieldy �rst order conditions
pointed out in Lence's (2001) critique of the modelling approaches of Just and Miranowski (1993) and Chavas and Thomas
(1999).
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economic studies have applied the adjustment cost framework to explain adjustment of quasi-�xed inputs

(e.g. Vasavada and Chambers, 1986; Howard and Shumway, 1988; Stefanou et. al., 1992; Thijssen, 1996;

and Gardebroek and Oude Lansink, 2004).

It is worth distinguishing between two common approaches for modeling quasi-�xed input adjustments

in the literature. Mundlak (2001) distinguishes between what he calls the primal and dual approaches to

endogenous dynamics. The primal approach speci�es production as a function of the level of the quasi-�xed

input (among other arguments) and explicitly represents adjustment costs as a separate function of the

change in the level of the quasi-�xed input (i.e. the investment). The dual approach speci�es production

as a function of the level of the quasi-�xed input and implicitly represents adjustment costs by including

investment as an additional argument in the same function (see McLaren and Cooper, 1980; Epstein, 1981;

and Epstein and Denny, 1983). Since one of the objectives of this paper is to understand how adjustment

costs a�ect the rate of return to farmland, the primal approach is preferred because its provides a generalized

representation of the adjusted return that nests the unadjusted rate.

A popular speci�cation of the adjustment cost function is the symmetric quadratic, implying strictly

convex adjustment costs over the whole range of adjustment. If the adjustment cost function is convex,

then the increasing marginal investment costs provide a rationale for investment spreading over time. A

number of studies have employed more general speci�cations to allow for asymmetry, including Chang and

Stefanou (1988), Pfann and Verspagen (1989), and Pfann and Palm (1993). In addition, theoretical and

empirical models have been developed that combine asset �xity theory and adjustment cost theory. Building

on the work of Rothschild (1971), Hsu and Chang (1990) show that an adjustment cost function that is

non di�erentiable at the origin causes thresholds for investment and disinvestment. Abel and Eberly (1994)

present a uni�ed model of investment that includes a di�erence between the purchase and selling prices of

capital, asymmetric adjustment costs, and a �xed cost of adjustment. Empirical applications based on these

studies include Oude Lansink and Stefanou (1997) and Pietola and Myers (2000).

An important shortcoming of the models presented in the adjustment cost literature is the omission of

risk averse decision makers whose objective is to smooth wealth/consumption over time. This is an important

consideration for modeling adjustment costs in the U.S. agricultural sector for two reasons. First, a recent

ERS report on the structure and �nances of U.S. farms, Hoppe et. al. (2007), �nds that 98% of U.S. farms

remained family farms as of 2004, and that these family farms account for 85% of the total value of production

and own 93% of all farm assets. In a family farm, investment, consumption, and production decisions are

made with an eye toward smooth wealth accumulation over time. This assumption is supported by Jensen

and Pope (2004), who �nd that Kansas farm households facing greater uncertainty in income maintain larger

stocks of wealth in order to smooth consumption. Second, empirical evidence presented in Whited (1998)
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and Gardebroek and Oude Lansink (2004) suggests that inclusion of �nancial variables can help explain

capital investments over time in an adjustment cost framework.

The theoretical model presented in this paper synthesizes common approaches in the farmland pricing

and adjustment cost literatures. While farmland pricing models account for risk averse decision makers

whose objective is to smooth wealth/consumption over time, the inclusion of multiple quasi-�xed inputs

and nonlinear adjustment cost speci�cations are omitted. Conversely, adjustment cost models account for

multiple quasi-�xed inputs and nonlinear adjustment costs, but pull up short of including risk averse decision

makers that smooth wealth/consumption over time.

It is worth noting that the system of arbitrage equations derived in the next section are similar in spirit to

traditional �nance models, especially Merton's (1973) intertemporal capital asset pricing model (ICAPM).

A review of theoretical and empirical asset pricing models in the �nance literature is provided in Cochrane

(2005) and Singleton (2006), and speci�cally for the ICAPM in Brennan et. al. (2005).

Since the ICAPM provides a convenient framework for synthesizing the farmland pricing and adjustment

cost models, it is brie
y presented here. In general, the ICAPM states that the optimal holding of a risky

asset in period t (measured in dollars) is de�ned by

Et [mt+1 (rF;t+1 � r)] = 0; (1)

where Et (�) is the conditional expectation at the beginning of period t given available information, mt+1 is

the stochastic intertemporal marginal rate of substitution of wealth between periods t and t + 1, rF;t+1 is

the stochastic rate of return realized in period t + 1 for a dollar invested in the risky asset in period t, r is

the time-constant, known rate of return for investing in an alternative risk-free asset (typically assumed to

be some form of government bond or T-bill), and rF;t+1 � r is the excess return of the risky asset over the

alternative return. The intertemporal marginal rate of substitution mt+1 is stochastic because it depends on

wealth in period t + 1, which is not known with certainty at time t when the investment decision is made.

The excess return is also stochastic, and its covariance with mt+1 generates a risk correction for the risky

asset. To see this, rewrite the above expression as

Et (rF;t+1 � r) = �
COV (mt+1; rF;t+1 � r)

Et (mt+1)
; (2)

which implies that a negative covariance generates a positive excess return to reward the reduction in wealth

variance. A signi�cant strength of the ICAPM is its generality, as the arbitrage equation (2) holds for any

risky asset.
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The remainder of this paper is organized as follows. Section 2 develops the theoretical model of agricul-

tural arbitrage that synthesizes the farmland pricing and adjustment cost models, and an estimable system

of arbitrage equations for on- and o�-farm investments is derived from the model's �rst order conditions.

Secion 3 describes the data that is used in the estimation of the variable input demand system (Section 4)

and the estimation of the arbitrage system (Section 5). Section 6 concludes.

2 Theoretical Model of Agricultural Arbitrage

The model developed in this section incorporates life-cycle household consumption, agricultural production,

�nancial economics, and adjustment costs for quasi-�xed inputs in one coherent framework. The agent's

decision process is representative of a family farm, in which the agent controls the means of production

and makes investment decisions to generate wealth used for consumption good purchases. The �rst order

conditions from the model are used to construct arbitrage equations for on- and o�-farm investments similar

to the ICAPM framework.

2.1 Set Up

A list of the variable de�nitions used in the model is provided in Table 1. All �nancial returns, farm asset

gains/losses, and revenues from the production of farm outputs are assumed to be realized at the end of each

period. Variable inputs are assumed to be committed to farm production activities at the beginning of each

decision period and the current period market prices for the variable inputs are known when these decisions

are made.

The farm's production technology is represented by a Pope and Just (1996) ex ante variable cost function

Ct
�
�wt; At;Kt; �Yt

�
; (3)

which is a function of an nV -vector of variable input prices �wt (the non-standard notation is used to simplify

the speci�cation for the cost function in Section 4), total farmland At, total value of capital measured in

dollars Kt, and an nY -vector of expected outputs �Yt. Moschini (2001) notes that the standard cost function

(where ex post output Yt replaces ex ante expected output �Yt) is not relevant when farmers make input

decisions before realizing production shocks, as is the case here. Including At and Kt as arguments of Ct (�)

implies that land and capital are treated as �xed when variable input decisions are made. Thus, the static

minimization of variable costs given input prices, land, capital, and expected output is subsumed in the

model.
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For this analysis it is useful to work with a per acre version of the cost function which is derived from

(3) by imposing linear homogeneity in land, capital, and expected output (i.e. imposing constant returns

to scale). This approach is supported by Chavas (2001), which reports there is no strong evidence that

diseconomies of scale exist for large farms, and there is a fairly wide range of farm sizes where average cost is

approximately constant (e.g. Kislev and Peterson, 1996). De�ning the N �N diagonal matrix � (xi) such

that xi is the i
th main diagonal element for each i = 1; :::; N , the per acre cost function is de�ned as

ct (�wt; kt;� (�yq;t) st) �
1

At
Ct
�
�wt; At;Kt; �Yt

�
= Ct

�
�wt; 1; kt; �Yt=At

�
; (4)

where kt, �yq;t, and st are capital per acre, expected yield, and shares of land devoted to farm outputs

q = 1; :::; nY , respectively. Shares are de�ned as sq;t � aq;t=At for all q = 1; :::; nY where aq;t is acreage

allocated to output q. Note that � (�yq;t) st is the product of an nY �nY diagonal matrix of expected yields

and an nY -vector of output shares, and is related to the nY -vector of total expected output by

�Yt =� (�yq;t)at = At� (�yq;t)at=At = At� (�yq;t) st: (5)

The empirical speci�cation for the per acre cost function ct (�) used in Section 5 requires data on expected

outputs divided by total farmland, �Yt=At, as a consequence of imposing linear homogeneity. Replacing

this argument with � (�yq;t) st in (4) is done for two reasons. First, since ex ante planted acreage and total

farmland data is available for the outputs considered in the empirical application, a measure for output

shares is readily available. Second, forecasting expected yields using ex post yield data is more e�ective than

using ex post output data to forecast expected output since the share of farmland devoted to each output can

vary widely over time. Thus, replacing �Yt=At with � (�yq;t) st as the argument in the per acre cost function

is warranted.

To distinguish between quasi-�xed and variable inputs, adjustment costs for land and capital are included.

It is assumed that when farmers change land and capital holdings, adjustment costs for these quasi-�xed

inputs are incurred. Speci�cally, the costs of adjusting land and capital from (At�1; kt�1) to (At; kt) in period

t are represented by the adjustment cost function 	t (At�1; At; kt�1; kt), which is everywhere continuous and

di�erentiable.

Initial wealth in period t, Wt, is allocated at the beginning of the period to o�-farm assets, quasi-�xed

inputs, production costs, and consumption expenditures according to

Wt = Bt + Ft| {z }
o�-farm assets

+ (pL;t + kt)At| {z }
quasi-�xed inputs

+ Atct +	t| {z }
production costs

+ Mt|{z}
consumption

: (6)
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O�-farm assets include risk-free bonds and risky �nancial instruments, total monetary holdings being Bt

and Ft. Quasi-�xed inputs are land At and capital per acre kt, with pL;t representing the price of land.

Production costs include both variable costs per acre ct and adjustment costs 	t. Although some production

costs occur at or near harvest (i.e. near t + 1), all costs are included in (2.4) at time t because they are

incurred before revenues are received. Mt represents total expenditure on consumption goods.

The ex post actual yield for farm output q, yq;t+1, is realized stochastically at the end of the period such

that

yq;t+1 = �yq;t (1 + "q;t+1) ; q = 1; : : : ; nY (7)

where �yq;t is expected yield and "q;t+1 is a random shock with E("q;t+1) = 0. Total revenue realized from

production of farm outputs at the end of the period is

Rt+1 �
nYX
q=1

rev per acrez }| {
pYq;t+1yq;t+1sq;tAt| {z }
revenue farm product i

= p0Y;t+1� (yq;t+1) stAt| {z }
total revenue farm products

; (8)

where the nY � 1 price vector pY;t+1 is realized at the end of the period. The second term on the right hand

side is exactly the same as the �rst, but written in matrix notation.

End-of-period wealth Wt+1 is the sum of gross returns on o�-farm assets, the end-of-period value of

quasi-�xed inputs, and revenues from farm products,

Wt+1 = (1 + r)Bt + (1 + rF;t+1)Ft| {z }
gross return on o�-farm assets

+
�
pL;t+1 +

�
1 + �K;t+1

�
kt
�
At| {z }

end-of-period value quasi-�xed inputs

+ Rt+1| {z } :
farm rev

(9)

Here r is the risk-free rate of return on bonds, rF;t+1 is the rate of return for the risky �nancial instrument,

pL;t+1 is the price of land at the end of the period, and �K;t+1 is the percentage change in the value of capital

realized at the end of the period.

The farm household's objective is the maximization of the expected stream of utility 
ows from con-

sumption at time t,

Vt = Et

24 1X
j=0

��j�t+j

35 ; �t+j � � (pQ;t+j ;Mt+j) ; (10)

where Vt is the expected present value in period t, Et (�) is the conditional expectation at the beginning of

period t given available information, ��1 is the single period discount factor, and �t+j � � (pQ;t+j ;Mt+j) is

the periodic indirect utility function for consumption in period t + j given total consumption expenditures

Mt+j and consumption good prices pQ;t+j . Including the indirect utility function implies that the static

optimization of utility from consumption goods given expenditures and prices is subsumed in the model.
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The problem given by the set of equations (6)-(10) is summarized as a dynamic programming problem

with corresponding Bellman equation

Vt (Wt; At�1; kt�1; �) = max
M;B;F;k;A;s;�y

�t + �
�1Et [Vt+1 (Wt+1; At; kt; �)] ; (11)

subject to the constraints (6)-(9). Note that the present value in period t depends upon the given states of

initial wealth Wt, land At�1, and capital kt�1. Additional arguments of the value function are denoted by �

and are not explicitly represented here as the empirical analysis focuses on wealth, capital, and farmland.4

This maximization problem is equivalently expressed using the Lagrangian

L = �t + �
�1Et [Vt+1 ((1 + r)Bt + (1 + rF;t+1)Ft

+
�
pL;t+1 +

�
1 + �K;t+1

�
kt
�
At + p

0
Y;t+1� (�yq;t (1 + "q;t+1)) stAt; At; kt; �

��
+�t [Wt �Bt � Ft � (pL;t + kt)At �Atct �	t �Mt] ; (12)

where �t is the shadow value of an additional dollar of wealth in period t.

4It is important to note that this omission is a limiting factor in the analysis, especially if historical prices, rates of return,
and/or asset pricing errors contain information on expected values in the next period.
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2.2 Derivation of Arbitrage Equations

The Kuhn-Tucker conditions for optimal (Mt; Bt; Ft; kt; At; st; �yt) are:

@L
@M

=
@�t
@M

� �t � 0;M � 0;M @L
@M

= 0; (13)

@L
@B

= ��1Et

�
@Vt+1
@W

(1 + r)

�
� �t � 0; B � 0; B

@L
@B

= 0; (14)

@L
@F

= ��1Et

�
@Vt+1
@W

(1 + rF;t+1)

�
� �t � 0; F � 0; F

@L
@F

= 0; (15)

@L
@k

= ��1Et

�
@Vt+1
@W

�
1 + �K;t+1

�
At +

@Vt+1
@k

�
��t

�
At +

@ct
@k

At +
@	t
@kt

�
� 0; k � 0; k @L

@k
= 0; (16)

@L
@A

= ��1Et

�
@Vt+1
@W

�
pL;t+1 +

�
1 + �K;t+1

�
kt + p

0
Y;t+1� (�yq;t (1 + "q;t+1)) st

�
+
@Vt+1
@A

�
��t

�
pL;t + kt + ct +

@	t
@At

�
� 0; A � 0; A@L

@A
= 0; (17)

@L
@s

= ��1Et

�
@Vt+1
@W

� (�yq;t (1 + "q;t+1))pY;t+1At

�
��t

�
@ct
@s

At

�
� 0; s � 0; s0 @L

@s
= 0; (18)

@L
@�y

= ��1Et

�
@Vt+1
@W

� (pYi;t+1si;t) (i+ "t+1)At

�
� �t

�
@ct
@�y

�
� 0; �y � 0; �y0 @L

@�y
= 0: (19)

The following relationships are implications of the envelope theorem and hold for all t:

@Vt
@W

= �t;
@Vt
@A

= ��t
@	t
@At�1

; and
@Vt
@k

= ��t
@	t
@kt�1

; (20)

where the variables (�t; At; kt) are all evaluated at their optimal choices. Interior solutions for all variables

are assumed for what follows.

2.2.1 Consumption

Using �t =
@Vt
@W , the �rst order condition for consumption expenditures is rewritten as

@�t
@M

=
@Vt
@W

; (21)

which implies the marginal value of a dollar must be the same in any use. This equivalence allows one

to construct the intertemporal marginal rate of substitution as a function of consumption expenditures

or wealth. The latter is used in what follows since the empirical application in Section 5 utilizes a long

time series of state-level wealth (which is not available for consumption or consumption expenditures of
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agricultural households).

2.2.2 Bonds

Using �t =
@Vt
@W , the �rst order condition for bonds is rewritten as

��1Et

�
@Vt+1
@W

(1 + r)

�
=
@Vt
@W

: (22)

This is the standard marginal condition for the optimal holding of bonds under the ICAPM. The right hand

side is the opportunity cost of a marginal reduction in current consumption (since @Vt
@W = @�t

@M above) due to

a marginal increase in the investment in bonds in period t. The left hand side ��1Et

�
@Vt+1
@W (1 + r)

�
is the

marginal increase in discounted expected value the farmer obtains from the extra payo� of (1 + r) received at

the end of the period. The farmer continues to buy or sell bonds until the marginal loss equals the marginal

gain.

2.2.3 Risky Financial Instrument

Similarly, the �rst order condition for the risky �nancial instrument is rewritten as

��1Et

�
@Vt+1
@W

(1 + rF;t+1)

�
=
@Vt
@W

: (23)

This is the standard marginal condition for the optimal holding of a risky asset under the ICAPM. The right

hand side is the same as in (22), and the left hand side ��1Et

h
@Vt+1
@W (1 + rF;t+1)

i
is the marginal increase

in discounted expected value the farmer obtains from the extra payo� of 1 + rF;t+1 received at the end of

the period.

The �rst order conditions for bonds and the risky �nancial instrument are rewritten as

��1Et

"
@Vt+1
@W
@Vt
@W

(1 + r)

#
= 1 (24)

and

��1Et

"
@Vt+1
@W
@Vt
@W

(1 + rF;t+1)

#
= 1: (25)

Subtracting the �rst from the second yields the standard ICAPM arbitrage equation for investing in the

risky instrument relative to investing in bonds

Et [mt+1 (rF;t+1 � r)] = 0; (26)

11



where mt+1 � ��1
�
@Vt+1
@W = @Vt@W

�
is the stochastic intertemporal marginal rate of substitution of wealth, and

rF;t+1 � r is the excess return of the risky instrument over bonds. Thus, the theoretical model incorporates

the ICAPM for o�-farm risky investments.

2.2.4 Land

Using �t =
@Vt
@W and @Vt+1

@A = ��t+1 @	t+1

@At
= �@Vt+1

@W
@	t+1

@At
, the �rst order condition for land is rewritten as

��1Et

�
@Vt+1
@W

�
pL;t+1 +

�
1 + �K;t+1

�
kt + p

0
Y;t+1� (�yq;t (1 + "q;t+1)) st �

@	t+1
@At

��
=
@Vt
@W

�
pL;t + kt + ct +

@	t
@At

�
: (27)

The right hand side is the opportunity cost of a marginal reduction in current consumption due to a marginal

increase in the investment in land in period t. The farmer pays pL;t for the additional acre, kt + ct for

the additional capital and variable costs to farm the acre, and incurs additional adjustment costs @	t

@At
.5

Thus, the extra investment associated with the additional acre is pL;t + kt + ct +
@	t

@At
. The left hand

side is the marginal increase in discounted expected value the farmer obtains from the extra payo� of

pL;t+1 +
�
1 + �K;t+1

�
kt + p

0
Y;t+1� (�yq;t (1 + "q;t+1)) st �

@	t+1

@At
received at the end of the period. pL;t+1 is

the end-of-period value of the additional acre,
�
1 + �K;t+1

�
kt is the end-of-period value of the additional

capital used to farm the acre, p0Y;t+1� (�yq;t (1 + "q;t+1)) st is the additional revenue from production of farm

outputs, and @	t+1

@At
is the marginal adjustment cost given that acreage will be adjusted to At+1 in the next

period.67 The farmer continues to invest in land until the marginal loss equals the marginal gain.

As with the risky �nancial instrument, the arbitrage equation for increasing land in period t by an

additional acre relative to investing in bonds is

Et [mt+1 (rL;t+1 � r)] = 0; (28)

5In general, the sign of @	t
@At

depends on the initial level of land At�1 and can be either positive or negative. For example,

under a quadratic speci�cation 	t (At�1; At) =
1
2

 (At �At�1)2, this implies @	t

@At
= 
 (At �At�1), which is positive when

At > At�1 and negative when At < At�1.
6Using the notation for total revenues de�ned above, Rt+1 � p0Y;t+1� (�yi;t (1 + "i;t+1)) stAt, the marginal revenue per acre

is
@Rt+1
@At

= p0Y;t+1� (�yi;t (1 + "i;t+1)) st.

7In general, the sign of
@	t+1
@At

depends on the future level of land At+1 and can be either positive or negative. Under a

quadratic speci�cation,
@	t+1
@At

= 
 (At+1 �At), which is positive when At+1 > At and negative when At+1 < At.
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where mt+1 is de�ned as above and the rate of return is de�ned by

rL;t+1 �
extra payo� - extra investment

extra investment

=
pL;t+1 � pL;t + �K;t+1kt + p0Y;t+1� (�yq;t (1 + "q;t+1)) st � ct �

�
@	t+1

@At
+ @	t

@At

�
pL;t + kt + ct +

@	t

@At

: (29)

2.2.5 Capital

Using �t =
@Vt
@W and @Vt+1

@k = ��t+1 @	t+1

@kt
= �@Vt+1

@W
@	t+1

@kt
, the �rst order condition for capital is rewritten as

��1Et

�
@Vt+1
@W

��
1 + �K;t+1

�
At �

@	t+1
@kt

��
=
@Vt
@W

�
At +

@ct
@k

At +
@	t
@kt

�
: (30)

The right hand side is the opportunity cost of a marginal reduction in current consumption due to a marginal

increase in the investment in capital per acre in period t. Since this increase is made across all acres,

the farmer pays At for the additional capital, receives a reduction in total variable costs
@ct
@k At (assuming

additional capital reduces variable costs, @ct@k < 0), and incurs additional adjustment costs @	t

@kt
.8 Thus, the

extra investment implied by this increase is At+
@ct
@k At+

@	t

@kt
. The left hand side is the marginal increase in

discounted expected value the farmer obtains from the extra payo� of
�
1 + �K;t+1

�
At� @	t+1

@kt
received at the

end of the period. Since the increase in capital is made across all acres,
�
1 + �K;t+1

�
At is the end-of-period

value of the additional capital, and @	t+1

@kt
is the marginal adjustment cost given that capital will be adjusted

to kt+1 in the next period.
9 The farmer continues to invest in capital per acre until the marginal loss equals

the marginal gain.

As with land, the arbitrage equation for increasing capital per acre in period t by an additional dollar

relative to investing in bonds is

Et [mt+1 (rK;t+1 � r)] = 0; (31)

where mt+1 is de�ned as above and the rate of return is de�ned by

rK;t+1 �
extra payo� - extra investment

extra investment

=
�K;t+1At � @ct

@k At �
�
@	t+1

@kt
+ @	t

@kt

�
At +

@ct
@k At +

@	t

@kt

: (32)

8As with land, the sign of @	t
@kt

depends on the initial level of capital kt�1 and can be either positive or negative.
9As with land, the sign of

@	t+1
@kt

depends on the future level of capital kt+1 and can be either positive or negative.
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2.2.6 Shares

In a similar manner, the arbitrage equations for increasing the share of output i in period t by an additional

unit relative to investing in bonds are

Et
�
mt+1

�
rSq;t+1 � r

��
= 0; q = 1; :::; nY (33)

where mt+1 is de�ned as above and the rate of return for this investment is de�ned by

rSq;t+1 �
extra payo� - extra investment

extra investment

=
�yq;t (1 + "q;t+1) pYq;t+1At � @ct

@sq
At

@ct
@sq

At
: (34)

Since the �rst term in the numerator is just the extra payo� for increasing the share by an additional unit

and the second is the the extra investment, this is the ratio of the (extra payo� - extra investment) to the

extra investment. Thus, rSq;t+1 is the rate of return for increasing the share of output q by an additional

unit, and rSq;t+1 � r is the associated excess return over bonds. Note that the extra investment is solely

a function of increased variable costs. In reality, there are likely adjustment costs associated with altering

crop shares, in which case a marginal adjustment cost function would become part of the investment and

payo� expressions as with farmland and capital above.10

The equations (26), (28), (31), and (33) together form a system of arbitrage equations. Empirical

counterparts to this system of equations are derived and estimated in Section 5 using speci�cations for the

marginal value of wealth function, the per acre variable cost function, the adjustment cost function, and

an assumption on the expectations process. As mentioned in the introduction, a system of variable input

demands is estimated in Section 4 and the parameter estimates are used to test the constant returns to scale

and quasi-�xed input assumptions used in this section. The data used for these applications is discussed in

the following section.

3 Data

State-level panel data is used in the empirical applications presented in Sections 4 and 5. The same states are

included in both applications. The limiting factor for which states are included is the choice of farm outputs

included in the system of arbitrage equations. The choice of crops is in turn limited by the availability

10One can easily extend the adjustment cost function to include vectors of current and lagged crop shares, i.e.
	t (At�1; At; kt�1; kt; st�1; st). This is a focus of ongoing research.
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of planted acreage data. A preliminary analysis of data availability indicated that, for any four crops, the

number of states that planted all four in all years between 1960 and 1999 was largest for corn, oats, soybeans,

and wheat.11 Thus, these farm outputs are used and the 17 states that �t the inclusion criteria are Georgia,

Iowa, Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, North Carolina, North Dakota, Nebraska,

Ohio, Oklahoma, Pennsylvania, South Carolina, South Dakota, and Wisconsin.

3.1 Data for Demand System Estimation

The state-level variables required to estimate the system of demand equations in Section 4 are: variable input

expenditures and prices, total variable cost, total capital, total farmland, and instruments to account for the

joint decision making nature of the farm. The majority of the data is from Eldon Ball's state-level panel

that spans 1960-1999. This data has been compiled by the USDA/ERS and is described in detail in Ball

et. al. (1999). It is the most comprehensive and consistent data on revenues and costs for the agricultural

sector available at this time.

The speci�c aggregate variable input categories considered in this analysis are labor, energy, agricultural

chemicals, and other materials. To construct these accounts, the ERS collects state-level nominal expen-

diture and price data for a collection of subaggregate variable inputs which are discussed in more detail

below. The aggregate nominal variable input expenditure accounts are constructed by summing across sub-

aggregate nominal expenditure data, and Divisia price indexes for each aggregate category (except labor)

are constructed from the subaggregate prices using expenditure shares as weights.

Each of the four aggregate variable input categories are constructed using subaggregate expenditure

and price data, which was provided by Eldon Ball. The provision of the subaggregate data allowed for

reconstruction of aggregate variable input expenditure and price data where deemed necessary. Unless

indicated otherwise, the methodology for constructing the expenditure and price aggregates presented below

is attributed to Eldon Ball.

The labor subaggregates are hired labor and self employed (unpaid family) labor. Labor hours worked

are reported for both hired and self employed (unpaid family) workers, and the compensation for hired

labor includes the value of provided housing and contributions to social insurance, and is quality-adjusted

to account for quality changes over time. The compensation for self employed labor from the ERS data was

not used in this analysis, as it is an inferred opportunity cost of working on the farm. The hired labor wage

rate more accurately measures the replacement cost of self employed workers, and is used instead for this

reason. Labor expenditures were calculated as the sum of total hours worked across both subaggregates,

11The period 1960-1999 was selected because it coincides with the years of Eldon Ball's panel data set, the merits of which
are discussed below. The data has been recently extended through 2004, but was not available in time for this analysis.
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multiplied by the hired labor wage rate. The price of labor used is the hired labor wage rate.

The ERS energy accounts are constructed using state-level electricity and fuel (includes petroleum fuel

and natural gas) expenditure and price data, which are then used to construct a Divisia price index for

energy. The ERS agricultural chemical accounts are constructed using fertilizer and pesticide expenditure

and price data, which are adjusted for changes in quality over time. Speci�cally, constant quality price

indexes for fertilizer and pesticide were constructed under the hedonic regression technique, which are then

used to construct a Divisia price index for agricultural chemicals.12 The ERS other materials account is

constructed using expenditure and price data for the following (quite exhaustive) subaggregate categories:

purchases of seed, feed, and livestock, on-farm use of crops and livestock, machine and building maintenance

and repairs, custom machine services, contract labor, transportation and storage services, shop equipment,

veterinarian services, and irrigation from public sellers of water. As with the other categories, subaggregate

expenditures and prices are used to construct a Divisia price index for materials. To construct the de
ated

per acre measures that are used in the empirical application, each of the nominal expenditure variables for

energy, agricultural chemicals, and other materials are divided by the product of hired labor wage rate and

total farmland (discussed below).

The nominal total variable cost measure is constructed as the sum of the nominal variable input ex-

penditures for labor, energy, agricultural chemicals, and other materials. The de
ated per acre measure is

constructed in the same way as the de
ated per acre expenditure variables.

The ERS capital subaggregates include separate categories for automobiles, buildings, trucks, tractors,

and other machinery. For each subaggregate, a measure of the productive stock (in nominal dollars) is

constructed as the cumulation of past investments adjusted for discards of worn-out assets and loss of

e�ciency over the service life. Both rental rates and price indices for each subaggregate were provided,

which provides 
exibility for measuring the service 
ow versus stock of capital. Since capital is being

measured as a quasi-�xed input, the value of the stock of each subaggregate was constructed by multiplying

the productive stock by the price index. A nominal value of capital was constructed by summing across the

subaggregate categories, and the de
ated per acre measure is constructed in the same way as the de
ated

per acre expenditure variables.

A commonly used measure for total farmland is provided by the ERS (referred to as the total land in farms

variable), utilizes a cubic interpolation method to �ll in data points between census years. This measure

is usable for census years, but arti�cially smooths out the underlying data in between census years. An

alternative measure, used in this analysis, is constructed using the National Agricultural Statistics Service's

12The price index for fertilizers is formed by regressing the prices of single nutrient and multigrade fertilizer materials on
the proportion of nutrients contained in the materials. Similarly, prices for pesticides are regressed on di�erences in physical
characteristics such as toxicity, persistence in the environment, and leaching potential.
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(NASS) Acreage Reports, which provide a measure of planted acreage for principal crops in each state using

an annual survey. De�ne ATt to be the total land in farms variable in period t, and A
C
t to be the planted

acreage for principal crops in period t. The algorithm for constructing the farmland measure used in this

analysis, AFt , is

AFt =

�
ATt if t is a census year

ACt +
1

tu�tl
Ptu

t=tl

�
ATt �ACt

�
if t is not a census year

;

where tl is the �rst census year less than t and tu is the �rst census year greater than t.
13 Assuming that

farmland outside of principal crops does not change dramatically from year to year, this variable provides a

more reasonable measure of farmland.

The instruments used are de
ated variable cost per acre, de
ated capital per acre, and de
ated variable

input prices averaged across the 17 states and then lagged two periods, and the following general economy

variables observed at the national level: real per capita disposable personal income, the real rate of return

on AAA corporate 30-year bonds, the real manufacturing wage rate, the real index of prices paid by manu-

facturers for materials and components, and the real index of prices paid by manufacturers for fuel, energy

and power. Per capita disposable personal income is de
ated by the consumer price index for all items,

while the aggregate wholesale price variables are de
ated by the implicit price de
ator for gross domestic

product. The variable cost, capital, and price instruments are lagged two periods to create predetermined,

strictly exogenous variables (Engel et. al., 1983). The general economy instruments are not lagged because

they are exogenous to the agricultural economy. In addition, a constant and time trend are included in the

instrument set.

3.2 Additional Data for Arbitrage System Estimation

The additional state-level variables required to estimate the system of arbitrage equations in Section 5 are:

the real interest rate, the rate of return on the risky �nancial instrument, price of land, ex post total farm

revenue, wealth, number of farms, and acreage, ex post revenues, and ex ante expected yields for corn, oats,

soy, and wheat. In addition, instrumental variables are required to account for the joint decision making

nature of the farm.

The measures used for the rate of return on bonds and the risky �nancial instrument come from Robert

Shiller's �nancial indicators data set. The chosen measures are the real interest rate and the real return on

the S&P index, respectively.

An accurate measure of the price of farmland is very di�cult to obtain. The ERS has an estimated

service 
ow for land that is commonly used in demand analysis if land is assumed to be variable, and is

13The Ag Census years relevant to the 1960-1999 time period are 1959, 1964, 1969, 1974, 1978, 1982, 1987, 1992, 1997, and
2002.
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constructed as a Divisia price index which makes it unserviceable here since a measure expressed in $/acre

is required. Another commonly used price comes from NASS's Agricultural Statistics annuals, which report

state-level averages for the value of land and buildings per acre. This price has the advantage of being

measured in $/acre, but includes the value of buildings which is problematic. A third option is to use an

annual state-level land-to-building ratio provided by ERS that, when multiplied by the value of land and

buildings per acre, provides a reasonable farmland price expressed in $/acre. This is the approach taken

here, and has the advantage of being in $/acre and speci�c to land.

The measures for ex post total farm revenue and ex post revenues for corn, oats, soy, and wheat come

from Eldon Ball's state-level panel. This measure is the best available measure for total farm revenues,

as it consists of primary production (excluding production for intermediate consumption) and production

of non-agricultural goods and services where they cannot be distinguished from the primary agricultural

activity and non-agricultural (or secondary) output. The measure of secondary output aggregates revenues

from a diverse set of income sources, including machine and labor services, livestock feeding, owner provided

housing, and soilbank and conservation reserve program rental payments. The primary production accounts

for total farm revenue and individual crop revenues are constructed from the producer's perspective; that is,

important government payments, including de�ciency and diversion/set aside payments for crops as well as

wool and mohair payments, are included.

The measures for wealth and the number of farms come from the ERS balance sheet data. Wealth is

a notoriously di�cult variable to measure in agriculture. The best available data on wealth are found in

the Agricultural Resource Management Survey and the U.S. Census of Agriculture, which are conducted by

NASS (Pope et. al., 2009). However, both resources are unserviceable here since neither is a balanced panel.

Another option that does not su�er from this shortcoming is to use the equity variable, measured as net

assets minus liabilities, from the ERS balance sheet data. This is the approach taken here.

Acreage measures for corn, oats, soy, and wheat are obtained from the (NASS) Acreage Reports. Since

these decisions are made prior to realization of the production shock, it is important to use planted rather

than harvested acreage. These data are readily available for the crops used in this analysis.

Measures for ex ante expected yields for corn, oats, soy, and wheat are not available and are typically

treated as unobservable to the researcher in practice. A common approach that overcomes this limitation is

to predict period t yields using period t � 1 ex post actual yield data. NASS yield data is used to �t the

system of equations

yijt = �ij + �ijyijt�1 + � ijt i = 1; :::; I j = C;O; S;W t = 1; :::; T
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for the I = 17 states using state-level yield data for corn (C), oats (O), soy (S), and wheat (W) obtained

from NASS. The period used to estimate the parameters is 1950-2005, and estimates for ex ante expected

yields used in this analysis are constructed by

�yijt = �̂ij + �̂ijyijt�1 + �̂ ijt i = 1; :::; 17 j = C;O; S;W t = 1960; :::; 1999:

Since all but the wealth and farmland variables are measured per acre, a representative agent model is

estimated by replacing the wealth and farmland variables with per-farm averages in each state. That is,

average wealth and land per farm are used instead of state-level aggregates. It is important to note that all

monetary variables are converted to real 1999 dollars using the BLS CPI.

The data used to construct the instruments used are: (i) across state averages of wealth per farm, land

per farm, capital per acre, shares of farmland allocated to corn, oats, soybeans, and wheat, the rate of

return for the S&P index, and the following general economy variables observed at the national level: (ii)

real per capita disposable personal income, the real rate of return on AAA corporate 30-year bonds, the

unemployment rate, the real manufacturing wage rate, the real index of prices paid by manufacturers for

materials and components, and the real index of prices paid by manufacturers for fuel, energy and power. Per

capita disposable personal income is de
ated by the consumer price index for all items, while the aggregate

wholesale price variables are de
ated by the implicit price de
ator for gross domestic product.

Because of nonstationarity concerns, the use of �rst di�erences and/or ratios of the instruments is war-

ranted (Cochrane, 2005). For the variables in (i), lagged �rst di�erences and ratios (i.e. zt�1 � zt�2 and

zt�1=zt�2) of the 17-state averages are used to construct predetermined, strictly exogenous instruments (En-

gel et. al., 1983). These instruments are complemented with simple di�erences and ratios (i.e. zt� zt�1 and

zt=zt�1) of the variables in (ii). The instruments from (ii) are not lagged because they are general economy

variables that are exogenous to the agricultural economy. In addition, a constant and time trend are included

in the instrument set.

4 Demand System Estimation

As mentioned in the introduction, the derivation of the theoretical arbitrage model relies on the assumptions

that land and capital are quasi-�xed assets, and that production is characterized by constant returns to

scale. These assumptions are empirically tested in this section using parameter estimates from a system of

variable input demands that is derived from a 
exible speci�cation for variable costs of production.
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4.1 Set Up

The speci�cation for the per acre cost function follows LaFrance and Pope (2008a, 2008b), which address two

common problems in econometric models of production, aggregation and unobservable variables. The authors

identify the necessary and su�cient restrictions on technology and cost that generate conditional factor

demands that are functions of input prices, quasi-�xed inputs, and cost.14 Demands have this characteristic

if and only if outputs are weakly separable from variable input prices in the cost function; that is, the cost

function can be written as c (w; k; � (k;� (�yq) s)) where � (�) is the constant of integration associated with

integrating the conditional factor demands over variable input prices. The authors also derive the subset

of this class of models that satis�es exact aggregation with respect to costs, which is especially important

for this study as state-level accounts are used to construct the rates of return for land, capital, and output

shares. A list of additional variable de�nitions used in the model is provided in Table 2.

As noted in Ball et. al. (2008), the neoclassical model of conditional demands for variable inputs with

joint production, �xed inputs, and production uncertainty is

x(�w;� (�yq) s; k) = argminf�w>x : F (x;� (�yq) s; k) � 0g; (35)

where x is an nV {vector of variable inputs per acre, �w is an nV {vector of variable input prices (the non-

standard notation is used to simplify the speci�cation for the cost function below), � (�yq) s is an nY {vector

of expected outputs over total farmland, k is capital per acre, and F (x;� (�yq) s; k) is the per-acre joint

production function.

The essential problem is that inputs are applied ex ante under stochastic production, while the vector of

ex ante outputs � (�yq) s is not observable (in practice). The solution derived by LaFrance and Pope (2008a,

2008b), identi�es the necessary and su�cient condition to consistently estimate conditional input demands

as functions of variables that are observable when the inputs are committed to production { prices of the

inputs, the level of capital per acre, and the per-acre variable cost of production { so that variable input

demands can be written as

x(�w;� (�yq) s; k) = g(�w; k; c (�w;� (�yq) s; k)): (36)

The authors prove that the variable input demand equations have this structure if and only if the variable

14Importantly, the demands are not a function of unobservable expected output.
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cost function has the structure

c (�w;� (�yq) s; k) � c (�w; k; � (k;� (�yq) s)) ; (37)

if and only if the joint production function has the structure

F (x;� (�yq) s; k) � F (x; k; � (k;� (�yq) s)): (38)

In other words, outputs are weakly separable from the variable inputs. Although this result is somewhat

restrictive in outputs, it is quite 
exible in the inputs (Ball et. al., 2008).15

The speci�cation of the per acre cost function is a full rank 3 model that follows Ball et. al. (2008),

f (~c) = �
�
g; ~k

�
�

0@ ' (g)

�>g +
p
' (g)�

�
~k;� (�yq) s

�
1A ; (39)

where

f (~c) =
~c� + �� 1

�
; ~c =

c

wnV
; c = c (w; k; �) ; gv ( ~wv) =

~w�v + �� 1
�

;

~w (w; wnV ) =
1

wnV
w;w = [w1; :::; wnV �1]

>
;�0 = [�0;1; :::; �0;nV �1]

>
;

�1 = [�1;1; :::; �1;nV �1]
>
; �
�
g; ~k

�
= (�0 +�1k)

>
g + �0;nV + �1;nV

~k;

~k =
k

wnV
; and ' (g) = g>Bg + 2
>g + 1. (40)

Here, �0, �0;nV , �1, �1;nV , B, 
, and � are parameters. B is an (nV � 1) � (nV � 1) matrix, � is an

nV -vector, �0, �1, and 
 are (nV � 1)-vectors, and �0;nV and �1;nV are scalars.

Note that linear homogeneity of the cost function in prices has been imposed by de
ating prices by wnV ,

and that the nthV input is treated asymmetrically from the other inputs, both in the �rst- (conditional mean)

and second-order (variance-covariance) components of the model. The authors note that the translated Box-

Cox functions f and g are observationally equivalent to standard Box-Cox transformations. If � = 1, then

f(~c) = ~c, while if � = 0, then f(~c) = 1 + ln ~c. The same results apply to gv ( ~wv) for � = 1 or 0, respectively.

All other values of (�; �) 2 R2+ yield functional forms of the PIGL class in input prices and cost, allowing

one to nest this class of demand models with a rank three generalized translog and a rank three generalized

quadratic production model.

15Among other things it implies that marginal rates of product transformation are independent of the variable inputs and
factor intensities. Of course, if these restrictions are deemed too strong, then an alternative approach to formulating the variable
cost function becomes necessary .
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Solving for the cost function yields

c (w; k; �) = wnV f
�1 (y (g (~w (w)) ; �)) ; (41)

where

y (g; �) � �
�
g; ~k

�
�
 

' (g)

�>g +
p
' (g)�

!
;

f�1(z) = (z�+ 1� �)1=� : (42)

This implies that the nV � 1 variable input demands are given by (derivation in Appendix C)

q � @c

@w
= ~c1���

�
~w��1v

� @y
@g
; (43)

where the expression

@y

@g
=

8>><>>:
�+

�
1� �>g

�
y��(g;~k)
'(g)

��
�
�
y��(g;~k)
'(g)

�
(Bg + 
)+

[y��(g;~k)]
2

'(g) �

9>>=>>; (44)

is derived in LaFrance et. al. (2005).

In order for this nV � 1 equation incomplete demand system to satisfy integrability, demands need to be

positive and homogenous of degree 0 in prices, and the cost function's Hessian matrix needs to be symmetric

and negative semide�nite. The cost function's nV � nV Hessian matrix is (derivation in Appendix C)

�H =

264 H �H> ~w

�~w>H ~w>H~w

375 ; (45)

where

H =
1

wnV

264 (�� 1)�
�
~w�1v

�
� (qv) + ~c

1���
�
~w��1v

�
@2y

@g@g>
�
�
~w��1v

�
+(1� �) ~c�1qq>

375 ;
@2y

@g@g>
=

�
1� �>g

�
y � �
'

���
y � �
'

�"
B� (Bg + 
) (Bg + 
)

>

'

#

+2
(y � �)3

'2

�
I� 1

'
(Bg + 
) g>

�
��>

�
I� 1

'
g (Bg + 
)

>
�
: (46)

LaFrance et. al. (2005, 2006) show that 1 � �>g [(y � �) ='] > 0, y � � < 0, ' > 0, and B = LL> + 

>,

where L is lower triangular, are necessary and su�cient for the matrix H (and thus �H due to adding up)
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to be symmetric, negative semide�nite in an open neighborhood of � = � = 1. Note that for � = � = 1,

the �rst and third matrices in expression (46) vanish, in which case the above conditions are necessary and

su�cient for @2y=@g@g> (and correspondingly H and �H) to be symmetric, negative semide�nite. While

B = LL> + 

> is su�cient for symmetry of �H for all values of � and �, the conditions above are not

su�cient for negative semide�niteness for values of � and � outside of the open neighborhood and less than

1.

Since su�cient conditions for negative semide�niteness across all values of �; � 2 [0; 1] are not apparent,

the econometric model discussed below proceeds without imposing negative semide�niteness. This and the

positive demands property are checked after estimation using in-sample data and the �ndings are discussed

in the results section. Note that homogeneity of degree 0 has been directly imposed in (43), and the

remaining requirement for integrability of the demand system, symmetry of �H, is also directly imposed

using B = LL> + 

> (discussed below).

4.2 Econometric Structure and Estimation

Let i = 1; :::; I index states, j = 1; :::; J index equations, and t = 1; :::; T index time. The J � 1 vector of

per-acre variable inputs is written in de
ated expenditure format as

~ei;t � ~w>
i;tqi;t

= ~c1��i;t �
�
~w�i;j;t

�8<:�0;i +�1ki;t +
241� �>gi;t

0@f (~ci;t)� �i
�
gi;t; ~ki;t

�
' (gi;t)

1A35
0@f (~ci;t)� �i

�
gi;t; ~ki;t

�
' (gi;t)

1A�Bgi;t + 
�+
h
f (~ci;t)� �i

�
gi;t; ~ki;t

�i2
' (gi;t)

�

9>=>; ; (47)

where

f (~ci;t) =
~c�i;t + �� 1

�
; ~ci;t =

ci;t
wi;J;t

; gi;j;t ( ~wi;j;t) =
~w�i;j;t + �� 1

�
;

~wi;t (wi;t; wi;J;t) =
1

wi;J;t
wi;t;wi;t = [wi;1;t; :::; wi;J�1;t]

>
; ~ki;t =

ki;t
wi;J;t

;

�i

�
gi;t; ~ki;t

�
=
�
�0;i +�1~ki;t

�>
gi;t + �0;J;i + �1;J~ki;t;�0;i = [�0;1;i; :::; �0;J�1;i]

>
;

�1 = [�1;1; :::; �1;J�1]
>
; and ' (gi;t) = g

>
i;tBgi;t + 2


>gi;t + 1: (48)
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The only restriction imposed on the parameters during estimation is that the matrix of second-order price

e�ects,

B� =

264 B 



> 1

375 ; (49)

is positive semide�nite. Lemma 5 in the Appendix of LaFrance et. al. (2005) proves that a su�cient

condition for this is that

B = LL> + 

>; (50)

where LL> is a (possibly reduced rank) Choleski factorization

L =

266664
l1;1 0 0

...
. . . 0

lJ�1;1 � � � lJ�1;J�1

377775 : (51)

Thus, the submatrix of second-order price e�ects B is replaced with LL>+

> everywhere in the right-hand

side of (47).

The estimator developed in Ball et. al. (2008) is used to estimate the incomplete system of demand

equations. This estimator includes a 3-dimensional error covariance matrix (across states, equations, and

time) and accounts for the fact that quasi-�xed inputs, expected/planned outputs, and variable input prices

are all almost certainly jointly determined with the variable input demands.

Following Ball et. al. (2008), the N = J � 1 state-level variable input demand equations are

~eijt = fijt

�
~wit; ~kit; ~cit;�

�
+ uijt; i = 1; :::; I; j = 1; :::; N; t = 1; :::; T (52)

where ~wit is the N � 1 vector of normalized input prices, ~kit is normalized capital per acre, ~cit is normalized

variable cost per acre, � is a K � 1 vector of parameters to be estimated, and uijt is a mean zero random

error term. Suppose the errors are intertemporally correlated,

uijt =
NX
j0=1

�jj0uij0t�1 + vijt; i = 1; :::; I; j = 1; :::; N; t = 1; :::; T (53)

while the mean zero random variables vijt are uncorrelated across time, but correlated across inputs within

each state, E (vi�tv
0
i�t) = �i, vi�t = [vi1t; :::; viNt]

0
. Let ��1i = LiL

0
i be a lower triangular Choleski factoriza-

tion of the ith state's N�N inverted covariance matrix. Then the typical element of "i�t = �
�1=2
i vi�t = L

0
ivi�t

is "ijt =
PN

j0=1 lijj0vij0t. The mean zero, unit variance random variables, "ijt, now are uncorrelated across
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inputs and time, but are assumed to be correlated across states depending on how far apart the states are

from each other. That is, E ("ijt"ij0t) = � (dii0), j = 1; :::; J , where dii0 is the geographic distance between

states i and i0. The I � I matrix,

R =

266666664

1 � (d12) � (d1I)

� (d12) 1

...
...

. . .

� (d1I) � (d2I) 1

377777775
; (54)

is symmetric, positive de�nite, and for simplicity, is assumed to be constant across j.

Consistent estimation and inferences are made using the following semi-parametric GMM estimator. Let

Z denote the T � NZ matrix of instruments common across states and let N = Z (Z0Z)
�1
Z0 denote the

associated T � T projection matrix. First, stack (52) by equations and time, and use nonlinear two-stage

least squares (NL2SLS) to estimate � consistently,

�̂2SLS = argmin
�

IX
i=1

u>i�� (N
 IN )ui��; (55)

where

ui�� = ~ei�� � fi��
�
~wi�; ~ki�; ~ci�;�

�
(56)

and IN is an N � N identity matrix. This consistent estimator of � is then used to generate consistent

estimates of the errors,

ûijt = ~eijt � fijt
�
~wit; ~kit; ~cit; �̂2SLS

�
; i = 1; :::; I; j = 1; :::; N; t = 1; :::; T: (57)

Second, for t = 2; :::T , estimate the N � N intertemporal correlation matrix, �, by linear seemingly

unrelated regression (SUR) using the identity matrix IN as the weighting matrix,

�̂ =argmin
�

IX
i=1

TX
t=2

(ûi�t ��ûi�t�1)> IN (ûi�t ��ûi�t�1) : (58)

Third, construct consistent estimates of the spatially correlated error terms,

"̂ijt =
NX
j0=1

l̂ijj0 v̂ij0t, (59)
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where v̂ijt = ûijt �
PN

j0=1 �̂jj0 ûij0t�1 and L̂i =
h
l̂ijj0

i
j;j0=1;:::;N

satis�es �̂�1i = L̂iL̂
>
i . Then calculate

consistent sample estimates for the across-state spatial correlations as,

�̂ii0 =
NX
j=1

TX
t=2

"̂ijt"̂ij0t
N (T � 1) ; i; i

0 = 1; :::; I: (60)

Then use the 1
2I(I � 1) spatial correlations to estimate the relationship between the spatial correlations

and the geographic distance between states using robust nonlinear least squares to obtain R̂ = [�̂ (dii0)]. A

third-order exponential speci�cation for the correlation function,

�̂ (dii0) = exp

 
�0 +

NX
k=1

�kd
k
ii0

!
: (61)

Fourth, let R̂�1 = QQ>, where Q is a lower triangular Choleski factorization of the inverse spatial

correlation matrix, and write !ijt =
PI

i0=1 qii0"i0jt. Now the random variables are mean zero, unit variance,

and uncorrelated across equations, states, and time. Replacing the unknown parameters and error terms with

the consistent estimates developed with the above estimation steps, and substituting backwards recursively

yields

!̂ijt =

IX
i0=1

q̂ii0 "̂i0jt

=
IX

i0=1

q̂ii0
NX
j0=1

l̂i0jj0 v̂i0j0t

=

IX
i0=1

q̂ii0
NX
j0=1

l̂i0jj0

0@ûi0j0t � NX
j00=1

�̂j0j00 ûi0j00t�1

1A
P�! !ijt; (62)

with E (!ijt) = 0, E
�
!2ijt

�
= 1, and E (!ijt!i0j0t0) = 0 for (i; j; t) 6= (i0; j0; t0). A �nal NL3SLS step of the

form,

�̂3SLS=argmin
�

IX
i=1

h
!̂i��

�
~wi�; ~ki�; ~ci�;�

�i>
(N
 IN )

h
!̂i��

�
~wi�; ~ki�; ~ci�;�

�i
; (63)

gives consistent, e�cient, asymptotically normal estimates of �. White's heteroskedasticity consistent co-

variance estimator is used for robustness to heteroskedasticity beyond the state speci�c, across equation

covariance matrices.
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4.3 Results

4.3.1 Data

The data used to estimate the model is described in Section 3.1. It is important to note that labor is omitted

from the system, so an incomplete system of demands is estimated for energy, agricultural chemicals, and

other materials. As discussed in 3.1, two period lags of the variable cost, capital, and price variables are

included in the instrument set. This leads to omission of the �rst two years, 1960 and 1961, from the

empirical sample. Thus, 646 ( = 17 � 38) observations on 17 states from 1962-1998 are used in the �nal

NL3SLS step.

4.3.2 Structural Breaks

A recent paper, Gutierrez et. al. (2007), investigates the role that structural breaks in the agricultural

economy play in �nding a stable cointegration relationship between farmland prices and rents. The authors

utilize panel data for 31 U.S. states between 1960 and 2000 and �nd that all states have at some point been

subject to breaks.

Empirically, evidence of structural breaks is found by testing whether the model's parameters are stable

across time. There are many diagnostic procedures for testing parameter stability (e.g. Brown et. al., 1975,

and Ploberger and Kr�amer, 1992), however a testing procedure presented in LaFrance (2008b) is better

suited for this analysis since it was developed for large nonlinear simultaneous equation systems with a small

sample size.

The procedures presented here are attributed to LaFrance (2008b). Let "̂jt denote the j
th equation's

estimated residual for period t and �̂2j =
PT

t=1 "̂
2
jt=T denote estimated variance of the residual for the jth

equation. De�ne the test statistic

QjT = sup
z2[0;1]

jBjT (z)j (64)

where

BjT (z) �
1p
T �̂j

zTX
t=1

�
"̂jt � "̂j

� D�! B (z) : (65)

Here, z 2 [0; 1] represents the break point, [zT ] is the largest integer that does not exceed zT , "̂j is the

sample mean for "̂j1; :::; "̂jT , and B (z) is a standard Brownian bridge. The statistic QjT is a single equation

�rst-order parameter stability statistic, and the corresponding system-wide �rst-order parameter stability

statistic is de�ned by

QT = sup
z2[0;1]

jBT (z)j (66)
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where

BT (z) �
1p
T

zTX
t=1

24 1p
N

NX
j=1

�
�̂jt � �̂

�35 D�! B (z) : (67)

Here, the �̂jt are elements of the t
th estimated standardized error vector �̂t = �̂

�1=2"̂t, and �̂ =
PT

t=1

PJ
j=1 �̂jt=JT .

Both test statistics have an asymptotic 5% critical value of 1:36 (Ploberger and Kr�amer, 1992).

These test statistics are used to test for parameter stability in the estimated model and the results are

given under Model A in Table 3. Note that the null hypothesis of parameter stability is rejected at the 5%

signi�cance level a total of eight times across the three equations, and another three times for the overall

system. These �ndings suggest parameter instability is a problem that needs to be addressed.

Since all 17 states that are used in this analysis are a subset of the states analyzed in Gutierrez et. al.

(2007), their �ndings are used to guide the parameter instability issues. Looking at their Table 2, there

is considerable evidence of structural breaks around the years 1973 and 1986, which are the starting and

ending years of the notorious boom/bust period of agricultural land prices.16 The authors note that the U.S.

agricultural economy experienced oil price shocks, an unusually large farm income following the growth of

agricultural exports due to devaluation of the dollar, and bad weather conditions in competing production

regions overseas in the mid 1970's, and experienced increased uncertainty in expected returns on farmland

investments, high real interest rates, and low commodity prices during the second half of the 1980's.

To account for these �ndings, additional parameters are included in the demand system speci�cation

given by (4.14) above. Speci�cally, the �0;i vector is now speci�ed as

�0;i = [�0;1;i + � i;1;73D73 + � i;1;86D86; :::; �0;J�1;i + � i;J�1;73D73 + � i;J�1;86D86]
>
; (68)

and �i

�
gi;t; ~ki;t

�
is now

�i

�
gi;t; ~ki;t

�
=
�
�0;i +�1~ki;t+

�>
gi;t + �0;J;i + �1;J~ki;t + � i;J;73D73 + � i;J;86D86; (69)

where the � 's are parameters to be estimated and the dummy variables D73 and D86 are de�ned as

D73 =

�
1 if t � 1973
0 otherwise

and D86 =

�
1 if t � 1986
0 otherwise

. (70)

Note that the � 's are included in a 
exible way, as they are not restricted to be equal across either states or

16Of the 31 total states studied in Gutierrez et. al. (2007), over half registered a break within �2 years of 1973 and nearly
two thirds registered a break within �2 years of 1986. Of the 17 states included in this study, over half registered a break
within �2 years of 1973 and all but 2 registered a break within �2 years of 1986.
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equations.

Looking again at Table 3, the results of the parameter stability tests using this modi�ed speci�cation

are given under Model B. Note that the null hypothesis of parameter stability fails to be rejected across all

equations and for the system as a whole at a 5% signi�cance level. In addition, state-speci�c Wald tests for

null hypotheses of the form

H0 : � i;1;73 = ::: = � i;J;73 = � i;1;86 = ::: = � i;J;86 = 0 (71)

support rejection of the null for all but three states at the 1% signi�cance level and all but two states at the

5% signi�cance level. These results suggest inclusion of the structural change parameters, so the following

results are reported for Model B.

4.3.3 Error Term Properties

The estimated 3 � 3 intertemporal autocorrelation matrix, with White/Huber robust asymptotic standard

errors in parentheses and ���, ��, and � denoting statistical signi�cance at the 1%, 5%, and 10% levels

respectively, is:

�̂ =

266664
:1458964

(:0669952)��
:3519273
(:2018368)�

�:1875367
(:1053752)�

:0119240
(:0154423)

:5614300
(:0520242)���

:0158372
(:0357891)

:0720567
(:0346364)��

�:2588840
(:1092367)��

:4656813
(:0850879)���

377775 : (72)

Rows and columns 1 through 3 are the other materials, energy, and agricultural chemicals equations. Note

that neither symmetry nor positive semide�niteness have been directly been imposed on �, both of which

are common (yet perhaps overly restrictive) assumptions when modeling singular AR(1) systems (see Holt,

1998 for examples). The basis for including the fully unrestricted � is to increase 
exibility of the system,

and the properties of this approach are discussed in LaFrance (2008a). The parameter estimates imply

positive semide�niteness and stable dynamics, as the Eigen values for the 4 � 4 di�erence equation are all

non-negative and less than 1 (largest Eigen value is 0:55). The F-test that all parameter estimates are jointly

zero is �rmly rejected at the 1% signi�cance level, and the Durbin-Watson statistics do not suggest higher

order serial correlation (average Durbin-Watson statistics across states for each equation are 1:848, 1:853,

and 1:899).

The estimated spatial correlation function, with White/Huber robust standard errors in parentheses, is:

�̂ (dii0) = exp

�
� :303

(:303)
� :342� 10�2dii0
(:161� 10�2)�� +

:442� 10�5d2ii0
(:252� 10�5)� �

:212� 10�8d3ii0
(:120� 10�8)�

�
; (73)
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where i and i0 index states 1; :::; 17. A Wald test for the joint hypothesis that all parameters are equal to

zero yields a p-value of 0:000, suggesting that spatial correlation across states is prevalent in the system.

A 2-dimensional plot of the empirical data, estimated correlation function, and 95% con�dence band are

presented in Figure 1. Note that the predicted correlation decreases steadily, 
attens out, then decreases

again as distance increases. The predicted correlation remains strictly positive throughout the sample,

suggesting that the error of states as far as 1; 387 miles away (largest distance in the sample) remain positively

correlated.

4.3.4 Parameter Estimates

Recall that the submatrix of second-order price e�ects B was replaced with LL> + 

> during estimation.

The Choleski factor L was found to be reduced rank, as the lower right diagonal element l3;3 could not be

identi�ed empirically. During estimation, this parameter was held �xed at 0:03 as in LaFrance (2008b). The

parameter estimates L̂ and 
̂ are

L̂ =

266664
:08784 0 0

�:1263 :03114 0

�:01686 �:09076 0:03

377775 and 
̂ =

266664
:07662

�:005905

�:007685

377775 ; (74)

which generate an estimate of the full 4� 4 symmetric matrix of second-order price e�ects,

B̂� =

264L̂L̂> + 
̂
̂> 
̂


̂> 1

375

=

266666664

:01358 �:01155 �:002070 :07662

�:01155 :01697 �:0006495 �:005905

�:002070 �:0006495 :008681 �:007685

:07662 �:005905 �:007685 1

377777775
: (75)

The Eigen values of B̂� are all positive, the smallest being 3:43�10�6, and a Wald test for the null hypothesis

that the nine lower diagonal elements of B̂� are jointly zero is rejected at the 1% signi�cance level.

Table 4 presents the estimates of the �, �, �1;1-�1;4 and �1-�4 parameters. Perhaps the most interesting

hypotheses with regard to functional form have to do with the transformations of prices and variable costs.

The viability of the industry standards of logarithmic or linear transformations are investigated by testing

the following null hypotheses: (1) linear-linear, H0 : � = � = 1, �2 (2) = 11:03, p-value = 0:004; (2) log-

log, H0 : � = � = 0, �2 (2) = 291:5, p-value = 0:000; (3) log-linear, H0 : � = 0; � = 1, �2 (2) = 1; 389,
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p-value = 0:000; and (4) linear-log, H0 : � = 1; � = 0;, �2 (2) = 826:8, p-value = 0:000. All four null

hypotheses are rejected at the 1% signi�cance level. Note that even though the singular null hypothesis

� = 0 has p-value = 0:149 (from Table 4), the log-log and linear-log transformations are not supported by

the data.

At �rst look, the extension to rank three appears to seriously over �t this data, as evidenced by the

high p-values for three of the � estimates. However, a Wald test and a GMM-LR test (i.e. Newey and

West's, 1987, D Statistic) for the joint signi�cance of these coe�cients produces di�erent results. For the

null hypothesis H0 : � = 0, the Wald statistic is 3:48 (p-value = 0:479) while the GMM-LR statistic is 1; 216

(p-value = 0:000).17 It is not clear which of these tests is preferred, but the GMM-LR test does support the

rank 3 extension.

Recall that the ex-ante cost function was assumed to include both land and capital as quasi-�xed inputs,

and to be homogeneous of degree 1 in land, capital, and expected output (i.e. constant returns to scale).

These assumptions were used to derive a per acre cost function by dividing cost by total farmland, and implied

that per acre cost is a function of capital per acre. If these assumptions are correct, an implication of the

assumptions is that per acre variable input demands are a function capital per acre as well. Empirically, this

amounts to testing the null hypothesis H0 : �1;1 = �1;2 = �1;3 = �1;4 = 0. As with the rank 3 parameters,

both a Wald and GMM-LR test were conducted. Both tests reject the null at standard signi�cance levels as

the Wald statistic is 11:34 (p-value = 0:022) and the GMM-LR statistic is 1; 558 (p-value = 0:000).18 Both

tests support the inclusion of capital per acre in the demand model, which is taken as evidence in favor of

the quasi-�xed input and constant returns to scale assumptions.

The remaining parameter estimates are the �̂0;j;i (recall that the �̂ 's were reported above). While there

are far too many estimates to report here, it should be noted that state-speci�c Wald tests for null hypotheses

of the form H0 : �0;1;i = ::: = �0;4;i = 0 reject the null for all but �ve states at a 1% signi�cance level, all

but two states at a 5% signi�cance level, and all but one state at a 10% signi�cance level. These results

suggest inclusion of the �0;j;i parameters.

The across-state averaged Durbin-Watson statistics do not suggest remaining serial correlation (averages

17For the GMM-LR test, the citerion

qN �
IX
i=1

h
!̂i��

�
�; �̂3SLS

�i>
(N
 IN )

h
!̂i��

�
�; �̂3SLS

�i
increased from 411 (unrestricted model) to 443 (restricted model). Thus resulting in the large test statistic 1; 216 (= 38 �
(443� 411)) .
18For the GMM-LR test, the citerion

qN �
IX
i=1

h
!̂i��

�
�; �̂3SLS

�i>
(N
 IN )

h
!̂i��

�
�; �̂3SLS

�i
increased from 411 (unrestricted model) to 452 (restricted model). Thus resulting in the large test statistic 1; 558 (= 38 �
(452� 411)) .

31



for each equation are 1:972, 1:855, and 1:722). Testing for mean zero residuals for each state and equation

is conducted as in LaFrance (2008b), where

zij =

p
T "̂ij
�̂ij

�a n (0; 1) (76)

is an asymptotic test statistic for mean zero residuals for each state and equation. All of the tests fail to

reject the null of mean zero residuals at a 1% signi�cance level (highest test statistic is 0:459).

Since zero degree homogeneity in prices and Hessian symmetry were directly imposed during estimation,

the remaining integrability conditions that need to be checked are positive demands and Hessian negative

semide�niteness. Using the model's parameter estimates, predicted demands for all four variable inputs are

found to be strictly positive across all states, equations, and years in the sample. Negative semide�niteness

of the complete 4� 4 Hessian matrix �H was checked by calculating the Eigen values for each 3� 3 Hessian

submatrix Ĥit, the predicted Hessian submatrix for each state in each year.
19 For the Ĥ1;1960; :::; Ĥ17;1999,

89% of the Eigen values are negative, which implies that the assumption of negative semide�niteness is

consistent with the empirical model for a large majority of the data points. In conjunction with the evidence

supporting parameter stability, no remaining serial correlation, and mean zero residuals presented above,

these �ndings suggest that this is a reasonable and coherent model of variable input demands that is consistent

with economic theory.

5 Arbitrage System Estimation

The purpose of this section is to estimate the following system of arbitrage system equations that were

derived in Section 2,

Et [mi;t+1ei;j;t+1] = 0; i = 1; :::; I j = L;K;C;O; S;W;F t = 1; :::; T (77)

where mi;t+1 is the intertemporal marginal rate of substitution of wealth for farmers in state i across periods

t and t+1, and ei;j;t+1 = ri;j;t+1 � r is the excess return for farmers in state i on asset j realized at the end

of the period. The equation indexes stand for farmland (L), capital (K), corn (C), oats (O), soybeans (S),

wheat (W), and the risky �nancial instrument (F). All farm-related rates of return, i.e. ri;L;t+1, ri;K;t+1,

ri;C;t+1, ri;O;t+1, ri;S;t+1, and ri;W;t+1, are state speci�c and constructed using aggregate data. The rates of

return on stocks and bonds are assumed to be exogenous to the farm sector, thus they are constant across

19For each �Hit, exactly one Eigen value is necessarily zero due to adding up. Thus, the non-zero Eigen values associated with
the submatrix Hit determine the de�niteness of �Hit.
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states and given by rF;t+1 and r.

5.1 Aggregation

Since the rates of return for farmland, capital, and crop shares are constructed using state-level data, an

aggregation over farm-level micro data, it is important to understand how this issue a�ects the equilibrium

arbitrage conditions (77). Following the illustration of aggregation bias in Pope et. al. (2009), consider an

arbitrary arbitrage condition for farm h in state i for asset j in period t,

Et [m (xh;i;t+1) e (yh;i;j;t+1)] = 0: (78)

The intertemporal marginal rate of substitution is written as a function of an arbitrary data vector xh;i;t+1

and the the excess return is a function of an arbitrary data vector yh;i;j;t+1 for ease of exposition. Summing

over the Hj farms in state j yields the implications of �rst-order conditions at the state level,

Et

"
HjP
h=1

1

Hj
m (xh;i;t+1) e (yh;i;j;t+1)

#
= 0: (79)

This is not the condition imposed by a representative household approach with average state-level data,

Et [m (�xi;t+1) e(�yi;j;t+1)] = 0, where overbars denote averaging across farms within state i. However, suppose

that state-level excess returns are related to farm excess returns by e(yh;i;j;t+1) = e(�yi;j;t+1)+uh;i;j;t+1, and

that the farm rate of substitution is related to the state-level average by m (xh;i;t+1) = m (�xi;t+1) + vh;i;t+1 .

Then using state-level average data yields

Et [m (xh;i;t+1) e(yh;i;j;t+1)] = Et
��
m (�xi;t+1) + vh;i;t+1

�
[e(�yi;j;t+1) + uh;i;j;t+1]

	
= Et[m (�xi;t+1) e(�yi;j;t+1)] + Et [m (�xi;t+1)uh;i;j;t+1]

+Et[vh;i;t+1e(�yi;j;t+1)] + Et[vh;i;t+1uh;i;j;t+1]: (80)

The authors note that none of the last three terms on the last line need vanish in general, and that it is

appropriate to include �xed e�ects of the form

Et[m (�xi;t+1) e(�yi;j;t+1)]�
�
�i + �j

�
= 0; (81)

where the �i and �j are parameters to be estimated. Since a representative agent approach is taken in the

following application, �xed e�ects of this form are included in the econometric speci�cation.
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5.2 Empirical Speci�cations

The empirical counterparts to the arbitrage equations given by (77) above are derived using speci�cations

for the marginal value of wealth function, the per acre variable cost function, the adjustment cost function,

and an assumption on the expectations process.

The speci�cation for the marginal value of wealth for state i is given by

@V (Wt; At�1; kt�1; �)
@W

= 1� �WWt � �WLAt�1 � �WKkt�1; (82)

where �W ; �WL, and �WK are parameters to be estimated. This speci�cation is consistent with a quadratic

approximation of the value function in (Wt; At�1; kt�1),

V (Wt; At�1; kt�1; �) = �0 (�) +
�
1 �L �K

�266664
Wt

At�1

kt�1

377775

�1
2

�
Wt At�1 kt�1

�266664
�W �WL �WK

�WL �L �LK

�WK �LK �K

377775
266664
Wt

At�1

kt�1

377775 ; (83)

where the general, unspeci�ed and unidenti�able �0 (�) is a function of other arguments in the value function

beside wealth, land, and capital (see footnote 6). The associated state-speci�c intertemporal marginal rates

of substitution are

mi;t+1 � ��1
�

@V (Wi;t+1; Ai;t; ki;t; �) =@W
@V (Wi;t; Ai;t�1; ki;t�1; �) =@W

�
= ��1

�
1� �WWi;t+1 � �WAAi;t � �WKki;t
1� �WWi;t � �WAAi;t�1 � �WKki;t�1

�
: (84)

Using the v = 1; :::; nV to index variable inputs and q = C;O; S;W to index crops, the speci�cations for

the marginal cost of capital and crop shares are derived from the same cost function speci�ed in Section 3,

f (~ci;t) = �i (gi;t; ki;t)�

0@ ' (gi;t)

�>gi;t +
p
' (gi;t)�

�
~ki;t;� (�yi;q;t) si;t

�
1A ; (85)
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where

f (~ci;t) =
~c�i;t + �� 1

�
; ~ci;t =

ci;t
wi;nV ;t

; gi;v;t ( ~wi;v;t) =
~w�i;v;t + �� 1

�
;

~wi;v;t (wi;v;t; wi;nV ;t) =
wi;v;t
wi;nV ;t

for v = 1; :::; nV � 1; ~ki;t =
ki;t

wi;nV ;t
;

�i (gi;t; ki;t) =
�
�0;i +�1~ki;t+

�>
gi;t + �0;nV ;i + �1;nV

~ki;t + � i;nV ;73D73 + � i;nV ;86D86;

�0;i = [�0;1;i + � i;1;73D73 + � i;1;86D86; :::; �0;nV �1;i + � i;nV �1;73D73 + � i;nV �1;86D86]
>
;

�1 = [�1;1; :::; �1;nV �1]
>
; and ' (gi;t) = g

>
i;tBgi;t + 2


>gi;t + 1. (86)

Note that both the marginal cost of capital and the marginal cost of shares will depend on @�=@k and

@�=@s, the partial derivatives of theta with respect to capital and shares. Using the following parsimonious

speci�cation for theta,

�
�
~ki;t;� (�yi;q;t) si;t

�
= �>S� (�yi;q;t) si;t � �K~ki;t (87)

where �S = [�SC �SO �SS �SW �s~ ]
>
is a parameter vector for corn, oats, soy, wheat, and other outputs,

the marginal cost expressions are (derivation in Appendix C)

@ci;t
@k

= ~c1��i;t

�
�1;nV +�

>
1 gi;t

�
� ~c1��i;t

[f (~ci;t)� �i (gi;t; ki;t)]
2p

' (gi;t)
�K and (88)

@ci;t
@s

= wi;nV ;t~c
1��
i;t

[f (~ci;t)� �i (gi;t; ki;t)]
2p

' (gi;t)
� (�yi;q;t)�S : (89)

Estimates of ~c1��i;t

�
�1;nV +�

>
1 gi;t

�
and ~c1��i;t [f (~ci;t)� �i (gi;t; ki;t)]

2
=
p
' (gi;t) are constructed using the

estimates �̂, �̂, �̂0;i, �̂1, �̂0;J;i, �̂1;J , B̂, and 
̂ reported in the Section 3. Call these &̂1;i;t and &̂2;i;t respectively.

The speci�cations (88) and (89) are rewritten as

@ci;t
@k

= &̂1;i;t � &̂2;i;t�K and (90)

@ci;t
@s

= wi;nV ;t&̂2;i;t� (�yi;q;t)�S : (91)

This approach simpli�es estimation as the only parameters remaining in the marginal cost speci�cations are

�K and �S . However, �xing a subset of parameters during estimation confounds the standard errors. An

approach for correcting this is presented in the following section, and implemented during estimation.

The speci�cation of the adjustment cost function is given by

	 (Ai;t; Ai;t�1; ki;t; ki;t�1) =
1

2
 L (Ai;t �Ai;t�1)

2
+
1

2
 K (ki;t � ki;t�1)

2
Ai;t; (92)
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where  A and  K are parameters. The corresponding marginal adjustment functions are

@	(Ai;t; Ai;t�1; ki;t; ki;t�1)

@At
=  L (Ai;t �Ai;t�1) +

1

2
 K (ki;t � ki;t�1)

2
; (93)

@	(Ai;t+1; Ai;t; ki;t+1; ki;t)

@At
= � L (Ai;t+1 �Ai;t) ; (94)

@	(Ai;t; Ai;t�1; ki;t; ki;t�1)

@kt
=  K (ki;t � ki;t�1)Ai;t; and (95)

@	(Ai;t+1; Ai;t; ki;t+1; ki;t)

@kt
= � K (ki;t+1 � ki;t)Ai;t+1: (96)

Following Gardebroek and Oude Lansink (2004), expectations in the model are assumed to be formed

rationally, implying that farmers know the underlying process that generates values of period t+1 variables.

This assumption allows the unobserved expected values of t + 1 variables in the arbitrage equations to be

replaced by their realized counterparts. A mean zero expectation error that captures the di�erence between

the expected and realized values at time t+1 is then added to each equation, and the econometric approach

described in the following section describes the nonlinear instrumental variable (GMM) estimator used to

minimize these errors.

5.3 Econometric Structure and Estimation

The econometric structure is similar to Pope et. al. (2009) and the estimator follows Ball et. al. (2008),

outlined in Section 4.2. Let i = 1; :::; I index states and t = 1; :::; T index time. In general, the implicit

state-level system of arbitrage equations is

gijt (xijt;�) = uijt; i = 1; :::; I j = L;K;C;O; S;W;F t = 1; :::; T (97)

where xijt is a matrix of the data, � is a k�1 parameter vector to be estimated, gijt (xijt;�) � mi;t+1ei;j;t+1��
�i + �j

�
is the arbitrage condition,mi;t+1 is given by (84), ei;j;t+1 = ri;j;t+1�r is the excess return,

�
�i + �j

�
are the �xed e�ects that account for aggregation errors as discussed in Section 5.1. The rates of return for

farmland, capital, corn, oats, soy, and wheat are constructed using the speci�cations for the variable and
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adjustment cost functions,

ri;L;t+1 =
pL;i;t+1 � pL;i;t + �K;i;t+1ki;t + p0Y;i;t+1� (yi;q;t) si;t � ci;t �

�
@	i;t+1

@At
+

@	i;t

@At

�
pL;i;t + ki;t + ci;t +

@	i;t

@At

;

ri;K;t+1 =
�K;i;t+1Ai;t �

@ci;t
@k Ai;t �

�
@	i;t+1

@kt
+

@	i;t

@kt

�
Ai;t +

@ci;t
@k Ai;t +

@	i;t

@kt

; and

ri;Sq;t+1 =
pYq;i;t+1yi;q;tAi;t �

@ci;t
@sq

Ai;t
@ci;t
@sq

Ai;t
q = C;O; S;W; (98)

where the expressions for @ci;t=@k, @ci;t=@sq, @	i;t=@At, @	i;t+1=@At, @	i;t=@kt, and @	i;t+1=@kt are given

by (90)-(96) above, and the unobserved expected values of t + 1 variables have been replaced by their

realized counterparts. Due to multicollinearity, the �xed e�ect for the risky �nancial instrument, �F , is

omitted during estimation. This implies that the �xed e�ects �
�
�i + �j

�
represent mean departures from

the risky �nancial instrument arbitrage condition within each state.

All variables that are measured in dollars (i.e. pL, k, pY , and c), the marginal costs for capital and

shares (i.e. @c=@k and @c=@s), and the marginal adjustment cost for land (i.e. @	t=@At, and @	t+1=@At)

are converted to 1999 dollars using the BLS consumer price index. Note that the marginal adjustment cost

for capital expressions, @	t=@kt and @	t+1=@kt, are now a function of capital measured in 1999 dollars, so

no additional conversion is necessary.

The estimation approach proceeds exactly as (52) through (63), except that the initial set up is given

by (97) and gijt (�) replaces ~eijt � fijt (�) everywhere. Using a superscript A, the �nal NL3SLS step for the

arbitrage system is de�ned as

�̂
A

3SLS=argmin
�

IX
i=1

h
!̂Ai��

�
xijt;�

A
�i>

(N
 INA)
h
!̂Ai��

�
xijt;�

A
�i
: (99)

Compare this to the �nal NL3SLS step for the demand system (using superscript D)

�̂
D

3SLS=argmin
�

IX
i=1

h
!̂Di��

�
~wi�; ~ki�; ~ci�;�

D
�i>

(N
 IND )
h
!̂Di��

�
~wi�; ~ki�; ~ci�;�

D
�i
; (100)

and recall that the parameters in �A common to �D are held �xed during estimation. This approach yields

consistent estimates for �A, however the standard errors need to be corrected. To address this issue, de�ne

the joint arbitrage and demand systems as !̂Ji��

�
�;�A;�D

�
=

�
!̂Ai��

�
xijt;�

A
�

!̂Di��

�
~wi�; ~ki�; ~ci�;�

D
��

and

37



do a single iteration using the objective function

IX
i=1

h
!̂Ji��

�
�; �̂A3SLS ; �̂

D

3SLS

�i>
(N
 INA+ND )

h
!̂Ji��

�
�; �̂A3SLS ; �̂

D

3SLS

�i
: (101)

This approach yields consistent, asymptotically e�cient parameter estimates and consistent standard er-

rors for the parameters of interest in �A (Rothenberg and Leenders, 1964). As before, White/Huber's het-

eroskedasticity consistent covariance estimator is used for robustness to heteroskedasticity.

5.4 Results

5.4.1 Data

The data used to estimate the model is described in Sections 3.1 and 3.2. As discussed in 3.2, lagged �rst

di�erences and ratios of the wealth, farmland, capital, share, and S&P return variables are included in the

instrument set. This leads to omission of the �rst two years, 1960 and 1961, from the empirical sample.

In addition, construction of the arbitrage equations (97) requires period t + 1 data. This leads to omission

of the last year, 1999, from the empirical sample. Thus, 629 ( = 17 � 37) observations on 17 states from

1962-1998 are used in the �nal NL3SLS step.

5.4.2 Structural Breaks

The system-wide �rst-order parameter stability statistics and the mean zero test statistics, de�ned in Section

4.3.2, are used to evaluate the appropriateness of including structural change parameters as in the demand

system estimation. Looking at Table 5, Model A does not include any structural change parameters. The

system-wide �rst-order parameter stability statistics, QT , suggest that parameter instability is not a serious

problem as the null of parameter stability is only rejected for a single state at the 5% signi�cance level. Even

though the average of the mean zero test statistics, �zi, appear reasonable, it is important to note that the

number of test statistics that support rejection of the mean zero null hypothesis (column labeled \# reject

1%") is quite high. Of the 119 test statistics across 17 states and 7 equations, 34 fail to reject the null.

As noted in Section 4.3.2, there exists both theoretical and empirical evidence of structural breaks in

the agricultural economy around the years 1973 and 1986. To empirically test for structural breaks in the

arbitrage system, an additional �xed e�ect of the form � i;j;73D73+� i;1;86D86 is included in the system (97).

As before, the � 's are parameters to be estimated and the dummy variables D73 and D86 are de�ned as

D73 =

�
1 if t � 1973
0 otherwise

and D86 =

�
1 if t � 1986
0 otherwise

. (102)
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Note that the � 's are quite 
exible as they are not restricted to be equal across either states or equations.

Looking again at Table 5, the results of the parameter stability and mean zero tests under this alternative

speci�cation are given under Model B. While the QT and �zi columns do not suggest much improvement, the

number of test statistics that support rejection of the mean zero null hypothesis has dropped dramatically

from 34 to 8. Whereas there were several states that had 4 or more rejections under the initial model, now

there is only a single state with more than 1. In addition, state-speci�c Wald tests for null hypotheses of

the form

H0 : � i;1;73 = ::: = � i;7;73 = � i;1;86 = ::: = � i;7;86 = 0 (103)

support rejection of the null for all 17 states at the 1% signi�cance level. These results suggest inclusion of

the structural change parameters, so the following results are reported for Model B.

5.4.3 Error Term Properties

The estimated 7 � 7 intertemporal autocorrelation matrix, with White/Huber robust asymptotic standard

errors in parentheses and ���, ��, and � denoting statistical signi�cance at the 1%, 5%, and 10% levels

respectively, is

�̂ =

2666666666666666664

0:293
(0:0857)���

0:291
(0:0516)���

0:0707
(0:0961)

�0:139
(0:110)

0:0604
(0:197)

�0:0655
(0:127)

�0:0272
(0:0568)

0:372
(0:0787)���

0:444
(0:0849)���

5:63�10�3
(0:0884)

�0:120
(0:0817)

0:0501
(0:119)

�0:0535
(0:105)

0:0922
(0:0801)

0:286
(0:212)

�0:341
(0:159)��

�0:0313
(0:207)

�0:284
(0:176)

0:542
(0:249)��

�0:192
(0:207)

0:0235
(0:216)

0:296
(0:216)

�0:357
(0:159)��

�0:395
(0:176)��

0:296
(0:175)�

0:308
(0:231)

�0:176
(0:172)

�8:69�10�3
(0:217)

0:246
(0:214)

�0:380
(0:161)��

�0:345
(0:221)

�0:173
(0:179)

0:616
(0:262)��

�0:0543
(0:193)

�6:35�10�3
(0:220)

0:300
(0:214)

�0:340
(0:165)��

�0:167
(0:180)

�0:214
(0:171)

0:311
(0:258)

0:0980
(0:231)

0:0203
(0:218)

0:0713
(0:135)

0:295
(0:0641)���

�0:0136
(0:170)

0:0652
(0:124)

�0:433
(0:216)��

0:276
(0:111)��

�0:0962
(0:148)

3777777777777777775

: (104)

Rows and columns 1 through 7 are the land, capital, corn, oat, soy, wheat, and S&P arbitrage equations.

The implied dynamics for the fully unrestricted � are stable, with the largest jEigen valuej for the 7 � 7

di�erence equation is equal to 0:753, indicating no evidence of nonstationarity. The F-test that all parameter

estimates are jointly zero is �rmly rejected at the 1% signi�cance level, and the Durbin-Watson statistics do

not suggest higher order serial correlation (average Durbin-Watson statistics across states for each equation

are 2:06, 1:76, 1:80, 1:77, 1:70, 1:47, and 1:89).

The estimated spatial correlation function, with White/Huber robust standard errors in parentheses, is:

�̂ (dii0) = exp

�
� :498

(:348)
� :233� 10�2dii0
(:175� 10�2) +

:215� 10�5d2ii0
(:256� 10�5) �

:697� 10�9d3ii0
(:111� 10�8)

�
; (105)
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where i and i0 index states 1; :::; 17. While none of the parameter estimates are individually signi�cantly

di�erent from zero at a 10% level, a Wald test for the hypothesis that all parameters are jointly equal to

zero yields a p-value of 0:000. This suggests that spatial correlation across states is prevalent in the system.

A 2-dimensional plot of the empirical data, estimated correlation function, and 95% con�dence band are

presented in Figure 2. Note that the predicted correlation decreases steadily as distance increases, but

becomes very 
at from a distance of approximately 800 miles out, so that the error of states as far apart as

1; 387 miles away (largest distance in the sample) remain positively correlated. Failing to account for this

property would lead to biased and inconsistent statistical inferences.

5.4.4 Parameter Estimates

The parameter estimates for the system of arbitrage equations are reported in Table 6. The �W , �L, and

�K are the marginal value of wealth coe�cients for wealth, land, and capital;  L and  K are the coe�cients

for land and capital adjustment costs; and �K , �SC , �SO , �SS , and �SW are the parameters for the marginal

cost of capital and output shares.

The parameter estimates for the marginal value of wealth, �̂W ,�̂WL, and �̂WK , are all individually

statistically di�erent from zero at a 1% signi�cance level (p-values of 0:000 for all three). Furthermore, a

Wald test for the null hypothesis that they are jointly zero is rejected at a 1% level (p-value of 0:000). Since

��W < 0 is necessary and su�cient for concavity of the value function with respect to wealth, the point

estimate of :7189577 � 10�6 is inconsistent with the null hypothesis of risk neutrality (i.e. �W = 0) and

suggests risk averse behavior.

The parameter estimates for the adjustment cost function,  ̂L and  ̂K , are individually statistically

di�erent from zero at a 1% signi�cance level (p-values of 0:000 and 0:002 respectively). Furthermore, a

Wald test for the null hypothesis that they are jointly zero is rejected at a 1% signi�cance level (p-value of

0:000). Since  L > 0 and  K > 0 are necessary and su�cient for convexity of the adjustment cost function,

the point estimates of 0.1001551 and 0:8794872 � 10�3 are inconsistent with the null hypothesis of zero

adjustment costs (i.e.  L = 0 and  K = 0) and suggest that convex adjustment costs for land and capital

are a signi�cant component of agricultural production.

The joint hypothesis of risk neutrality and zero adjustment costs is tested using the null hypothesis

H0 : �W =  L =  K = 0. A Wald test for this null is rejected at a 1% signi�cance level (p-value of 0:000).

The positive point estimates for all three parameters suggest that risk aversion and convex adjustment costs

are jointly signi�cant components of agricultural production.

Recall that many of the parameters of the cost function were held �xed at their estimates from the

demand system estimation reported in Section 4.3. The parameters that are not recoverable from the demand
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system are exactly the parameters associated with the constant of integration, �
�
~k;� (�yq) s

�
. These are the

estimates reported for �K , �SC , �SO , �SS , and �SW in Table 6. All estimates are individually statistically

di�erent from zero at a 5% signi�cance level (p-values of 0:000, 0:021, 0:021, 0:021, and 0:020 respectively)).

Furthermore, a Wald test for the null hypothesis that they are jointly zero is rejected at a 5% signi�cance

level (p-value of 0:0143). An interesting property to note is that the nearly identical estimates for �SC ,

�SO , �SS , and �SW imply that the marginal rates of product transformation are all near 1.20 This provides

empirical evidence supporting the near-perfect (if not perfect) substitutability of corn, oats, soy, and wheat.

The extent to which each state's arbitrage equation over or underestimates full arbitrage relative to the

S&P can investigated by constructing estimates for the state and equation �xed e�ects, �̂ij = �̂i + �̂j .

Of the 102 �̂ij 's (17 states and 6 equations), only three were not statistically di�erent from zero at a 1%

signi�cance level (�̂7;6, �̂8;1, and �̂13;6). This result suggests there are signi�cant departures from the full

arbitrage conditions, likely due to the use of aggregate data (see �xed e�ect discussion in Section 5.1). It is

interesting to note that 83% of �̂ij 's are negative, which implies a strong undershooting of the farm-related

arbitrage conditions relative to the S&P. One possible explanation for this is that investment in agriculture

is not subject to the equity premium puzzle associated with stockmarket-related investment opportunities

(see Mehra and Prescott, 1985).

The parameter estimates in Table 6 are used to construct estimates of marginal adjustment costs for each

state,

c@	i;t
@At

= 
̂L (Ai;t �Ai;t�1) +
1

2

̂K (ki;t � ki;t�1)

2
and (106)

c@	i;t+1
@At

= �
̂L (Ai;t+1 �Ai;t) ; (107)

which are then used to construct estimates of the rate of return to farmland in the presence of adjustment

costs (call this the adjusted rate of return) for each state,

r̂i;L;t+1 =
pi;L;t+1 � pi;L;t + �i;K;t+1ki;t + p0Y;i;t+1� (yi;q;t) si;t � ci;t �

� c@	i;t+1

@At
+

c@	i;t

@At

�
pL;i;t + ki;t + ci;t +

c@	i;t

@At

: (108)

20As stated in LaFrance and Pope (2008b), the variable input demand equations have the structure

x(w;� (�yi) s; k) = g(w; k; c (w;� (�yi) s; k))

if and only if
c (w;� (�yi) s; k) � c (w; k; � (k;� (�yi) s)) ;

if and only if
F (x;� (�yi) s; k) � F (x; k; � (k;� (�yi) s)):

This implies that the marginal rates of production transformation will be equal to the ratio of the elements of �S under the
assumed speci�cation of � (k;� (�yi) s).
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Column 1 of Table 7 reports the average value of these estimates across time for each state, �ri;L =

1
T

PT
t=1 r̂i;L;t+1. The average adjusted rates of return vary widely across states from a low of 3:06% in

Michigan to a high of 9:76% in Georgia. Overall, the average adjusted return across states is 6:12% with

a standard deviation of 1:99%. Two states, Georgia and North Carolina, have an average adjusted rate

of return to farmland that has outperformed the S&P index (average return of 8:28% for the time period

considered). It is worthwhile to note that all states have overperformed relative to the real interest rate,

which has averaged an annual return of 2:88% for the period considered.

For comparison purposes, column 2 reports time-averaged unadjusted rates of return to farmland in the

absence of adjustment costs (i.e. setting c@	i;t=@At = c@	i;t+1=@At = 0 in 5.32), �r0i;L = 1
T

PT
t=1 r̂

0
i;L;t+1, and

column 3 reports the di�erence between these estimates, ��ri;L = �ri;L;i � �r0i;L. The di�erence between the

adjusted and unadjusted estimates is negative for all but one state, Oklahoma, indicating that not accounting

for adjustment costs leads to rate of return estimates that are biased upward on average. Column 4 reports

the percentage change to the unadjusted rate of return when adjustment costs are taken into account,

��ri;L;i = 100 � ��ri;L=�r0i;L. Across states, the average markdown is only 0:635%, and is no greater than

2:76% for any state.

The simple average di�erence, ��ri;L, is not a very good measure of the e�ect of adjustment costs on

the rate of return because the estimated di�erence is actually positive for 43% of the sample data points.

Column 5 reports the mean absolute di�erence for each state, �ari;L =
1
T

PT
t=1

��r̂i;L;t+1 � r̂0i;L;t+1��, which
are substantially higher than the ��ri;L. Column 6 reports the mean absolute deviation as a percentage of

the unadjusted rate of return, ��ri;L;i = 100 � �ari;L=�r0i;L. Across states, the mean absolute deviation is

5:60% and is near 22% for two states (North and South Dakota). This suggests that not accounting for

adjustment costs can lead to severely misrepresented rates of return to farmland.

The statistical signi�cance of the di�erences between the adjusted and unadjusted rates reported in

column 3 is tested using Wald tests. For each state and year in the data set, a Wald test of the null

hypothesis that r̂i;L;t+1 � r̂0i;L;t+1 = 0 was conducted. Column 6 reports the fraction of Wald tests that

support rejection of the null at a 1% signi�cance level within each state. As an example, the reported

value of 0:97 for Georgia means that 97% of the Wald tests support rejection of the null hypothesis that

the adjusted and unadjusted rates of return are equal. Looking at column 6, the lowest fraction of \reject"

conclusions is 0:81 (Pennsylvania) and four states failed to reject in all years (Iowa, North Dakota, Oklahoma,

and South Dakota). The average across states is :94. This suggests that the results reported in column 3

represent statistically signi�cant di�erences between the adjusted and unadjusted rates of return to farmland.

Thus, the presence of adjustment costs generates statistically signi�cant di�erences in the rate of return to

farmland that are negative on average and have a mean absolute deviation that is 5:60% of the unadjusted
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rate.

While it is beyond the scope of this paper, one could solve the system of arbitrage equations for optimal

farmland, capital, and share allocations and use the estimated parameters to simulate the e�ects of di�erent

agricultural policy instruments. As mentioned in the introduction, one could use the parameter estimates

to investigate the e�ect of policies targeting lower food prices, taking into account the supply lag driven by

partial adjustment of land and capital over time. In addition, one could use the adjusted farmland return

estimates to investigate how far the extensive margin will expand or contract in response to a variety of

policy scenarios including subsidization of corn for ethanol, an increase in the variety of subsidized crop

insurance products, and the introduction of new revenue support programs such as ACRE.

6 Conclusion

The focus of this research is whether risk aversion and adjustment costs are jointly signi�cant components

of agricultural production, and the e�ect that adjustment costs have on rate of return for investing in

farmland. Investment in agriculture is composed of many simultaneous decisions and both costs and bene�ts

of farming likely include many latent measures that are not observable to the researcher. To address these

issues, a theoretical model is developed that incorporates life-cycle household consumption, agricultural

production, �nancial economics, and adjustment costs in one coherent framework. This model ties together

contributions from the farmland pricing and adjustment cost literatures, and the �rst order conditions for a

utility maximizing decision maker are rearranged into intertemporal arbitrage equations that are similar in

spirit to traditional �nance models.

The derivation of the theoretical arbitrage model relies on the assumptions that land and capital are

quasi-�xed assets, and that production is characterized by constant returns to scale. These assumptions

are empirically tested using parameter estimates from a system of variable input demands that is formu-

lated using a new and innovative approach for overcoming aggregation and unobservable variable issues in

econometric models of production. The estimated model provides evidence of structural breaks in the agri-

cultural economy around the years 1973 and 1986, which are the starting and ending years of the notorious

boom/bust period of agricultural land prices. Accounting for these breaks led to parameter estimates that

showed no evidence of instability across the sample period 1960-1999.

The econometric approach utilizes a nonlinear instrumental variable (GMM) estimator that accounts

for correlation of the residuals across time, space, and equations. The results from the spatial correlation

analysis suggest that the errors from states more than 1; 000 miles apart remain positively correlated. In

addition, the demand speci�cation is 
exible enough to nest the industry standards of logarithmic or linear
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transformations of pertinent variables, none of which are supported by the data. Finally, the results of the

model are consistent with the constant returns to scale and quasi-�xity assumptions mentioned above, as

capital per acre is found to be a statistically signi�cant explanatory variable in the per acre variable input

demand speci�cations.

An empirical application of the arbitrage system utilizes a 
exible speci�cation for variable costs of

production and an explicit representation of adjustment costs to estimate the parameters of a system of

arbitrage equations that describe optimal investment in an o�-farm risky �nancial instrument, farmland,

capital, and output shares for corn, oats, soybeans, and wheat. Further evidence of structural breaks in the

agricultural economy around the years 1973 and 1986 is found, and the importance of accounting for spatial

correlation of the errors across states is reinforced.

The estimated parameters are used to test the joint hypothesis of risk neutrality and zero adjustment

costs. Results strongly support the rejection of this hypothesis, and are consistent with risk averse decision

making and convex adjustment costs. This is a novel result as the joint hypothesis had not been tested in

the literature. The estimates were also used to construct estimates of the rate of return to farmland in the

presence of adjustment costs. These adjusted rates were found to be statistically signi�cantly di�erent from

the unadjusted rates. The mean absolute deviation from the unadjusted rate is 5:60% across all states and is

near 22% for two states. This �nding suggests that not accounting for adjustment costs can lead to severely

misrepresented rates of return to farmland.
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B Tables

The following abbreviations for the 17 states are used: Georgia (GA), Iowa (IA), Illinois (IL), Indiana (IN),

Kansas (KS), Michigan (MI), Minnesota (MN), Missouri (MO), North Carolina (NC), North Dakota (ND),

Nebraska (NE), Ohio (OH), Oklahoma (OK), Pennsylvania (PA), South Carolina (SC), South Dakota (SD),

and Wisconsin (WI).

Table 1. Variable De�nitions for Theoretical Arbitrage Model

Variable De�nition

Wt beginning-of-period total wealth in dollars

Bt current holding of bonds with a risk free rate of return r

Ft current holding of a risky �nancial asset in dollars

rF;t+1 dividend plus capital gains rate on the �nancial asset

aq;t current allocation of land to qth farm output, q = 1; : : : ; nY

At total acres of farmland

sq;t = aq;t=At current share of land for qth farm output, q = 1; : : : ; nY

pL;t beginning-of-period market price of land

Kt total value of capital in dollars

kt = Kt=At total value of capital per acre in dollars

�K;t+1 percentage change in the value of capital

wv;t variable input prices, v = 1; : : : ; nV

wt vector of variable input prices w1;t,...,wnV �1;t

�Yq;t expected output for qth farm output, q = 1; : : : ; nY

�yq;t expected yield per acre for qth farm output, q = 1; : : : ; nY

"q;t+1 production disturbance for qth farm output, q = 1; : : : ; nY

yq;t+1 end-of-period actual yield of qth farm output, q = 1; : : : ; nY

pYq;t+1 end-of-period market price for qth farm output, q = 1; : : : ; nY

pQ;t vector of market prices for consumption goods

Mt total consumption expenditures

��1 single period discount factor
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Table 2. Additional Variable De�nitions for Cost Function

Variable De�nition

xt vector of variable input quantities per acre

wv;t variable input prices, v = 1; : : : ; nV

wt vector of variable input prices w1;t,...,wnV �1;t

�wt vector of variable input prices w1;t,...,wnV ;t

ct total variable cost per acre
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Table 3. Brownian Bridge Tests for Structural Break

Model Az }| { Model Bz }| {
Q1T Q2T Q3T QT Q1T Q2T Q3T QT

GA 0:581 0:895 0:548 0:610 0:460 0:651 0:830 0:683

IA 0:783 0:930 1:442� 1:107 0:568 0:574 0:681 0:868

IL 0:842 1:581� 1:160 0:729 0:441 0:630 0:834 0:988

IN 0:510 1:341 1:134 0:785 0:593 0:856 0:694 0:546

KS 0:883 1:036 0:869 0:654 0:612 0:899 1:036 0:817

MI 1:064 1:293 0:748 1:503� 0:603 0:628 0:636 0:674

MN 0:725 1:183 1:266 1:523� 0:695 1:064 0:520 0:688

MO 0:611 1:235 0:772 0:448 0:348 0:877 0:577 0:623

NC 1:679� 0:538 0:739 0:836 0:519 0:862 0:709 0:360

ND 0:534 1:924� 1:088 0:448 0:599 0:928 0:982 0:929

NE 0:790 1:290 1:596� 1:328 0:777 0:630 0:615 0:821

OH 0:692 1:678� 0:735 0:385 0:480 0:875 0:723 0:497

OK 1:664� 1:010 1:725� 0:917 0:526 0:723 1:085 0:709

PA 0:823 0:586 0:692 1:053 0:284 0:709 0:665 0:724

SC 1:723� 0:658 0:995 1:018 0:685 0:712 0:481 0:670

SD 0:640 1:292 1:179 0:553 0:679 0:695 1:072 0:474

WI 1:171 0:913 1:757� 1:579� 0:672 0:829 0:718 0:780

Model A does not include structural change parameters for 1973 and 1986, Model

B does. Columns labeled Q1T , Q2T , and Q3T report single equation �rst-order tied

Brownian bridge test statistics for materials, energy, and ag chemicals, while the

column labeled QT reports the system of equations test statistic (see text).

� indicates statistically di�erent from null hypothesis at the 5% signi�cance level.
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Table 4. Estimated Coe�cients and Robust Standard Errors

Coe�cient Estimate Standard Error T-Ratio P-Value

� :1687992 :0604251 2:793527 [:005]

� :0782715 :0541744 1:444806 [:149]

�1;1 :6972398� 10�2 :2893635� 10�2 2:409563 [:016]

�1;2 �:2136856� 10�3 :1444549� 10�3 �1:479255 [:139]

�1;3 �:2163776� 10�3 :2377874� 10�3 �:9099623 [:363]

�1;4 :0239923 :7520395� 10�2 3:190295 [:001]

�1 :0148734 :9205614� 10�2 1:615689 [:106]

�2 �:9977413� 10�3 :7150425� 10�3 �1:395359 [:163]

�3 �:1188801� 10�2 :8387804� 10�3 �1:417297 [:156]

�4 :0554081 :0314798 1:760119 [:078]
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Table 5. Brownian Bridge Tests for Structural Break

Model Az }| { Model Bz }| {
QT �zi =

1
J

JP
j=1

zij # reject 1% QT �zi =
1
J

JP
j=1

zij # reject 1%

GA 1:407� �0:9113 3 0:679 0:0957 0

IA 0:944 �0:2471 0 0:550 0:0760 0

IL 0:531 �0:0167 0 0:523 0:2015 0

IN 1:273 0:4022 1 0:787 0:4713 1

KS 0:486 0:4277 0 1:09 0:3333 1

MI 0:961 1:250 2 1:22 0:2664 1

MN 0:905 �0:2673 0 0:705 0:1753 0

MO 1:258 0:5481 1 0:897 �0:6405 0

NC 0:752 0:2024 6 1:06 0:3027 1

ND 0:891 0:3049 3 1:21 �0:5361 1

NE 0:652 �0:0336 1 0:826 0:7332 1

OH 0:489 0:5324 1 1:01 0:3704 0

OK 1:005 �0:4293 5 1:42� �0:0982 2

PA 0:634 0:1963 2 0:786 0:1547 0

SC 1:045 �0:4765 4 0:418 0:0655 0

SD 0:954 0:7513 4 0:436 0:4177 0

WI 0:976 �0:6812 1 1:06 0:1406 0

Model A does not include structural change params for 1973 and 1986, Model B does.

QT reports tied Brownian bridge system of equations test statistic (see text).

zij=
p
T "̂ij=�̂ij�

an(0; 1) is mean zero test stat for state i equation j residuals, �zi is avg

of test statistics across equations. "# rejects 1%" is number of jzij j greater than 2.33.
� indicates statistically di�erent from null hypothesis at 5% signi�cance level.

55



Table 6. Estimated Coe�cients and Robust Standard Errors

Coe�cient Estimate Standard Error T-Ratio P-Value

�W :7189577� 10�6 :6964200� 10�7 10:32362 [:000]

�WL �:3153465� 10�3 :6399488� 10�4 �4:927683 [:000]

�WK :2453637� 10�2 :4114235E � 10�4 59:63775 [:000]

 L :1001551 :0186678 5:365121 [:000]

 K :8794872� 10�3 :2442608� 10�3 3:600607 [:000]

�K :1006472� 10�3 :2812572� 10�4 3:578474 [:000]

�SC :0173540 :7541878� 10�2 2:301016 [:021]

�SO :5262389� 10�2 :2276083� 10�2 2:312038 [:021]

�SS :0245156 :0106022 2:312323 [:021]

�SW :0312612 :0133934 2:334072 [:020]

State and equation �xed e�ects were included in the model. Due to multicollinearity,

the �xed e�ect for the risky �nancial instrument arbitrage equation (S&P) was

omitted. Durbin-Watsons are 1:70, 1:76, 1:51, 2:08, 1:79, 1:84, and 1:67 for the

land, capital, corn, oat, soy, wheat, and S&P equations respectively.
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Table 7. Rate of Return to Farmland Estimates

�rL;i �r0L;i ��rL;i ��rL;i �arL;i �arL;i Wald, 1%

GA 0:0976 0:0980 �0:000347 �0:354 0:00250 2:55 0:97

IA 0:0664 0:0668 �0:000366 �0:548 0:00146 2:19 1:00

IL 0:0719 0:0722 �0:000324 �0:448 0:00113 1:57 0:92

IN 0:0550 0:0553 �0:000345 �0:623 0:000987 1:78 0:86

KS 0:0601 0:0603 �0:000220 �0:365 0:00418 6:94 0:97

MI 0:0306 0:0310 �0:000426 �1:37 0:000971 3:12 0:89

MN 0:0622 0:0624 �0:000258 �0:413 0:00261 4:17 0:95

MO 0:0465 0:0467 �0:000169 �0:362 0:00141 3:03 0:97

NC 0:0910 0:0913 �0:000306 �0:336 0:000705 0:772 0:92

ND 0:0799 0:0822 �0:00227 �2:76 0:0184 22:3 1:00

NE 0:0647 0:0650 �0:000290 �0:446 0:00493 7:58 0:97

OH 0:0357 0:0361 �0:000361 �0:999 0:000821 2:27 0:86

OK 0:0367 0:0367 0:0000252 0:0685 0:00356 9:70 1:00

PA 0:0351 0:0354 �0:000291 �0:822 0:000526 1:48 0:81

SC 0:0715 0:0718 �0:000312 �0:435 0:00169 2:35 0:97

SD 0:0797 0:0806 �0:000920 �1:14 0:0177 21:9 1:00

WI 0:0547 0:0550 �0:000245 �0:445 0:000723 1:31 0:92

Estimates constructed using sample data from 1962-1998. See text for de�nitions

of column headers.
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C Derivations of Equations

C.1 Derivation of Equation (43)

Since c (w; k; �) = wnV f
�1 (y (g (~w (w)) ; �)), the composite function theorem implies

q � @c

@w
=

@

@w
wnV f

�1 (y (g (~w (w)) ; �))

= wnV
@ ~w
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�
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~w��1v

� @y
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: (109)
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C.2 Derivation of Equations (45) and (46)

First note that the composite function theorem implies that the (nV � 1)� (nV � 1) elements of the Hessian

are
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Equation (109) implies
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which are plugged into the above yielding
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The remaining piece is @2y=@g@g>, which is given by equation 94 in LaFrance et. al. (2005),
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The adding up condition c = w>q+ wnV qnV implies that the demand for the n
th
V input is given by

qnV =
1
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�
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This implies that the (nV ; 1); :::; (nV ; nV � 1) elements of the Hessian are
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which are the weighted sums of the columns of H due to adding up. The (nV ; nV ) element of the Hessian is

given by
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which is a quadratic form in the elements of H due to adding up. Thus, the full nV � nV Hessian is
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C.3 Derivation of Equations (88) and (89)

Since c (w; k; �) = wnV f
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and
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The expression for @y=@� is
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From equation (85),  
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Since the speci�cation for theta
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the marginal cost expressions are
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where the substitution y = f (~c) has been made. Adding i and t subscripts where appropriate completes the

derivation.
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