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Abstract

We consider time series models in which the conditional mean of the response variable given the

past depends on latent covariates. We assume that the covariates can be estimated consistently

and use an iterative nonparametric kernel smoothing procedure for estimating the conditional mean

function. The covariates are assumed to depend (non)parametrically on past values of the covariates

and of the observations. Our procedure is based on iterative fits of the covariates and nonparametric

kernel smoothing of the conditional mean function. An asymptotic theory for the resulting kernel

estimator is developed and the estimator is used for testing parametric specifications of the mean

function. Our leading example is a semiparametric class of GARCH-in-Mean models. In this set-up

our procedure provides a formal framework for testing economic theories that postulate functional

relations between macroeconomic or financial variables and their conditional second moments. We

illustrate the usefulness of the methodology by testing the linear risk-return relation predicted by the

ICAPM.
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1 Introduction

Economic theory often predicts a relationship between an unobserved covariate and an observed response

variable. Standard examples from finance and macroeconomics are the relation between risk and expected

return or nominal uncertainty and inflation. Throughout the article we consider the exemplary situation

in which a relationship between the level of a variable and an unobserved covariate that depends on the

past is modeled. A prominent example for such a covariate is the conditional variance of the variable

given the past. More specifically, we consider an econometric specification for a random variable Yt of

the form

E[Yt|Ft−1] = m(ht), (1)

where Ft−1 represents the information set available at t − 1 and where ht is an unobserved covariate

that is measurable with respect to Ft−1. We assume that ht depends on its own past values and on the

past values of Yt, i.e. ht = fm,ψ(Yt−1, Yt−2, ..., ht−1, ht−2, ...) with a function fm,ψ parametrized by the

mean function m and a finite- or infinite-dimensional parameter ψ. We propose to estimate the covariate

process ht, the parameter ψ and the regression function m by an iterative procedure. In each cycle of

the procedure, m is estimated by regressing Yt nonparametrically on the fitted values of ht, then the

estimate of ψ is updated by using the new fit of m, and finally, a new estimate of ht is given by applying

the function fbm, bψ to the actual fits m̂, ψ̂ of m and ψ. The iteration is repeated until convergence of the

estimated mean function is achieved.

We develop an asymptotic theory for the resulting estimator of m and propose a test for parametric

specifications of m. For the estimator of m we show the following “oracle property”. Asymptotically the

nonparametric mean function can be fitted as well as if the fit would have been based on the true unob-

servable covariate. Our test for parametric specifications of m is based on a comparison of a parametric

estimator of m with our nonparametric estimator. The idea of comparing parametric and nonparametric

regression fits for testing the appropriateness of a particular parametric model goes back to e.g. Härdle

and Mammen (1993) who concentrated on regressions involving independently and identically distributed

observations. The problem of testing for linearity in autoregressive time series models has been considered

by e.g. Hjellvik and Tjøstheim (1995), while Kreiss et al. (2002) test for linearity in a more general times

series setting which is not necessarily autoregressive. In all previous studies the test statistic is based on

the difference between a nonparametric and a parametric regression fit, but in contrast to our study the

dependent and independent variables are observed directly. The main contribution of this article is to

deal with a situation in which the regressor is unobservable and replaced by an appropriate estimate.1

1The problem considered in this article is closely related to the treatment of nonparametric regressions on generated

regressors. See, e.g., Sperlich (2007) for a discussion of the situation where the unobserved variable is i.i.d.

2



As for estimation, we show that under certain regularity conditions the asymptotic results for the test

statistic based on the iteratively fitted values of ht are the same as if the process ht had been observed.

Since the asymptotic distribution of the test statistic is approached quite slowly as the sample size goes to

infinity, we suggest a bootstrap algorithm from which the critical values can be computed. Monte-Carlo

simulations show that the bootstrap distribution approximates the distribution of the test statistic under

the null hypothesis reasonably well in finite samples. Under the alternative, the test statistic reveals good

power properties.

The leading example for our general theory is the situation in which ht represents the conditional

variance of Yt. In particular, we think of the case where ht is given by some GARCH-type equation.

Then the parameter vector ψ contains the GARCH-parameters and we have a semiparametric GARCH-

in-Mean (GARCH-M) model with nonparametric specification of the risk premium m(·). In this model,

our nonparametric estimator of m is similar to that proposed by Linton and Perron (2003). In certain

cases economic theory directly implies a particular parametric specification m = mγ with γ being a

parameter vector. One of the workhorses in financial econometrics, the GARCH-M model introduced

by Engle et al. (1987) is a primary example of such a specification where mγ is typically assumed to be

linear or logarithmic in the conditional variance. Our test can be applied for checking such parametric

specifications of the risk premium.

We employ the suggested procedure in an empirical application for testing Merton’s (1973) Intertem-

poral Capital Asset Pricing Model (ICAPM) which suggests that the conditional expected excess return

on the market, say E[Yt|Ft−1], is proportional to the conditional market variance, i.e. mγ(ht) = λht. For

monthly as well as daily excess return data on the CRSP value-weighted index we estimate GARCH(1, 1)-

M models. In line with previous studies, we find a positive but insignificant relation between the market

excess return and its conditional variance when using monthly data, while we find a highly significant

and positive relation using daily data. Under the alternative we estimate a semiparametric model which

only assumes the risk premium to be some smooth function. For the daily data we find some evidence

against the linear relationship when volatility is extremely high.

Recently, Christensen et al. (2008) followed our approach and proposed another variant of a semipara-

metric GARCH-M model. In contrast to the general specification considered in this paper, they analyze

the simplified model with ht = fψ(Yt−1, Yt−2, ..., ht−1, ht−2, ...), i.e. where the conditional variance does

not depend on m. Christensen et al. (2008) provide detailed Monte-Carlo simulations for comparing

their estimator with ours. Applying their procedure to the same CRSP data set, they find evidence

which supports our empirical results. However, Christensen et al. (2008) do not consider the problem of

testing for parametric specifications of m.

The remainder of the article is organized as follows. Section 2 reviews the empirical literature on
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testing the risk-return relationship by GARCH-M models. Section 3 introduces our general semipara-

metric framework and discusses the estimation of the nonparametric mean function. In Section 4 we

then motivate the test statistic, derive its asymptotic distribution and explain the bootstrap procedure.

The empirical properties of our procedure are evaluated in a Monte-Carlo simulation study in Section 5.

Section 6 illustrates the method by an application to CRSP excess return data. Finally, we summarize

the main conclusions in Section 7 and discuss several directions in which our approach can be naturally

extended. All proofs are deferred to the appendix.

2 Modelling the Risk-Return Relation

Merton’s (1973) ICAPM predicts that the conditional expected excess return on the market is linear

in two components: the conditional market variance (the risk component) and the conditional market

covariance with the investment opportunities (the hedge component). Under certain conditions, the

equilibrium expected excess return on the market can be approximated as

E(rM,t − rf,t|Ft−1) ≈ λ ·Var(rM,t − rf,t|Ft−1), (2)

where rM,t denotes the return on the market portfolio, rf,t the return on the risk-free asset and λ

is a positive constant equal to the representative agent’s Arrow-Pratt measure of relative risk aver-

sion.2 Equation (2) is often referred to as a conditional single-factor model, while equations which

include the covariances with the state variables are labelled conditional multi-factor models. Empir-

ical researchers testing equation (2) have to make an assumption concerning the intertemporal na-

ture of the conditional variance of the market. The class of GARCH-M models provides a natu-

ral workhorse in which ht , Var(rM,t − rf,t|Ft−1) is modelled as some GARCH-type equation and

Yt , E(rM,t − rf,t|Ft−1) = mγ(ht) = λht.

Many attempts have been undertaken to test Merton’s (1973) prediction by using various formulations

of the GARCH-M model.3 The somewhat disappointing result, however, is that most empirical studies

on the risk-return relation led to controversial findings, some of which indicate a positive relationship

such as French et al. (1987) or Lundblad (2007), some indicate a negative relationship such as Glosten et

al. (1993), while others do not find a significant relationship at all such as Bodurtha and Mark (1991).

A potential explanation for the controversial findings was rationalized by Backus and Gregory (1993).

2The approximation holds either if the partial derivative of the representative agent’s utility with respect to wealth is

much larger than the partial derivative with respect to the state variables or if the variance of the change in wealth is much

larger than the variance of the change in the state variables (see Merton, 1980, p. 329).
3It is common to specify the mean as m(ht) = µ + λg(ht) where g(ht) is either the conditional variance itself, the

conditional standard deviation or the log of the conditional variance.

4



Using Mehra and Prescott’s (1985) dynamic exchange economy model they show that the relation between

the excess return and its conditional variance can have virtually any shape: increasing, decreasing, flat,

U-shaped, inverse U-shaped or non-monotonic depending on both the preferences of the representative

agent and the probability structure across states. Similarly, Genotte and Marsh (1993) constructed a

general equilibrium model in which the relationship mγ(ht) = λht + k(ht) holds, with k(·) depending on

preferences and on the parameters of the distribution of asset returns. The Merton (1973) relationship

with k(·) = 0 is obtained only as a very special case, namely if the representative agent has logarithmic

utility. Similarly, Whitelaw (2000) investigates the relation between risk and excess return in a general

equilibrium exchange economy characterized by a regime-switching consumption process. While a single-

regime model generates a positive and essentially linear relation between expected returns and volatility,

a two-regime model leads to a complex, nonlinear relation. At the market level this relation will be

negative in the long-run.

The theoretical considerations of Backus and Gregory (1993), Genotte and Marsh (1993) and Whitelaw

(2000) suggest that a misspecified, i.e. too inflexible, mean function might have caused the controversial

empirical results in the above mentioned studies. In the following we review two recent studies which

allow for more flexible specifications of the conditional mean.4

Das and Sarkar (2000) suggest the ARCH-in-Nonlinear-Mean (ARCH-NM) model which defines the

risk premium as a Box-Cox power transformation of the conditional variance. Obviously, this model

nests the simpler parametric specifications mentioned above under certain constraints on the power

transformation parameter. Although the ARCH-NM specification is favored compared to the standard

specification when applied to stock return data, Das and Sarkar (2000) conclude that the model fit is

not entirely satisfactory. They conjecture that the ARCH-NM is still not nonlinear enough. Going a

step ahead, Linton and Perron (2003) suggest an algorithm for estimating a semiparametric (E)GARCH-

M model which does not assume a functional form for the shape of the risk premium a-priori. The

model is semiparametric in the sense that the conditional variance equation is modelled parametrically as

GARCH or EGARCH, while the shape of the conditional mean is estimated nonparametrically.5 Although

no asymptotic theory is provided for their estimator, Monte-Carlo simulations show that the procedure

works reasonably well. An application of the semiparametric EGARCH-M to excess returns on the CRSP
4Some studies such as Scruggs (1998) argue that the controversial results are due to an omitted variable bias: if the

true relationship is a multi-factor model then single-factor models are misspecified and their estimates of λ are subject to

an omitted variable bias. However, Guo and Whitelaw (2006) find that this argument should not apply when using daily

data. This is because investment opportunities change slowly at the business cycle frequency and can be treated as being

constant at higher frequencies.
5Masry and Tjøstheim (1995) investigate the problem of nonparametrically estimating both the mean and the conditional

variance function. However, their procedure does not allow for a risk premium.
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value-weighted index reveals a hump-shaped pattern of the risk premium which could not be detected by

the parametric EGARCH-M model.

Several studies employ nonparametric techniques to estimate the conditional variance. Pagan and

Ullah (1988) and Pagan and Hong (1990) argue that the conditional variance is a highly nonlinear

function of the past whose form is not adequately captured by parametric GARCH-M models. They

firstly estimate the conditional variance nonparametrically and then regress the excess return on the

estimated conditional variance by least squares methods. Using this procedure they find a negative

but insignificant in-mean coefficient. Pagan and Hong (1990) restrict ht to be a function of the last p

observations {Yt−1, . . . , Yt−p} for some fixed p in order to avoid the well known “curse of dimensionality”:

the optimal rate of convergence decreases with dimensionality p. This restriction however is problematic

since – as has been shown in many other studies – the conditional variance is a highly persistent process

and so it is unlikely that its dynamics can be adequately captured by such an estimator. Linton and

Mammen (2005) suggested an alternative approach based on kernel smoothing and profiled likelihood

circumventing the curse of dimensionality and nevertheless allowing the conditional variance to depend

on the whole past of the process Yt. They specify the conditional variance as additive in Yt−j with the

restriction that the different additive functions are proportional to each other. This implies that only one

univariate function needs to be estimated. Hence their semiparametric ARCH(∞) model is capable of

taking into account both nonlinearity and high persistence in the conditional variance. A similar approach

is used by Li et al. (2005) who propose a test for the existence of an in-mean effect. Recently, Chen and

Ghysels (2008) have extended the Linton and Mammen (2005) approach by introducing mixed data

sampling (MIDAS) in the variance equation. This extension allows to recover the link between returns

over short horizons and future volatility over longer horizons. MIDAS specifications for the conditional

variance have been proven as useful tools for testing the risk return trade-off (see, Ghysels, 2005, and

Anderson et al., 2007).

Several potential explanations (misspecification of the conditional variance, omitted variables bias,

ect.) for the controversial empirical findings on the risk-return relation were addressed in the literature,

but without convincing success. In this paper we focus on the obvious possibility of misspecification

of the mean function. Since the parametric specification of the risk premium implied by the Merton

(1973) ICAPM results from very specific assumptions, it seems natural to ask for the appropriateness

of the commonly imposed functional form. Our framework allows to consider a general class of in-

mean models which nest the standard GARCH-M as a special case. For such a model we address the

problem of estimating nonparametrically the conditional mean function and testing for the correct choice

of a particular parametric specification. The recent paper by Christensen et al. (2008) can be seen as

complementary to our work. The issue of estimation is considered for a special case of our set-up, namely
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the situation in which ht does not depend on m.

Recently, nonparametric approaches have received considerable attention in the financial econometrics

literature. The articles by Chen and Ghysels (2008), Christensen et al. (2008), Connor et al. (2007) and

Linton and Sancetta (2007) are only a few examples for this development. The problem considered in

this article further extends this path of research.

3 Estimation Strategy for the General Semiparametric Model

In this section we define the general model and introduce the estimation strategy. The important issue

of testing for parametric specifications of m is discussed in the next section.

The general model is defined as follows:

Assumption 1. The data are generated by

Yt = m0(ht) + εt, (3)

where εt fulfills E[εt|Ft−1] = 0 for an increasing σ-field Ft with the property that (εt, ht+1) is Ft-

measurable.

The process ht is an unobserved one-dimensional process. We assume that ht can be consistently

estimated by known functions ĥt that depend on parameters ψ and m and on the past observations

Yt−1, Yt−2, . . . , Y1. We denote the true parameter values by ψ0 and m0, i.e. ht = ĥt(ψ0,m0). More

generally, we allow this equality to hold only approximately, i.e. that the difference ht − ĥt(ψ0, m0) is

of asymptotically negligible order, see below. For simplicity, dependence of quantities and functions

on Yt−1, Yt−2, . . . is suppressed in our notation. In this section we discuss estimation of the regression

function m on a compact interval I. A typical example could be that ht follows a GARCH(1, 1) process

or another specification from the GARCH family. Then ĥt(ψ0,m0) differs from ht because the starting

values of the GARCH autoregression are not known. In the asymptotic treatment, implicitly we assume

that the first observations are used in generating the fit of ht but not in the estimation of m without

explicitly mentioning this and indicating this in the notation and theoretical discussion. This allows us

to assume that ht − ĥt(ψ0,m0) is small for all t and it simplifies the notation. Most importantly, we

allow ĥt to depend on the function m0. In particular, this is the case if ĥt depends on ψ0 and on the

residuals ε1, ..., εt−1, see also the discussion above. Our central assumption on ĥt is that it is measurable

with respect to Ft−1.

Assumption 2. The (random) function ĥt is measurable with respect to Ft−1. It holds that

|ĥt(ψ0,m0)− ht| ≤ UT
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for all values t with ht ∈ Ib. Here Ib is the set of all points x with distance from I less than b. Furthermore,

UT is a random variable with UT = oP (T−ω) with ω > η, where b is the bandwidth of our kernel smoothing

and T−η is the order of b, see Assumption 8 below.

We make the following mixing condition for the covariate process.

Assumption 3. The process ht is stationary and β-mixing with mixing coefficients β(j) ≤ cvj for

constants c > 0 and 0 < v < 1. The density fh of ht is Lipschitz continuous and bounded away from 0

on I. The joint density of ht and ht+s is bounded on I × I, uniformly in s.

The β-mixing condition in Assumption 3 could be replaced by the assumption that β(j) ≤ aj−c for

a constant a > 0 and for a constant c that is large enough. We avoided an exact check of the necessary

size of the constant c because we have no examples of ARCH models where Assumption 3 does not hold

but where this weaker assumption applies.

For the function m we assume that it is a smooth function on I and that it is parametrically specified

by a finite dimensional parameter vector γ outside I. In the framework of testing we consider the

hypothesis that m is specified on the whole real line by the parameter γ. We denote the supnorm over

I by ‖m‖∞ = supx∈I |m(x)|. We also write m for the restriction of m to I and write then ĥt(ψ, γ, m).

The parameter vector θ = (ψ, γ) is an element of a normed space endowed with the norm ‖ · ‖. When we

consider the issue of testing we will restrict the discussion to the parametric case that this normed space

is finite dimensional.

We consider an iterative estimation scheme where in each iteration step the estimators of m and

θ = (ψ, γ) are updated. We first discuss the asymptotic theory for the case of one iteration step. The

general theory then follows by an iterative application of the result. The initial estimators are denoted

by m̃, θ̃ = (ψ̃, γ̃) and the updated estimators by m̂, θ̂ = (ψ̂, γ̂). Our theoretical result implies that the

updated estimator m̂ fulfills the conditions needed for the starting value of the iteration. Thus, our result

can be employed for an iterative application. For estimation, the estimator of Linton and Sancetta (2007)

can be used as an initial estimator, for testing, the iteration can start with a parametric estimator, see

the discussions in Section 4. We make the following assumptions on the preliminary estimators and on

the dependence of ĥt on their arguments.

Assumption 4. The estimators m̃ and θ̃ fulfill

‖θ̃ − θ0‖ = oP (T−δθ ),

‖m̃−m0‖∞ = oP (T−δm),

‖D2m̃−D2m0‖∞ = oP (T ξ0)
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for constants 0 < δθ < 1/2 , 0 < δm and real ξ0. Put also ξ = max{ξ0, 0}. Here, we write Djm for the

j-th derivative of a function m.

Assumption 5. For θj = (ψj , γj),mj (j = 1, 2) with ‖θj − θ0‖ ≤ T−δθ , ‖mj −m0‖∞ ≤ T−δm , ‖D2mj −
D2m0‖∞ ≤ T ξ0 we assume that

|ĥt(θ1,m1)− ĥt(θ2,m2)| ≤ VT ‖θ1 − θ2‖+ WT ‖m1 −m2‖∞ + RT .

Here VT and WT are random variables with VT = OP (T ρθ ), WT = OP (T ρm) and RT = oP (T−ρ0) with

constants 0 ≤ ρm < δm − η, 0 ≤ ρθ < δθ − η and 0 ≤ ρ0 < (1 + η)/2.

Assumption 6. For ε > 0 it holds with a constant C > 0 that

H(ε, ‖ · ‖, {θ : ‖θ − θ0‖ ≤ T−δψ}) ≤ Cε−1/2T (ξ+ρm−ρθ)/2.

Here for a set A, H(ε, ‖ · ‖, A) = log N(ε, ‖ · ‖, A) is the entropy of A, i.e. N(ε, ‖ · ‖, A) is the number of

balls with radius ε that are necessary to cover A.

Note that Assumption 6 is fulfilled for the particular case of finite-dimensional θ.

The next assumption is needed because the techniques from empirical process theory that will be used

below require subexponential tails.

Assumption 7. It holds that E[exp(ρ|εt|)|Ft−1] < C almost surely for ρ > 0 small enough and ht ∈ I

with a constant C < ∞.

In this assumption we only require conditional subexponential tails of εt if ht lies in the bounded set I.

In particular, it is not assumed that εt has unconditional subexponential tails. The condition is fullfilled

for GARCH-specifications with i.i.d. εt/
√

ht that have a subexponential distribution, e.g. Gaussian.

We now introduce our smoothing estimators of m. For estimation of m we use a Nadaraya-Watson

smoother m̂NW and a local linear estimator m̂LL, for testing we only rely on Nadaraya-Watson smooth-

ing. The construction of our test is such that the bias term cancels by substracting an asymptotically

equivalent term. Thus for testing, local linear smoothing does not offer advantages over Nadaraya-Watson

smoothing. Our main technical tool is to show that the stochastic part of the local linear and of the

Nadaraya-Watson estimator is asymptotically equivalent to the “oracle estimator” m̂∗,LL and m̂∗,NW

that is based on smoothing Yt versus ht.

We decompose m̂LL = m̂LL,A+m̂LL,B , ..., m̂∗,NW = m̂∗,NW,A+m̂∗,NW,B into a stochastic component

(superindex A) and a mean part (superindex B). Here,

m̂NW,A(x) =
r̂NW,A(x)

f̂(x)
, m̂NW,B(x) =

r̂NW,B(x)

f̂(x)
,
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with r̂NW,A(x) = 1
T

∑T
t=1 Kb(h̃t − x)[Yt − m(ht)] , r̂NW,B(x) = 1

T

∑T
t=1 Kb(h̃t − x)m(ht), f̂(x) =

1
T

∑T
t=1 Kb(h̃t−x) and h̃t = ĥt(ψ̃, γ̃, m̃). Here, Kb(·) = b−1K(·/b) is a kernel with kernel function K and

bandwidth parameter b. Kernel and bandwidth fulfill the following standard smoothing conditions.

Assumption 8. The kernel K has bounded support ([−1, 1], say) and a continuous derivative. The

bandwidth b is of order T−η, i.e.

0 < lim inf
T→∞

T ηb ≤ lim sup
T→∞

T ηb < ∞

for a constant η with 0 < η < 1
3 .

The components of the local linear estimator are defined by m̂LL,A(x) = αA and m̂LL,B(x) = αB

where (αA, βA) and (αB , βB) minimize

T∑
t=1

Kb(h̃t − x)[Yt −m(ht)− αA − βA(h̃t − x)]2 = min,

T∑
t=1

Kb(h̃t − x)[m(ht)− αB − βB(h̃t − x)]2 = min.

The oracle estimators m̂∗,LL, m̂∗,NW and their components m̂∗,LL,A, ..., m̂∗,NW,B are defined as m̂LL,

m̂NW , ... with h̃t replaced by ht. Our first theorem compares the stochastic parts of the local linear

and of the Nadaraya-Watson estimators with their oracle counterparts. It states that the differences are

asymptotically negligible. The reason for providing a separate theorem for the stochastic parts of the

estimators is that for our testing procedures no results on the mean parts are needed.

Theorem 1. Assume that Assumptions 1 – 8 apply. For κ with κ < min{δm − ρm, δθ − ρθ} − η − ξ/4,

κ < ρ0 − (1 + η)/2 and κ < ω − η it holds that

sup
x∈I

∣∣m̂LL,A(x)− m̂∗,LL,A(x)
∣∣ = oP (T−(1/2)+(η/2)−κ), (4)

sup
x∈I

∣∣m̂NW,A(x)− m̂∗,NW,A(x)
∣∣ = oP (T−(1/2)+(η/2)−κ). (5)

Under the additional assumption that K is three times continuously differentiable it follows that

sup
x∈I

∣∣D2m̂
LL,A(x)−D2m̂

∗,LL,A(x)
∣∣ = oP (T−(1/2)+(5η/2)−κ), (6)

sup
x∈I

∣∣D2m̂
NW,A(x)−D2m̂

∗,NW,A(x)
∣∣ = oP (T−(1/2)+(5η/2)−κ). (7)

The essential assumption of the theorem is that the rate of convergence of the preliminary estimator

T−δm is faster than the rate of the bandwidth T−η. If the second derivative of the preliminary estimator

does not grow too fast to infinity the constant κ can be chosen as κ > 0. Then the difference between the

stochastic parts of the estimators and their oracle counterparts is of lower order as the rate T−(1/2)+(η/2).

This is the rate of the oracle estimator. Thus, the differences are asymptotically negligible. For slightly
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more rapid growth of the second derivative we do not get asymptotic equivalence but it still holds that the

rate of convergence of the updated estimators is faster than that of the preliminary estimators. Repeated

application of Theorem 1 can be used to show asymptotic equivalence after a finite number of iterations.

For such an application we have added in Theorem 1 results on rates for the second derivatives of the

estimators.

We now discuss the bias terms of Nadaraya-Watson and local linear smoothing. For the asymptotic

treatment we need the following additional assumptions.

Assumption 9. There exist δ1, δ2, δ3 > 0 such that for θj and mj (j = 1, 2) with ‖θj − θ0‖ < δ1, ‖mj −
m0‖∞ < δ2, ‖D1mj −D1m0‖∞ < δ3 it holds that the (multivariate) process (ht, ĥt(θ1,m1), ĥt(θ2,m2)) is

β-mixing with mixing coefficients β(j) < cvj for constants c > 0, 0 < v < 1.

Assumption 10. We assume that

1
T

T∑
t=1

E
[
(ĥt(θ, m)− ht)Kb(ĥt(θ, m)− x)

]
= o(T−2η)

uniformly for (θ, m, x) ∈ GT , where GT is the set of tuples (θ, m, x) with ‖θ − θ0‖ ≤ T−δθ , ‖m−m0‖∞ ≤
T−δm , ‖D2m−D2m0‖∞ ≤ T ξ0 and x ∈ I.

The following additional assumption is needed for Nadaraya-Watson smoothing.

Assumption 11. We assume that

1
T

T∑
t=1

E
[
(ĥt(θ, m)− x)Kb(ĥt(θ, m)− x)− (ht − x)Kb(ht − x)

]
= o(T−2η)

uniformly for (θ,m, x) ∈ GT .

The next theorem discusses local linear and Nadaraya-Watson smoothing for bandwidth of order T−η

with η = 1/5. For twice differentiable regression functions the optimal rate is than of order T−2/5. The

theorem states that the difference between the estimators and their oracle counterparts is asymptotically

negligible. In particular, this implies pointwise asymptotic normality of the estimators.

Theorem 2. Assume that Assumptions 9 – 10 and the assumptions of Theorem 1 apply with κ > 0,

η = 1/5 and min(δm − ρm, δθ − ρθ, ρ0, ω) > ξ + ρm. Then it holds that

sup
x∈I

∣∣m̂LL(x)− m̂∗,LL(x)
∣∣ = oP (T−2/5). (8)

Denote the conditional variance of εt by σ2(x) = E[ε2
t |ht = x]. Suppose that σ2 does not depend on t and

that for an x in the interior of I, σ2 and fh is continuous at x and m is twice continuously differentiable

at the point x. Then
√

nb

[
m̂LL(x)−m(x)− 1

2
b2m′′(x)

∫
u2K(u)du

]
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converges in distribution to N (0, σ2(x)fh(x)
∫

K2(u)du). Under the additional assumption that fh is

continuously differentiable and that Assumption 11 holds, one obtains for the Nadaraya-Watson smoother

that

sup
x∈I

∣∣m̂NW (x)− m̂∗,NW (x)
∣∣ = oP (T−2/5) (9)

and that the same limit result holds for

√
nb

[
m̂NW (x)−m(x)− 1

2
b2

(
2
f ′h(x)m′(x)

fh(x)
+ m′′(x)

) ∫
u2K(u)du

]
.

4 Testing for Parametric Mean Specifications

In this section we suggest a procedure for testing parametric specifications of m. The test procedure

makes use of the nonparametric estimator of m of the last section. Nonparametric estimation in the

context of testing is simpler for two reasons. First, one can use the parametric fit of m as the starting

value in the iterative procedure for estimating m. Second, our test statistic is constructed such that bias

terms of the nonparametric estimator cancel out. This is achieved by comparing in the test statistic two

smoothers that have the same asymptotic bias. The first smoother is based on regressing Yt on the fit of

ht. The second smoother regresses the parametric fit for the conditional mean of Yt onto ht.

Under the null hypothesis we consider an in-mean model with a parametric mean function depending

on a finite-dimensional parameter γ0:

Yt = mγ0(ht) + εt, (10)

where, as in the last section, εt fulfils E[εt|Ft−1] = 0, where Ft is an increasing σ-field with the property

that (εt, ht+1) is Ft-measurable. On the hypothesis, the covariates ht can be approximated by ĥt(θ0)

for parameters θ0 = (ψ0, γ0) and a measurable function ĥt, such that the difference ht − ĥt(ψ0, γ0)

is asymptotically negligible, see below. The function ĥt depends on the parameters ψ, γ and on the

past observations Yt−1, Yt−2, . . . , Y1. Again for simplicity, dependence of quantities and functions on

Yt−1, Yt−2, . . . is suppressed in the notation. We assume that the true parameter vector θ0 = (ψ0, γ0) is

in the interior of Θ, a compact, convex, and finite dimensional parameter space. In particular, in this

section we consider only parametric specifications of ψ.

The alternative model is given by a semiparametric version of equation (10) with a smooth mean

function m(·), but εt and ht as before. The semiparametric alternative has two distinct advantages over

previous specifications: (i) it does not rely on any parametric specification of m(·), and (ii) it allows

for persistence in the conditional variance process since it does not restrict Ft−1 as e.g. in Pagan and

Hong (1990). For the special case of GARCH-M models the specification under the alternative is closely

related to the model considered by Linton and Perron (2003).

12



4.1 Iterative Estimation of Conditional Mean and Variance

For some initial parametric estimators γ̂ and ψ̂(0) we consider the estimate ĥ
(0)
t = ĥt(θ̂(0)) of ht. Here,

θ̂(0) = (ψ̂(0), γ̂).

We will use iterative updates of the estimate ψ̂(0). These updates are denoted by ψ̂(k) with k ≥ 1. The

estimator of γ0 will not be updated. This is done for the following reason. Because our semiparametric

alternative model contains nonparametric components, updates of the parametric estimators will slow

down the rate of convergence to nonparametric rates. Our test for the parametric hypothesis is based

on the comparison of estimators of mγ0 on the hypothesis and on the alternative. If the estimate of

γ0 is updated this will introduce an additional bias term that does not cancel out when comparing the

estimators on the hypothesis and on the alternative.

The iterative update of the estimators of ψ0 and ht and of the nonparametric estimator of m0 = mγ0

works as follows. Given the fit ĥ
(k−1)
t of ht calculated in the (k − 1)-th cycle, the estimate of m0 is

updated by smoothing Yt versus ĥ
(k−1)
t . The resulting smoother is denoted by m̂(k). Then using the

observations and m̂(k), the estimators of ψ0 and ht are updated. The resulting estimators are denoted

by ψ̂(k) and ĥ
(k)
t . We now describe the iteration steps in more detail.

For x in a bounded closed interval I and k ≥ 1 the updated estimator of mγ0 is defined as

m̂(k)(x) =
r̂(k)(x)

f̂
(k)
h (x)

+ mbγ(x), (11)

with r̂(k)(x) = 1
T

∑T
t=1 Kb(ĥ

(k−1)
t − x)[Yt −mbγ(ĥ(0)

t )] and f̂
(k)
h (x) = 1

T

∑T
t=1 Kb(ĥ

(k−1)
t − x) and where

Kb(·) = b−1K(·/b) with K being a kernel function and bandwidth parameter b. In the simulations we

also use the update

m̌(k)(x) = f̂
(k)
h (x)−1 1

T

T∑
t=1

Kb(ĥ
(k−1)
t − x)Yt. (12)

However, the theoretical treatment of m̂(k)(x) is easier because, as mentioned above, bias terms cancel in

the asymptotic analysis that otherwise could only be analyzed under rather strong additional assumptions,

see also the bias discussions in Section 3. For x 6∈ I the estimate m̂(k)(x) is put equal to the old estimate

mbγ(x). Thus for x 6∈ I the estimate of mbγ(x) is not updated. Alternatively, an updated parametric fit for

x 6∈ I could also be considered. For simplicity, this not pursued here. Furthermore, it could be considered

that the choice of the interval I depends on the sample size T and grows to the positive real line for

T →∞. We also do not discuss this here. In the simulations we have chosen a GARCH-specification with

ht as conditional variance and we have fitted m nonparametrically on the whole real line. We conjecture

that under our mixing conditions this makes an asymptotically negligible difference.

In a next step the fit of ht is updated. We suppose that the update ĥ
(k)
t can be written as a function

of m̂(k), γ̂ and ψ̂(k) and the observations Y1, ..., Yt−1. Again, we suppress dependence on Y1, ..., Yt−1 in

13



the notation and we write ĥ
(k)
t = ĥt(ψ̂(k), γ̂, m̂(k)) where in abuse of notation we denote the function by

ĥt, as the related function ĥt of step 0. We suppose that the function does not depend on k and that

ĥt(ψ̂(0), γ̂, mbγ) = ĥt(ψ̂(0), γ̂).

The above procedure can be performed for a finite fixed number of iterations or until a convergence cri-

terium is fulfilled. The asymptotic theory is developed for a fixed number of iterations. In the simulations

we use the criterium

δ(k) =

∑J
j=1

(
m̂(k)(xj)− m̂(k−1)(xj)

)2

∑J
j=1

(
m̂(k−1)(xj)

)2 + c̄
< c̄ (13)

for some small prespecified c̄, where xj , j = 1, . . . , J , are equally spaced grid points on I. We choose

c̄ = 0.001.

4.2 The Test Statistic

We now come to the test statistic which will be based on the difference between a smoothed version of

the initial parametric estimator and a Naradaya-Watson kernel estimator of the regression function. The

null and alternative hypothesis can be written as

H0 : P(m(·) = mγ0(·)) = 1 for some γ0 ∈ Θγ = {γ|(ψ, γ) ∈ Θ}

and H1 : P(m(·) = mγ(·)) < 1 for any γ ∈ Θγ = {γ|(ψ, γ) ∈ Θ}.

The test statistic utilizes the fact that the null hypothesis is equivalent to the condition that the L2-

distance between the two functions is zero.

We consider the following test statistic

Γ̂(k)
T =

∫ 



1
T

∑T
t=1 Kb(ĥ

(k)
t − x)

[
Yt −mbγ(ĥ(0)

t )
]

1
T

∑T
t=1 Kb(ĥ

(k)
t − x)





2

w(x)dx, (14)

where w(x) is some nonnegative and bounded weighting function.

Note, that in the test statistic we subtract mbγ(ĥ(0)
t ) from Yt and not mbγ(ĥ(k)

t ). This is done in order to

have a parametric rate for mγ0(ht)−mbγ(ĥ(0)
t ) on the hypothesis. In the simulations we also experimented

with mbγ(ĥ(k)
t ). Both choices lead to almost identical results.

Equation (14) can be interpreted as the integrated squared difference between a smoothed version of

the initial parametric estimate mbγ and the Naradaya-Watson kernel estimate m̌(k+1) of the regression

function m(x) defined in equation (12). The reason for smoothing the parametric estimate is that whereas

mbγ is asymptotically unbiased and converging at rate
√

T , the nonparametric estimate m̌(k+1) has a kernel

smoothing bias and convergence rate
√

Tb. Replacing mbγ by its smoothed version introduces an artificial

bias. As a result, under the null hypothesis the bias of m̌(k+1) cancels with the one of the smoothed
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version of the parametric estimate mbγ . In the simpler set-up of Härdle and Mammen (1993) it was

explained that not smoothing mbγ would lead to a test that asymptotically behaves like a linear test that

only looks for deviations from the null hypothesis in one direction.

For the case of independent and identically distributed observations Härdle and Mammen (1993) have

shown that under the null hypothesis the above test statistic with ht observable (and k = 0) has an

asymptotic normal distribution. Kreiss et al. (2002) extend the results of Härdle and Mammen (1993) to

settings with dependent data.

We start with a discussion of the asymptotic behavior of Γ̂(k)
T for k = 0.

Assumption 12. The function mγ(x) is differentiable with respect to γ at the point γ = γ0 for all x ∈ I

and for the derivative ṁγ0 it holds that

sup
x∈I,‖γ−γ0‖≤δ

∣∣mγ(x)−mγ0(x)− (γ − γ0)T ṁγ0(x)
∣∣ = O(δ2)

for δ → 0. The derivative ṁγ0 fulfills the following Lipschitz condition

sup
u,v∈I,‖u−v‖≤δ

|ṁγ0(u)− ṁγ0(v)| = O(δκ)

for δ → 0 with a constant κ > 0. Furthermore, mγ(x) is continuously differentiable with respect to x for

x ∈ I.

Assumption 13. It holds that ‖θ̂(0) − θ0‖ = OP (T−1/2).

Assumption 14. There exists a stationary sequence ḣt such that for C > 0

sup
∣∣∣ĥt(θ)− ĥt(θ0)− (θ − θ0)T ḣt

∣∣∣ = oP (T−1/2 log(T )−1/2),

where the supremum runs over all t and θ with ‖θ − θ0‖ ≤ CT−1/2 , and with ĥt(θ) or ĥt(θ0) or ht

in I. The process (ḣt, ht, εt) is stationary and β-mixing with β(j) ≤ cvj for constants c and v as in

Assumption 3. Furthermore E|ḣt|r is finite for an r > 2.

Assumption 15. For C > 0, 1 ≤ t ≤ T, ‖θ − θ0‖ ≤ CT−1/2, ‖θ′ − θ0‖ ≤ CT−1/2 it holds that

|ĥt(θ)− ĥt(θ′)| ≤ RT ‖θ′ − θ‖+ ST ,

|ĥt(θ0)− ht| ≤ ST

for random sequences RT and ST with RT = OP (T ς) and ST = OP (T−ν) for constants ς and ν with

0 < 2ς < 1− 3η and ν > 3η/2 for η as in Assumption 8.

Assumption 16. The weight function w is continuous and the closure of its support lies in the interior

of I.
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For testing, we do not assume that the bandwidth is of an order that is optimal for estimation under

certain smoothness conditions on mγ0 , e.g. that the bandwidth is of order T−1/5. Such an assumption

would be too restrictive because tests that look for more global deviations from the hypothesis make also

sense. Assumption 12 is a condition on the smoothness of the mean function. Assumptions 13 – 15 state

conditions on the accuracy of the estimates of θ0 and ht and on the smoothness of ĥt(θ) as a function

of θ. Assumptions 13 and 14 are needed because we make no assumptions on the specific form of the

estimators of the parameters. We remark that Assumption 15 is very weak because it is allowed that the

random variable RT may grow with rate T ς for a positive constant ς. In Assumptions 15 and 16 it would

be more realistic to allow for the case that ht does not have the required properties for an initial period

1 ≤ t < Tα with α > 0 small enough. This could be incorporated into our theory, but as for estimation,

it is omitted in order to simplify the analysis. The theory directly applies if observations of the initial

period are not used for the estimation of m.

The following theorem states that under the null hypothesis T
√

b Γ̂(0)
T is asymptotically normal.

Theorem 3. Assume that Assumptions 3,8,12 – 16 apply. It holds that supx∈I E[ε4+δ
t |ht = x] < ∞ for

some δ > 0. For x ∈ I the conditional moment E[ε4+δ
t |ht = x] and the conditional variance σ2(x) =

E[ε2
t |ht = x] of εt are Lipschitz continuous on I. The density fh is continuous and m is twice continuously

differentiable in I. Then under H0 it holds that

T
√

b
Γ̂(0)

T − b−1/2M√
V

(15)

converges in distribution to a standard normal distribution. Here

M = K(2)(0)
∫

σ2(x)w(x)f−1
h (x)dx,

V = 2K(4)(0)
∫

σ4(x)w2(x)f−2
h (x)dx,

and K(k) denotes the k-fold convolution of K with itself.

We now discuss the test statistic Γ̂(k)
T for k ≥ 1. We will show that replacing ĥ

(0)
t by the iterative

estimator ĥ
(k)
t described above does not effect the asymptotic distribution of the test statistic under the

null hypothesis. On the other hand we will argue below that the test statistic Γ̂(k)
T leads to a significant

increase of the power on the alternative. The following additional assumptions are needed to obtain our

next result on the asymptotic distribution of Γ̂(k)
T for k ≥ 1.

Our next theorem states that on the hypothesis Γ̂(k)
T has the same asymptotic distribution as Γ̂(0)

T .

Theorem 4. Assume that the assumptions of Theorem 3 hold with 1
9 + 8

9ρm < η < 3
11 − 8

11ρm. Further-

more assume that Assumptions 5 and 7 apply for some δθ, δm < min[2η, (1 − η)/2]. Then under H0 it
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holds that

T
√

b
Γ̂(k)

T − b−1/2M√
V

converges in distribution to a standard normal distribution. Here M and V are defined as in Theorem 3.

The advantage of using Γ̂(k)
T with k ≥ 1 in comparison to Γ̂(0)

T may be explained as follows. The

power of the test statistic depends on the accuracy with which the nonparametric estimate of the mean

function can approximate the true mean function. Under the alternative, the parametric model for the

mean which is initially estimated is misspecified. As a consequence, the nonparametric estimate of the

mean function based on the inconsistent estimate ĥ
(0)
t will poorly approximate the true mean function.

This leads to a low power of the test statistic Γ̂(0)
T . The simulations in the next section will show that the

iterative estimation procedure overcomes this problem and results in a precise estimate of m(·). The test

statistic Γ̂(k)
T which is based on this iterated estimate will dispose of considerably better power properties

than Γ̂(0)
T .

Note, that we did not distinguish between the bandwidth parameter used for the estimation of the

mean function and the one used in the test statistic. In the derivation of the theorems we treat them as

identical. In the simulations and in the application we choose the bandwidth parameter in the iterative

estimation procedure by cross-validation as was suggested in Linton and Perron (2003) and is discussed

in the next subsection. To reduce notation we do not equip the bandwidth parameter with an index k.

Additionally, we will report the test statistic for several choices of the bandwidth in order to document

the robustness of the outcome with respect to variations in the bandwidth parameter.

The asymptotic power of both tests (k = 0 and k > 0) can be analysed under additional assumptions

on the parametric estimators on the alternative. If the regression function m differs from the parametric

specification mγ(x) by a term T−1/2b−1/4δ(x) (for a fixed function δ) then the limiting distribution of

T
√

b(Γ̂(k)
T −b−1/2M) is equal to N (

∫
w(x)δ2(x)dx, V ). Thus, deviations of order T−1/2b−1/4 are detected.

One can show that the power is uniform over Sobolev balls of alternatives. This is in contrast to goodness-

of-fit tests that detect n−1/2 alternatives, but do not achieve power uniformly. The limit does not depend

on the number k of iterations. But, as argued above, for noncontiguous alternatives the power may

be quite different. This can be seen in the simulations where the one step test has a very poor power

compared to the fully iterated version.

4.3 Parametric and Semiparametric GARCH(1,1)-M

We now discuss model (10) for the special case of parametric GARCH(1, 1)-M specification which is the

most popular version of such a model. Then we will briefly explain the semiparametric GARCH(1, 1)-M

version of Linton and Perron (2003) and relate their approach to ours.
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The GARCH(1, 1)-M model is given by

Yt = mγ0(ht(θ0)) + εt, (16)

εt =
√

ht(θ0)Zt, (17)

ht(θ0) = ω0 + α0ε
2
t−1 + β0ht−1(θ0) (18)

with i.i.d. mean zero variables Zt with variance equal to one. The conditional expectation of Yt is

parameterized as mγ0(ht(θ0)) = µ0 + λ0g(ht(θ0)). The vector θ contains the parameters of the mean

and variance functions, i.e. θ0 = (ψ0, γ0), with ψ0 = (ω0, α0, β0) and γ0 = (µ0, λ0). Three parametric

specifications for the function g are commonly applied. The original Engle et al. (1987) specification

assumes either g(ht(θ0)) = ht(θ0) or g(ht(θ0)) =
√

ht(θ0), while some authors also use g(ht(θ0)) =

ln(ht(θ0)). As noted by Pagan and Hong (1990) this latter specification is possibly unsatisfactory, since

as ht(θ0) → 0 the conditional variance in logs takes very large negative values and the relationship

between the conditional variance and Yt may be overstated. Of course, when λ0 is restricted to being

zero the GARCH-M reduces to the Bollerslev (1986) GARCH model.

The GARCH(1, 1)-M process will be both strictly and covariance stationary if (i) Zt
iid∼ N (0, 1) and (ii)

α0 +β0 < 1. Note, that strict stationarity and ergodicity of the process only require E[ln(α0Z
2
t +β0)] < 1

which is weaker then the condition implying covariance stationarity. Specifically, for the parameters of

the conditional variance equation we assume that ω0 > 0, 0 < α0 < 1, 0 < β0 < 1. These restrictions also

imply the non-negativity of the conditional variance. General results on the moments and autocorrelation

structure of the GARCH(p, q)-M can be found in Karanasos (2001).

Lee and Hansen (1994) and Lumsdaine (1996) derived the distribution theory for the quasi-maximum

likelihood estimator in the GARCH(1, 1) model. To the best of our knowledge sufficient regularity

conditions which ensure consistency and asymptotic normality of the quasi-maximum likelihood estimator

for the GARCH-M model have not yet been established. As standard in the literature on GARCH-M

we will treat our estimates as if the distribution theory for the GARCH estimator could be directly

extended. Note, that in contrast to ARMA-GARCH models which do not allow for an in-mean effect,

in the GARCH-M model the information matrix is not block diagonal, and thus consistent estimation

of the parameters requires that both the conditional mean and variance functions are correctly specified

and estimated simultaneously.6

Linton and Perron (2003) propose a semiparametric version of the GARCH(1, 1)-M model described

by equations (16) – (18) in which the functional dependence of Yt on its conditional variance, m(ht),

is estimated by nonparametric kernel smoothing methods. The estimation procedure is very similar to
6Christensen et al. (2008) modify the conditional variance equation (18) to ht(θ0) = ω + α0Y 2

t−1 + β0ht−1(θ0). Then,

by construction, the ARCH(∞) representation of ht does no longer depend on m.
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the one described above, i.e. based on an iterative updating of both the parameters of the conditional

variance equation and the function m(·).
For our simulations we adopt two steps from the Linton and Perron (2003) algorithm. First, the

initial parameter estimates (ψ̂(0), γ̂) will be obtained by estimating the parametric specification described

in equations (16) – (18) by quasi-maximum likelihood. Second, in each iteration step the bandwidth for

the nonparametric estimate m̂(k) is chosen as b = b0σ(ĥ(k−1)
t )T−1/5, where σ(ĥ(k−1)

t ) is the standard

deviation of the fitted conditional variance from the (k − 1)-th iteration step and the value of b is

determined as the one which produces the lowest value of the cross-validation function

CV (b) =
1
T

T∑
t=1

(
Yt − m̂

(k)
−t (ĥ(k−1)

t )
)2

,

where m̂
(k)
−t is the leave-one-out estimator and b0 is allowed to vary between 0.5 and 2.5 in increments of

0.1.

In the simulations as well as in the application we will focus on testing for linearity in the GARCH(1, 1)-

M model. Since many properties of the model such as the behavior of the maximum likelihood estimator

are largely unexplored we do not verify our assumptions for this specification. However, it is widely

believed that the well known properties of the GARCH(1, 1) should also hold for the GARCH(1, 1)-M.

Most of the above assumptions can be easily verified for the GARCH(1, 1). Assumption 7 is satisfied by

e.g. Gaussian Zt. Note that the interval I is assumed to be bounded. Carrasco and Chen (2002) show

that ht in the GARCH(1, 1) is β-mixing with exponentially decaying mixing coefficients as required in

Assumption 3. Assumption 12 is naturally satisfied when mγ does not depend on ht and Assumption 13

holds by the results of Lee and Hansen (1994) and Lumsdaine (1996). Finally, Assumption 15 follows

directly from the ARCH(∞) representation of ht.

4.4 Parametric Bootstrap

We expect that the theorems can only give a rough idea about the stochastic behavior of our test statistic

for small sample sizes. Indeed we will see in the simulations that the normal approximation does not

work very well in our setting. Therefore, it seems appropriate not to use the asymptotic critical values

but to compute the critical values by resampling (see Härdle and Mammen, 1993).

Suppose one has obtained initial parameter estimates (ψ̂(0), γ̂) and final estimates of the conditional

variance ĥ
(k)
t = ĥt(ψ̂(k), m̂(k)) according to the algorithm described in Section 4.1. Then one can approx-

imate Γ̂(k)
T by numerical integration. The bootstrap procedure makes use of the fact that under the null

hypothesis we have a parametric specification of the conditional mean and variance and can be described

as follows:
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Step 1: Generate a bootstrap series {Y ?
t }T

t=1 according to equations (16) – (18) with mbγ given by

the null hypothesis. As a starting value h0 we use the estimated unconditional variance. Innovations Z?
t

are drawn from the standard normal distribution.

Step 2: Apply the algorithm described in Section 4.1 to the bootstrap series {Y ?
t }T

t=1 and obtain

mbγ? and ĥ
(k)?
t . Calculate the value of the bootstrap test statistic Γ̂(k)?

T by numerical integration.

Step 3: Repeat step 1 and 2 for B times. The bootstrap p-value of Γ̂(k)
T is the relative frequency of

the event {Γ̂(k)?
T ≥ Γ̂(k)

T } in the B bootstrap resamples.

5 Monte-Carlo Simulation

In this section we examine the finite sample properties of the semiparametric estimation procedure and

the empirical level and power of the proposed test statistic. We first compare the performance of the

parametric GARCH(1, 1)-M with the semiparametric procedure under the null hypothesis and then under

the alternative. Thereafter, we estimate the empirical level and power and demonstrate the robustness

of our results with respect to the choice of the bandwidth. We always use an Epanechnikov kernel and

weight function w(·) = 1[h,h], where h and h are chosen such that approximately 90% of the data are

covered.7 For simplicity we will denote the fitted conditional variance and the corresponding test statistic

from the last iteration step by ĥt and Γ̂T suppressing the index k. The integral of the test statistic Γ̂T

is numerically approximated on 50 equally spaced grid points on the interval [h, h]. The parameters of

the conditional variance equation are chosen to be ω0 = 0.01, α0 = 0.1 and β0 = 0.85 which represent

typical parameter values in empirical applications. The innovations are drawn from the standard normal

distribution. All the simulations are carried out for a sample size of T = 1000. The Monte-Carlo exper-

iments are repeated M = 200 times and the bootstrap resampling is performed B = 200 times for each

sample. Initial parameter estimates for the mean and variance equation are obtained by quasi-maximum

likelihood. The variance parameters are updated by estimating a parametric GARCH(1, 1) on the resid-

uals Yt − m̂
(k)
b (ĥ(k−1)

t ). In each iteration step we impose the parameter restrictions described in Section

4.3 implying covariance stationarity and nonnegativity of the conditional variance. The bandwidth pa-

rameter b is chosen in each iteration step according to the cross-validation criterion discussed in Section

4.3. Throughout the simulations we set I = (0,∞).

7Alternatively, we used a standard normal kernel and obtained virtually identical results.
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5.1 Performance of the Estimation Procedure

We first evaluate the performance of the estimation procedure for three linear specifications which reflect

the null hypothesis:

(N1) m(ht) = 0.05 · ht (N2) m(ht) = 0.5 · ht (N3) m(ht) = ht

Table 1 presents in Panel A the median estimates for the mean and variance equation parameters of the

parametric GARCH(1, 1)-M and in Panel B the median estimates of the parameters from the conditional

variance equation obtained by the semiparametric procedure.8 In both panels we also provide the 25% and

75% quantiles for the estimated parameters over the 200 replications. The median parametric parameter

estimates presented in Panel A of Table 1 are – as expected under the null – very close to the true

parameter values of the model for the different values of λ0. In particular, the in-mean parameter λ0

is very well estimated as shown by the 25% and 75% quantiles. However, from the estimates of the

quantiles it is evident that the true value λ0 can be recovered much better for higher values of λ0 than

for smaller ones. From Panel B it becomes clear that the semipametric estimator leads to very precise

estimates of the conditional variance equation parameters, although it unnecessarily applies the iterating

procedure. Figure 1 shows the true mean function, the pointwise median of the parametric and the

nonparametric estimate along with the pointwise 25% and 75% quantiles of the nonparametric estimate

for model N3. Under the null hypothesis both estimation procedures perform equally well in recovering

the true structure of the model. Similar figures are available for models N1 and N2, but are omitted for

space considerations.

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300 0.325 0.350
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Figure 1: Parametric and nonparametric estimate for model N3.

8Similar results were obtained for the square root and log specification and are available upon request.
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Monte-Carlo estimates of the parametric and

semiparametric regression model (continued).

Panel B: Median semiparametric estimates

ω̂ α̂ β̂

N1 0.0102 0.0916 0.8505

(λ0 = 0.05) (0.0082, 0.0138) (0.0768, 0.1100) (0.8242, 0.8724)

N2 0.0101 0.0911 0.8507

(λ0 = 0.5) (0.0082,0.0141) (0.0765,0.1103) (0.8251, 0.8735)

N3 0.0101 0.0923 0.8554

(λ0 = 1) (0.0076, 0.0131) (0.0782, 0.1074) (0.8318, 0.8777)

A1 0.0102 0.0913 0.8541

(ζ0 = 0.5) (0.0077, 0.0131) (0.0793, 0.1066) (0.8323, 0.8762)

A2 0.0101 0.0925 0.8551

(ζ0 = 0.1) (0.0077, 0.0128) (0.0784, 0.1061) (0.8330, 0.8777)

A3 0.0101 0.0910 0.858

(ζ0 = 0.12) (0.0078, 0.0134) (0.0774, 0.1024) (0.8320, 0.8778)

Notes: As in Table 1.

Next, we investigate the accuracy of the iterative estimation algorithm under the alternative. We

employ the following mean functions:

(A1) m(ht) = ht + ζ0 · sin(10 · ht)

(A2) m(ht) = 0.5 · ht + ζ0 · sin(0.5 + 20 · ht)

(A3) m(ht) = ht + ζ0 · sin(3 + 30 · ht).

These alternatives represent shapes of the risk premium which are not covered by the standard spec-

ification but can be viewed as motivated by the results of Backus and Gregory (1993), Genotte and

Marsh (1993) and the empirical findings of Linton and Perron (2003). Alternative A1 and A2 are inverse

U-shaped and U-shaped while A3 is a hump-shaped alternative. The parameter ζ0 can be regarded as a

measure for the distance between the linear null hypothesis and the alternative.

The lower part of Table 1 presents the results of the Monte-Carlo simulations performed for models

A1 – A3 with specific values for ζ0. Again, Panel A reports the mean and variance parameter estimates

from the parametric GARCH(1, 1)-M with m(ht) = µ + λht while Panel B reports the estimates for

the conditional variance equation obtained by the semiparametric procedure. Figures 2 and 3 show
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the pointwise median parametric and nonparametric estimate along with the 25% and 75% pointwise

quantiles of the latter and the true mean function for alternatives A1 and A3. Additionally, we plot the

pointwise median estimate of the semiparametric procedure that is obtained after the first iteration step.
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Figure 2: Parametric and nonparametric estimate for model A1 (ζ0 = 0.5).
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Figure 3: Parametric and nonparametric estimate for model A3 (ζ0 = 0.12).

The figures reveal that the nonparametric estimate of the mean function does again perform very

well in uncovering the true mean function. The parametric estimate – which is restricted to being

linear – fails to do so. In particular, in model A1 the true mean function is increasing for values of the
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conditional variance up to 0.175 while it is decreasing from 0.175 onwards. The parametric estimate of

the mean function either over or underestimates the true risk premium. This example shows that one

can easily find a negative relationship by applying the parametric model to a non-linear risk premium. A

curve similar to A1 is presented by Whitelaw (2000, Figure 3) as a reasonable relationship between the

expected return and its volatility in his two regime model when the economy is in a contractionary regime.

Merely, the application of the semiparametric procedure makes it possible to obtain the true relationship,

i.e. the risk premium is increasing until volatility exceeds a critical value, and then it becomes decreasing.

A similar interpretation holds for A2.9 Finally, A3 is a hump-shaped alternative as suggested by the

findings of Linton and Perron (2003). Although, the parametric model captures the overall increasing

tendency, it would predict very misleading values for the risk premium. The nonparametric fit on the

other hand follows closely the true risk premium. These examples clearly illustrate the superiority of

the semiparametric approach. Moreover, it is possible to construct non-monotonic shapes of the risk

premium which lead to insignificant estimates of the parameter λ0 and hence would suggest that there

is no relationship between ht and Yt, while the semiparametric procedure recovers the true relationship.

This failure of the parametric estimator may explain the finding of an insignificant λ̂ in many studies using

the parametric GARCH(1, 1)-M specification. The graphical intuitions are supported by the estimation

results reported in Table 1. It is clear that now – as the parametric model is misspecified – the estimates of

λ0 are completely misleading. Nevertheless, the parameters in the conditional variance equation are still

surprisingly well estimated using the parametric model. Finally, the semiparametric estimation procedure

results in very accurate estimates of the conditional variance parameters ω0, α0 and β0.

Figures 2 and 3 also help to illustrate the gains that are obtained by iterating in the semiparametric

estimation procedure. It is evident that the one step iteration estimator cannot capture the nonlinearities

by the same degree of accuracy as the iteration until convergence estimator. While this seems to be the

case for A1 only for large values of ht, it is generally true for A3 where the one step iteration estimator

simply leads to a regression function which is too smooth. It appears that by doing only one iteration

step it is not possible to move sufficiently far away from the parametric estimate to be close to the true

mean function. This requires further iterations. We will see in the next subsection that this directly

effects the power properties of our test statistic.10

9The corresponding figure is omitted for reasons of brevity.
10Christensen et al. (2008) replicate our simulations and compare our estimation approach with theirs. For the alternatives

considered here both procedures provide almost the same results.
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5.2 Monte-Carlo Estimates of Level and Power

This subsection evaluates the performance of the test statistic. In Table 2 we check for models N1, N2

and N3 and for different choices of the bandwidth parameter b whether the estimated level of the test

reflects the nominal level. We report the estimated levels in comparison to the nominal 5% and 10%

levels. In general, the estimated levels are very stable around the nominal levels of 5% and 10% for a

wide range of bandwidths. The lowest bandwidth b = 0.015 produces too conservative results, i.e. we

Table 2: Monte-Carlo estimates of the level.

b 0.015 0.020 0.025 0.030 0.035 0.040 0.045

N1 5% 0.030 0.050 0.055 0.060 0.055 0.050 0.055

10% 0.075 0.070 0.095 0.100 0.105 0.110 0.105

N2 5% 0.025 0.045 0.045 0.050 0.050 0.060 0.070

10% 0.080 0.090 0.090 0.105 0.110 0.115 0.105

N3 5% 0.025 0.045 0.040 0.040 0.060 0.060 0.070

10% 0.065 0.080 0.075 0.085 0.085 0.095 0.100

Notes: Entries are rejection rates over the 200 replications at the 5% and 10%

nominal level.

observe underrejection. A bandwidth of b = 0.02 produces estimates of the level which are in most cases

slightly below 5% and 10% respectively, while a bandwidth of b = 0.045 leads to estimates slightly above

5% and 10%. Overall, the the bootstrap procedure seems to do a very good job in estimating the 5%

and 10% levels close to the nominal ones. The optimal bandwidth as chosen by cross-validation in the

last iteration step of the semiparametric procedure is in the neighborhood of b = 0.02. For model N3 we

plot the density of T
√

b Γ̂T and six bootstrap approximations in Figure 4 (upper). The figure shows that

the bootstrap approximations estimate the distribution of T
√

b Γ̂T very well when the underlying model

reflects the null hypothesis. Moreover, it is evident that the test statistic is not normally distributed and

therefore one should not rely on the asymptotic critical values. Figure 4 (lower) shows the simulated

density of T
√

b Γ̂T and six bootstrap replications for model A1. Under A1 the simulated density of

T
√

b Γ̂T and the six bootstrap densities are very different, suggesting that the test statistic may have

good power properties. Figure 5 displays the empirical power of the test for alternatives A1, A2 and A3

and two choices of bandwidths. The mean functions under the alternative are constructed such that the

models move further away from the null hypothesis as ζ0 increases. For all three alternatives we find the

desired property that the power is monotonically increasing in the value of ζ0. Moreover, the power is

very similar across the two choices for the bandwidth parameter. The overall performance of the test
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Figure 4: Simulated density of test statistic (solid) and six bootstrap approximations (dashed) for model

N3 (upper) and A1 (lower).

applied under the alternative is very satisfactory. We conclude that the bootstrap procedure works well

in our setting.

We also examined the power properties of the one step iteration estimator in comparison to the fully

iterated estimator. For all three alternatives the tests based on the full iteration estimator lead to higher

power than the corresponding test statistics based on the one step estimator. For instance, for A1 the

fully iterated estimator produces empirical powers at the 5% and 10% nominal level of (0.615, 0.750),

(0.875, 0.950) and (0.945, 0.975) for ζ0 ∈ {0.3, 0.5, 0.7} and b = 0.03, respectively. The corresponding

figures for the one step estimator are (0.400, 0.595), (0.750, 0.870) and (0.890, 0.945). Thus, the difference

in the power of the test based on the fully iterated and the one step estimator can be striking.11 In the
11Similarly, for A2 we obtain empirical powers at the 5% and 10% nominal level of (0.470, 0.615), (0.730, 0.820) and

(0.975, 0.995) for ζ0 ∈ {0.075, 0.1, 0.15} for the fully iterated estimator and (0.200, 0.335), (0.350, 0.540) and (0.720, 0.860)
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light of Figures 2 and 3 this is not surprising, since the one step estimator is almost everywhere closer to

the parametric estimator than the full iteration estimator.
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Figure 5: Simulated power for model A1 (upper), A2 (middle) and A3 (lower) with b = 0.02 (left) and

b = 0.04 (right). Levels are given by 5% (solid) and 10% (dashed).

for the one step estimator. Finally, for A3 the empirical powers at the 5% and 10% nominal level are (0.590, 0.735),

(0.770, 0.885) and (0.940, 0.955) for ζ0 ∈ {0.1, 0.12, 0.15} for the fully iterated estimator and (0.235, 0.450), (0.405, 0.575)

and (0.540, 0.725) for the one step estimator.
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6 Application: The Shape of the Risk Premium

6.1 Data

The usefulness of the specification test will now be assessed in an application to test for linearity in

the risk-return relation. For this we employ monthly and daily excess return data on the CRSP value-

weighted index, which includes the NYSE, the AMEX and the NASDAQ and can be considered as

the best available proxy for “the market”. Monthly excess returns (including dividends) are calculated

as the continuously compounded return on the CRSP minus the yield on a one month Treasury bill

(from Ibbotson Associates), Yt = rM,t − rf,t. Daily excess returns are calculated analogously, whereby

daily yields are calculated by dividing the monthly yield by the number of trading days in the month

and, hence, assuming constant yields for each calender day. The monthly data ranges from July 1963

to December 2001 (462 observations).12 Daily return data was obtained from the Kenneth R. French

data library for the period July 1963 to July 2005 (10593 observations). We only briefly summarize the

descriptive statistics. The average excess return for the monthly (daily) data is about 0.37% (0.02%)

with a standard deviation of 4.50% (0.89%). The distributions of the monthly as well as the daily excess

returns are characterized by excess kurtosis (6.08 and 21.16). Moreover, the 12-th and 24-th order Ljung-

Box statistics in combination with the results of the Engle LM -test for ARCH effects (both not reported)

indicate serial correlation in the squared return series and highlight the importance of an appropriate

modelling of the conditional variance of the excess returns.

The motivation for investigating both monthly and daily excess return data is to see whether there is

any systematic difference in the analysis of the two. First, as argued by Andersen and Bollerslev (1998)

more precise estimates of conditional volatility may be obtained by employing daily data in comparison

with monthly data, and thus a better estimate of the true risk-return relation. Second, as shown by

Scruggs (1998) a hedge demand which is not included as an explanatory variable may lead to an omitted

variable bias in estimating the risk-return relation. However, since Guo and Whitelaw (2006) find that the

investment opportunities change slowly at the business cycle frequency, these changes can be regarded

as approximately constant at a daily frequency. Thus, it should be possible to precisely estimate the

risk-return relation at a daily frequency even without explicitly incorporating the hedge demand in the

regression equation.
12The monthly data was kindly provided by Oliver Linton and is analyzed by Linton and Perron (2003). Although their

full data set goes back to January 1926 we decided to use only the observations from July 1963 onwards. A preliminary

analysis of the complete data set revealed that the GARCH parameter estimates were very unreliable. This is because

the Great Depression was characterized by extremely high volatility compared to the period thereafter. Hence, fitting a

single GARCH model without allowing for changes in the volatility regime appeared to be questionable. Details on this are

available from the authors upon request.
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6.2 Parametric GARCH(1,1)-M Estimates

Next, we estimate parametric GARCH(1, 1)-M models with m(ht) = µ + λht for the two data sets. In

both regressions we include a constant µ to account for market imperfections such as taxes or transaction

costs. Parameter estimates are provided in Table 3. The constant turned out to be significant for the

daily data only. For the monthly as well as the daily data the GARCH parameter estimates α̂ and β̂ are

highly significant, satisfy the condition for covariance stationarity and imply a high degree of persistence

in the conditional variance (α̂ + β̂ = 0.949 for the monthly data and α̂ + β̂ = 0.995 for the daily data).

The finding of a high degree of persistence is an important result, since Poterba and Summers (1986)

show that only persistent increases in volatility will effect the discount factors applied to future cash

flows and thereby current prices. Therefore, they argue that persistence in the volatility is a necessary

condition for fluctuations in volatility to have a significant impact on explaining risk premia. Similarly,

Bekaert and Wu (2000, p. 2) reason that the predicted positive effect of volatility on excess returns relies

“first of all on the fact that volatility is persistent”. In line with the previous literature the estimate for

λ is positive but insignificant when monthly data is used.

Table 3: GARCH-M estimates for CRSP data.

µ̂ λ̂ ω̂ α̂ β̂ Q2
12

monthly data -0.003 3.870 0.0001 0.074 0.875 4.61

(-0.579) (1.130) (1.798) (3.105) (16.561) [0.97]

daily 0.0003 3.844 6.66 · 10−7 0.089 0.906 12.76

(2.976) (2.714) (3.938) (8.187) (103.919) [0.39]

Notes: Bollerslev and Wooldridge (1992) robust t-statistics are reported in parenthesis (·).

Q2
12 are the Ljung-Box statistics at the 12-th lag for the squared standardized residuals.

Numbers in brackets [·] are p-values.

In sharp contrast, we estimate a positive and highly significant in-mean effect for the daily data. In

particular, the estimate of λ is significant at the 1% level. Moreover, the value estimated for λ based on

the daily data is almost identical to the one estimated for the monthly data. This is reasonable since

both the risk premium and the conditional variance should be approximately proportional to the length

of the measurement interval. If – as argued in Guo and Whitelaw (2006) – the omitted hedge term does

not effect the estimation of the risk-return relation when daily data is employed, the finding of similar λ̂’s

for monthly and daily data suggests that the omitted variable bias argument of Scruggs (1998) does also

not hold at a monthly frequency. This is because in the presence of such an effect the estimate of λ based

on monthly data should be considerably different from the one on daily data. Therefore, our results are
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much more in favor of the argument by Andersen and Bollerslev (1998), namely that the estimates based

on daily data provide a more accurate measure of the conditional volatility and hence allow for a more

precise estimation of the risk-return relation. As a result of this we find a significant in-mean effect using

the daily data. Following French et al. (1987) λ̂ can be interpreted as an estimate for the parameter of

relative risk aversion. The value we estimate is plausible for the coefficient of relative risk aversion. We

conclude that the parametric GARCH(1, 1)-M models deliver convincing evidence for a positive and at a

daily frequency significant relation between risk and excess returns.13

According to the Ljung-Box statistics the null hypothesis of uncorrelated squared standardized resid-

uals is accepted for both models. Finally, the GARCH(1, 1)-M models were preferred by the AIC and

BIC information criteria to models of higher order.

6.3 Testing the Linear Hypothesis

Next, we will apply our specification test to the CRSP excess return data to check whether the functional

relationship between excess returns and risk can be confirmed to be linear as assumed by the parametric

GARCH(1, 1)-M. Recall from Section 2 that Linton and Perron (2003) found support for a hump-shaped

pattern of the risk premium.

The application of the test procedure requires the choice of an appropriate bandwidth b and of an

interval [h, h] on which the test statistic is evaluated.14 For the two data sets we evaluate the test statistic

on two different intervals. The larger one is chosen such that it covers 90% of the data, the smaller one

covers only 70%. In both situations h corresponds to the 5% quantile (q0.05(ĥt)) of the distribution of

the estimated conditional variances from the last iteration step. Accordingly, we choose h approximately

as the 75% or 95% quantile (q0.75(ĥt) and q0.95(ĥt)). As a guide for choosing the bandwidth we use

b = σ(ĥt) ·T−1/5, where σ(ĥt) and T refer only to the observations in [h, h]. This choice of the bandwidth

usually results in values slightly above the cross-validated bandwidth from the last iteration step. We

additionally report the test statistic and the corresponding p-values for two larger choices of b, whereby

the largest bandwidth is always based on the full distribution of ĥt. Such choices of b can be considered

as oversmoothing in comparison to the optimal bandwidth for estimation.

The test results are presented in Table 4. We begin by discussing the results for the monthly data.

Several interesting findings emerge. Besides the estimated 95% quantile of the fitted conditional variances

q0.95(ĥt), we report the median of the 95% quantiles of the fitted conditional variances over the 200

13Of course, the simple GARCH(1, 1)-M model could be augmented in several directions. For example, we could incor-

porate a volatility feedback effect in the conditional variance equation (see, e.g., Smith, 2006).
14As in the simulation section, we will denote the fitted conditional variance and the corresponding test statistic from

the last iteration step by bht and bΓT suppressing the index k.
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bootstrap replications denoted by q0.95(h?
t ). We observe that q0.95(ĥt) and q0.95(h?

t ) are very close to

each other reflecting the fact that the fitted conditional variances from the bootstrap procedure mimic

very well the distribution of the fitted conditional variances from the observed data. As can be seen from

the table we cannot reject the null hypothesis that the risk premium is linear in the conditional variance

at any reasonable significance level.

Table 4: Testing for linearity in the risk-return relation.

monthly data daily data

q0.95(ĥt) = 29.41, q0.95(h?
t ) = 27.76 q0.95(ĥt) = 2.34, q0.95(h?

t ) = 2.38

b 0.99 1.25 1.50 1.71 0.05 0.07 0.10 0.14

[h, h] = [12, 25] [h, h] = [0.2, 1.5]

T
√

b Γ̂T 0.984 0.787 0.662 0.596 8.062 5.913 4.393 4.403

p-value 0.610 0.545 0.481 0.422 0.086 0.136 0.161 0.100

[h, h] = [12, 30] [h, h] = [0.2, 2.34]

T
√

b Γ̂T 1.922 1.561 1.278 1.096 62.303 56.079 48.484 39.459

p-value 0.797 0.754 0.711 0.690 0.015 0.025 0.075 0.075

Notes: The smallest bandwidth always corresponds to the smaller interval, while the second smallest

bandwidth is chosen according to the larger interval. The two largest bandwidths can be regarded as

oversmoothing.

Figure 6 shows the parametric and nonparametric estimate of the risk premium for the monthly

data.15 The shape of the nonparametric estimate reveals some non-linearity which could be called hump-

shaped as in Linton and Perron (2003). Nevertheless, the nonparametric estimate trends very closely

with the linear parametric estimate making the test result plausible.

For the daily data, we again find that the 95% quantiles of the fitted and bootstrap conditional

variances are very close to each other. However, the test results are less uniform. While the results for

the smaller interval are in line with the linear hypothesis, the results for the broader interval suggest that

the hypothesis of linearity should be rejected.

To check for the robustness of our results we also tested the hypothesis of no in-mean effect, i.e. H0 :

mγ(ht) = µ. This hypothesis was rejected in the overwhelming majority of cases. In summary, we find

that there is convincing evidence for the existence of an in-mean effect. While for the monthly data we
15Pointwise 95% asymptotic standard errors for the nonparametric estimate are given by

bm(k)
b (x)± 1.96 ·

s
1

Tb

x
R

K(u)2du

bfh(x)
,

where we use the fact that for the GARCH-M model it holds that Var(Yt|ht = x) = x.
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Figure 6: Parametric and nonparametric fit for monthly data. The monthly returns are expressed in %.

cannot reject the hypothesis of the effect being linear, the daily data points to the existence of some non-

linearities in the risk-return relationship for large values of the conditional variance. Such non-linearities

may be related to the existence of leverage or volatility feedback effects (see, e.g., Smith, 2006). It could

also be necessary to distinguish between short- and long-run volatility components (see, e.g., Engle et al.,

2007, and Adrian and Rosenberg, 2008).

7 Conclusions

This article deals with the asymptotic behavior of nonparametric regressions with unobserved covariates.

First, we use iterative procedures to fit the unobservable regressors and propose nonparametric smoothing

estimators based on the fitted covariates. Second, we study tests for parametric specifications that are

based on the comparison of a parametric estimator with our nonparametric fit. Exploiting tools from

empirical process theory we show oracle efficiency of our nonparametric procedure, i.e. the nonparametric

procedure behaves as if the regressor were observable. This property is shown for both estimation and

testing.

Our general model nests a specification which has received considerable attention in the financial

econometrics literature, the class of parametric GARCH-M models. Those models are heavily used in the

analysis of the risk-return relationship as well as to investigate the causal relationship between the level

and the uncertainty of macroeconomic variables such as inflation and output growth. The parametric
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functional form of the risk premium assumed in the GARCH-M is mainly motivated by the ICAPM or

imposed simply for convenience.

We apply our test procedure empirically to daily as well as monthly return data on the CRSP. While

the results for the monthly data are in line the prediction made by the ICAPM, the results for the daily

data question the appropriateness of the linear specification for the risk premium when volatility is very

high. This finding is line with the results reported in Christensen et al. (2008) for the same data and

period and might explain some of the controversial results presented in the previous literature.

Finally, we would like to point to natural extensions of the model studied in this article. First, we

could allow for higher dimensional explanatory variables in the mean function. The explanatory variable

could have several unobserved and observed components. In particular, the covariate could contain

lagged values of an unobservable covariate and/or observed macroeconomic variables. In case of high

dimensional covariates one could consider structured nonparametric models like an additive model, see

e.g. Mammen, Linton and Nielsen (1999). Moreover, when the conditional variance process is more

complicated, the unobserved covariate could be a specific volatility component only. E.g. it would be

natural to extend the class of GARCH-MIDAS models considered in Engle et al. (2007) by allowing one

or both of the volatility components to effect the conditional mean in a nonparametric fashion. Similarly,

the semiparametric MIDAS model of Chen and Ghysels (2008) could be augmented by an in-mean term.

Appendix

In the proofs of the theorems we make use of the following lemmas. The first lemma contains an

exponential inequality for martingales. This inequality is a modification of e.g. Lemma 8.9 in van de

Geer (2000).

Lemma 1. For random variables ..., e−1, e0, e1, ..., eT suppose that et is Ft-measurable for an increasing

σ-field Ft, that E[et|Ft−1] = 0 and that supt E[exp(c|et|)|Ft−1] < ∞ (a.s.) for a constant c > 0 small

enough. Consider a sequence of random variables r1, r2, ... where rt is measurable with respect to the

σ-field generated by Ft−1. Assume that max1≤t≤T |rt| ≤ c/2 (a.s.). Then it holds that

E

[
exp

(
T∑

t=1

rtet

)]
≤

{
E

[
exp(C

T∑
t=1

r2
t )

]}1/2

,

where C is a deterministic a.s. bound of E
[
e2
t exp

(
c
2 |et|

) |Ft−1

]
.

The next lemma contains bounds on the nominator and denominator of the Nadaraya-Watson esti-

mator which is applied to the covariates ht and ĥt(ψ0,m0).
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Lemma 2. Under the assumptions of Theorem 1 it holds that

sup
x∈I

∣∣∣∣∣
1
T

T∑
t=1

Kb(ht − x)− fh(x)

∣∣∣∣∣ = OP (b2 +
√

log(T )(Tb)−1/2), (19)

sup
x∈I

∣∣∣∣∣
1
T

T∑
t=1

Kb(ht − x)εt

∣∣∣∣∣ = OP (
√

log(T )(Tb)−1/2), (20)

sup
x∈I

∣∣∣∣∣
1
T

T∑
t=1

[Kb(ht − x)−Kb(ĥt(ψ0,m0)− x)]

∣∣∣∣∣ = OP (T−ωb−1), (21)

sup
x∈I

∣∣∣∣∣
1
T

T∑
t=1

[Kb(ht − x)−Kb(ĥt(ψ0,m0)− x)]εt

∣∣∣∣∣ = OP (T−ωb−3/2T−1/2
√

log(T )). (22)

The constant ω was introduced in Assumption 8.

Proof of Lemma 2. For a proof of (19) see Masry (1996). The proof of (20) also follows classical lines.

Because of Assumption 1 it suffices to show

sup
x∈IT

∣∣∣∣∣
1
T

T∑
t=1

Kb(ht − x)εt

∣∣∣∣∣ = OP (
√

log(T )(Tb)−1/2). (23)

Here IT is a grid of points of I with cardinality growing polynomially in T . Equality (23) can be proved

by application of the exponential bound in Lemma 1 and by use of the Markov inequality P[
∑T

t=1 rtet ≥
c] ≤ exp(−sc)E[exp(s

∑T
t=1 rtet)]. We apply these bounds with et = εt and with rt = Kb(ht − x)

√
ht if

T−1
∑t

s=1 1(|ht − x| ≤ 2b) ≤ Cb and rt = 0 else. Here C is a constant that is chosen large enough. Note

that for such a choice

T−1
t∑

s=1

1(|ht − x| ≤ 2b) ≤ Cb (24)

for all x ∈ I with probability tending to one.

Equation (21) follows by a direct bound. For a proof of (22) one proceeds similarly as in the proof of

(20).

Lemma 3. Under the assumptions of Theorem 1 it holds that

sup
x∈I,(θ1,m1),(θ2,m2)∈MT

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥt(θ2,m2)− x)εt (25)

− 1
T

T∑
t=1

Kb(ĥt(θ1,m1)− x)εt

∣∣∣∣∣ = OP (T−1/2+η/2−κ),

sup
x∈I,(θ1,m1),(θ2,m2)∈MT

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥt(θ2,m2)− x) (26)

− 1
T

T∑
t=1

Kb(ĥt(θ1,m1)− x)

∣∣∣∣∣ = OP (T−δm+ρm+η + T−δθ+ρθ+η),

where MT = {(θ, m) : ‖θ−θ0‖ ≤ T−δθ ,m ∈M∗
T } and M∗

T = {m : ‖m−m0‖ ≤ T−δm , ‖D2m−D2m0‖ ≤
T ξ}.
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Proof of Lemma 3. Claim (26) follows by a direct bound. We now show claim (25). For simplicity

we neglect the discussion of the θ-component and we show

sup
x∈I,m1,m2∈M∗

T

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥt(m2)− x)εt − 1
T

T∑
t=1

Kb(ĥt(m1)− x)εt

∣∣∣∣∣ = OP (T−1/2+η/2−κ), (27)

where ĥt(m) = ĥt(θ0,m). For a proof of (27) we use a chaining argument, compare e.g. the proof of

Lemma 3.2 in van de Geer (2000). Put δ = T−δm and for s ≥ 1 consider 2−sδ covering sets M∗
s of M∗

T ,

i.e. for each m ∈ M∗
T there exists m∗ ∈ M∗

s with ‖m∗ −m‖∞ ≤ 2−sδ. The covering sets can be chosen

such that their cardinality ]M∗
s does not exceed C∗ exp[(2−sδ)−1/2T ξ/2] for a constant C∗ > 0. This is

a standard bound for coverings of Sobolev balls, see van de Geer (2000). We now write ∆t(m, m∗) =

T−1{Kb(ĥt(m)− x)−Kb(ĥt(m∗)− x)}ε∗t with ε∗t = εt1[|εt| ≤ C∗∗ log T ]−E{εt1[|εt| ≤ C∗∗ log T ]} for a

constant C∗∗ > 0 that is large enough. Now for C∗∗ > 0 large enough

sup
x∈I,m,m∗∈MC

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥt(m∗)− x)εt − 1
T

T∑
t=1

Kb(ĥt(m)− x)εt

−
T∑

t=1

∆t(m,m∗)

∣∣∣∣∣ = OP (T−1/2+η/2−κ).

For m1, m2 ∈ MC we choose now ms
1,m

s
2 ∈ MC

s with ‖ms
1 −m1‖∞ ≤ 2−sδ, ‖ms

2 −m2‖∞ ≤ 2−sδ and

we consider the chain

T∑
t=1

∆t(m1,m2) =
T∑

t=1

∆t(m0
1,m

0
2)−

GT∑
s=1

T∑
t=1

∆t(ms−1
1 ,ms

1) +
GT∑
s=1

T∑
t=1

∆t(ms−1
2 ,ms

2)

−
T∑

t=1

∆t(mGT
1 ,m1) +

T∑
t=1

∆t(mGT
2 , m2)

where GT is the largest integer with 2GT T−1/2−η/2−κ+δm−ρm log(T ) < c∗ for a constant c∗ that is

large enough. We now give a bound on P[supm1∈MC

∑GT

s=1

∑T
t=1 ∆t(ms−1

1 ,ms
1) > T−1/2+η/2−κ]. Similar

bounds can be proved for the other terms and for P[infm1∈MC

∑GT

s=1

∑T
t=1 ∆t(ms−1

1 ,ms
1) < −T−1/2+η/2−κ].

We get the following inequality with ηs = c2−3s/4 where c is chosen such that
∑∞

s=1 ηs ≤ 1. With con-
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stants c1, c2, ... > 0 we get with r = c0T
1/2+5η/2+2δm−2ρm−κ22sηs for c0 > 0 small enough:

P

[
sup

m1∈M∗
T

GT∑
s=1

T∑
t=1

∆t(ms−1
1 ,ms

1) > T−1/2+η/2−κ

]

≤
GT∑
s=1

P

[
sup

m1∈M∗
T

T∑
t=1

∆t(ms−1
1 ,ms

1) > ηsT
−1/2+η/2−κ

]

≤
GT∑
s=1

]M∗
s−1]M∗

sP

[
T∑

t=1

∆t(ms−1
1 ,ms

1) > ηsT
−1/2+η/2−κ

]

≤
GT∑
s=1

c1 exp[2(2−sδ)−1/2T ξ/2]P

[
T∑

t=1

∆t(ms−1
1 ,ms

1) > ηsT
−1/2+η/2−κ

]

≤
GT∑
s=1

c1 exp[2T δm/2+ξ/22s/2]

{
E

[
exp[c2r

2
T∑

t=1

∆2
t (m

s−1
1 ,ms

1)]

]}1/2

exp[−rηsT
1/2+η/2−κ]

≤
GT∑
s=1

c1 exp[2T δm/2+ξ/22s/2 − c32s/2T 2δm−2ρm−2η−2κ−2ξb4(log T )−1]

with a constant c∗ > 0. The last inequality follows by application of the exponential inequality of

Lemma 2. At this point it is also used that 2s/4T−1/2−η/2−κ+δm−ρm log(T ) is small enough by appropriate

choice of constant c∗ for s ≤ GT . Thus, we can apply the bound of Assumption 7 for s ≤ GT . We now

apply that the argument of the exponential function in the upper bound of the last inequalities converges

to −∞. This concludes the proof of the lemma.

Proof of Theorem 1. We only prove (4). Equations (5)-(7) follow by similar arguments. For the proof

of (4) we apply Lemma 3 with m1 = m̃, θ1 = θ̃, m2 = m0 and θ2 = θ0. Then, (4) follows by application

of Lemma 2.

Proof of Theorem 2. We only prove (9). Claim (8) follows by similar arguments. The asymptotic

normality results follow from (8), (9) and classical results on nonparametric regression under dependence,

see e.g. Masry (1996). Because of (5), for the proof of (9) it remains to show

sup
x∈I

∣∣m̂NW,B(x)− m̂∗,NW,B(x)
∣∣ = oP (T−2/5). (28)

Note that uniformly for x ∈ I with h̃t = ĥt(θ̃, m̃)

m̂NW (x) = m(x) + f̂h(x)−1 1
T

T∑
t=1

(ht − x)Kb(h̃t − x)m′(x)

+f̂h(x)−1 1
2

1
T

T∑
t=1

(ht − x)2Kb(h̃t − x)m′′(x) + oP (T−2/5)

= m(x) + f̂h(x)−1 1
T

T∑
t=1

[(ht − h̃t) + (h̃t − x)]Kb(h̃t − x)m′(x)

+f̂∗h(x)−1 1
2

1
T

T∑
t=1

(ht − x)2Kb(ht − x)m′′(x) + oP (T−2/5)
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with f̂∗h(x) = T−1
∑T

t=1 Kb(ht − x). Thus for (28) it suffices to show that uniformly for (θ, m, x) ∈ GT

1
T

T∑
t=1

[
(ĥt(θ,m)− ht)Kb(ĥt(θ,m)− x)

]
= oP (T−2η), (29)

1
T

T∑
t=1

[
(ĥt(θ,m)− x)Kb(ĥt(θ, m)− x)− (ht − x)Kb(ht − x)

]
= oP (T−2η). (30)

We only prove (29). Claim (30) follows similarly. Because of Assumption 10 it suffices to show that

sup
(θ,m,x)∈GT

∣∣∣∣∣
1
T

T∑
t=1

at(θ, m, x)

∣∣∣∣∣ = oP (T−2η), (31)

where at(θ, m, x) = (ĥt(θ,m)−ht)Kb(ĥt(θ,m)−x)−E
[
(ĥt(θ, m)− ht)Kb(ĥt(θ, m)− x)

]
. Choose ρ, δ >

0. We will show that for constants c1, ..., c4 > 0 (depending only on ρ and δ) it holds that

sup
(θ,m,x)∈GT

E

[∣∣∣∣∣
1
T

T∑
t=1

at(θ, m, x)

∣∣∣∣∣ > ρT−2η

]
≤ c1 exp(−c2T

1/2) + c3 exp(−c4T
1+2δminb5+δ), (32)

where δmin is the minimum of δm − ρm, δθ − ρθ, ρ0 and ω. We assume for simplicity that |VT | ≤ c0T
ρθ ,

|WT | ≤ c0T
ρm and |RT | ≤ c0T

−ρ0 for a constant c0 > 0. A more detailed discussion that does not require

this additional assumption would need an additional standard truncation argument. Using our entropy

bounds one can show that it suffices for (31) to show that

sup
(θ,m,x)∈G∗T

∣∣∣∣∣
1
T

T∑
t=1

at(θ, m, x)

∣∣∣∣∣ = oP (T−2η), (33)

where G∗T is a suitable chosen finite set of O(exp(c5T
ξ/2+ρm/2+η)T c6) points with c5, c6 > 0. Claim (29)

follows from (32) and (33) because of δmin > ξ + ρm and δ > 0 small enough. Thus for (29) it remains

to show (32).

For the proof of (32) we apply the exponential inequality for mixing processes stated in Theorem

1.3. (2) in Bosq (1998) and use Davydov‘s inequality (see Corollary 1.1 in Bosq, 1998) to bound the vari-

ance of sums of blocks of summands. We apply the exponential inequality with blocks of T 1/2+3η/2−δmin/2

summands. This shows (32).

Proof of Theorem 3. The test statistic has the following representation: Γ̂(0)
T = Γ̂(0)

T,1 + Γ̂(0)
T,2 + Γ̂(0)

T,3,

where

Γ̂(0)
T,1 =

∫ {
1
T

∑T
t=1 Kb(ĥ

(0)
t − x)εt

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

}2

w(x)dx,

Γ̂(0)
T,2 = −2

∫ {
1
T

∑T
t=1 Kb(ĥ

(0)
t − x)εt

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

}

×




1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

[
mbγ(ĥ(0)

t )−mγ0(ht)
]

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)



w(x)dx,

Γ̂(0)
T,3 =

∫ 



1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

[
mbγ(ĥ(0)

t )−mγ0(ht)
]

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)





2

w(x)dx.
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We show that

Γ̂(0)
T,1 = Γ̃T + oP (T−1b−1/2), (34)

Γ̂(0)
T,2 = oP (T−1b−1/2), (35)

Γ̂(0)
T,3 = oP (T−1b−1/2), (36)

where

Γ̃T =
1

T 2

T∑
s,t=1

K(2)(ht − hs)
fh(ht)fh(hs)

w(hs)εsεt.

For the proof of claim (34) one applies first Lemma 5, that is stated below. This shows that

Γ̂(0)
T,1 =

∫ {
1
T

∑T
t=1 Kb(ht − x)εt

1
T

∑T
t=1 Kb(ht − x)

}2

w(x)dx + oP (T−1b−1/2).

Claim (34) now follows from continuity of w and fh and (19). It can be easily checked that (19) holds

under the assumptions of Theorem 3, see Masry (1996).

For a proof of claim (35) one first applies Assumption 12, Assumption 14, θ̂ − θ0 = OP (T−1/2),

Lemmas 4 and 5 and (19)to show that

Γ̂(0)
T,2 = (γ̂ − γ0)

1
T 2

∑

1≤s,t≤T

ws,tεt + (θ̂ − θ0)
1

T 2

∑

1≤s,t≤T

w∗s,tεt + oP (T−1b−1/2), (37)

with ws,t =
∫

I
Kb(ht−x)Kb(x−hs)

ṁγ0 (x)

f2(x) dx and w∗s,t =
∫

I
Kb(ht−x)Kb(x−hs)

m′
γ0

(x)

f2(x) dxḣs. We now use

θ̂ − θ0 = OP (T−1/2), b|ws,t| ≤ C, b|w∗s,t| ≤ C for a constant C and Davydov‘s inequality (see Corollary

1.1 in Bosq, 1998). This implies that the right hand side of (37) is of order oP (T−1b−1/2) which shows

claim (35).

Claim (36) follows directly from Assumption 12.

For the proof of the theorem it remains to show that T
√

b(Γ̃T − b−1/2M)/V converges in distribution

to a standard normal distribution. This can be done by the same arguments as in Fan and Li (1999).

Lemma 4. Under the assumptions of Theorem 3 it holds that

sup
x∈I

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥ
(0)
t − x)εt − 1

T

T∑
t=1

Kb(ht − x)εt

∣∣∣∣∣ = OP (T−1/2−δ),

sup
x∈I

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥ
(0)
t − x)− 1

T

T∑
t=1

Kb(ht − x)

∣∣∣∣∣ = OP (T−δ
√

b)

for a δ > 0.

Proof of Lemma 4. For the first claim it suffices to show for C > 0 that

sup
x∈I

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥt(θ0)− x)εt − 1
T

T∑
t=1

Kb(ht − x)εt

∣∣∣∣∣ = OP (T−1/2−δ),

sup
x∈I,‖θ1−θ2‖≤CT−1/2

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥt(θ1)− x)εt − 1
T

T∑
t=1

Kb(ĥt(θ2)− x)εt

∣∣∣∣∣ = OP (T−1/2−δ).
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These statement can be shown by similar arguments as in the proofs of the statements of Lemma 2. The

second statement of the lemma follows similarly.

Lemma 5. Under the assumptions of Theorem 3 it holds that

sup
x∈I

∣∣∣∣∣
1
T

∑T
t=1 Kb(ĥ

(0)
t − x)εt

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

−
1
T

∑T
t=1 Kb(ht − x)εt

1
T

∑T
t=1 Kb(ht − x)

∣∣∣∣∣ = OP (T−1/2−δ)

for a δ > 0.

Proof of Lemma 5. The statement of Lemma 5 follows directly from Lemma 4.

Proof of Theorem 4.

For functions m we define

Γ̂T (θ,m) =
∫ 




1
T

∑T
t=1 Kb(ĥt(θ, m)− x)

[
Yt −mbγ(ĥ(0)

t )
]

1
T

∑T
t=1 Kb(ĥt(θ,m)− x)





2

w(x)dx.

Note that Γ̂(k)
T = Γ̂T (θ̂(k), m̂(k)) for k ≥ 1 and Γ̂(0)

T = Γ̂T (θ̂(0),mbγ) with θ̂(k) = (ψ̂(k), γ̂). The statement

of Theorem 4 follows from the following two claims. For C > 0 it holds that

sup
(θ1,m1),(θ2,m2)∈MC,∗

∣∣∣Γ̂T (θ1,m1)− Γ̂T (θ2,m2)
∣∣∣ = oP (T−1b−1/2), (38)

(
θ̂(k), m̂(k)

)
∈ MC,∗. (39)

Here MC,∗ denotes the set of all tuples (θ, m) with m ∈ MC and where θ = (ψ, γ) fulfills ‖ψ − ψ0‖ ≤
b2T ι + (Tb)−1/2T ι, ‖γ − γ0‖ ≤ (T )−1/2T ι for some ι > 0 small enough. The set MC is the class of

all functions m whose second derivative is absolutely bounded by C(Tb5)−1/2
√

log(T ), which coincide

outside of I with mbγ and which fulfil:

sup
x∈I

|m(x)−mb,0(x)| ≤ C(Tb)−1/2
√

log(T ),

where

mb,0(x) =
E[Kb(ht − x)m0(ht)]

E[Kb(ht − x)]
.

For a proof of (38) it suffices to show that for all C > 0 for δ > 0 small enough

sup
x∈I,(θ1,m1),(θ2,m2)∈MC,∗

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥt(θ2,m2)− x)εt

− 1
T

T∑
t=1

Kb(ĥt(θ1,m1)− x)εt

∣∣∣∣∣ = OP (T−1/2−δ), (40)

sup
x∈I,(θ1,m1),(θ2,m2)∈MC,∗

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥt(θ2,m2)− x)

− 1
T

T∑
t=1

Kb(ĥt(θ1,m1)− x)

∣∣∣∣∣ = OP (
√

b T−δ). (41)
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Using these two bounds claim (38) follows by similar arguments as in the proof of Theorem 1. Claims

(40) and (41) follow by Lemma 3. Note that our assumptions allow the choice κ > η/2.

For the proof of (39) we will argue that for l ≤ k

sup
x∈I

∣∣∣m̂(l)(x)−mb,0(x)
∣∣∣ ≤ C(Tb)−1/2

√
log(T ), (42)

sup
x∈I

∣∣∣D2m̂
(l)(x)

∣∣∣ ≤ C(Tb5)−1/2
√

log(T ) + C (43)

almost shurely for C > 0 large enough. For a proof of (42) note that from (40) and (41) it follows that

for δ > 0 small enough

sup
x∈I

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥ
(k)
t − x)εt − 1

T

T∑
t=1

Kb(ĥ
(0)
t − x)εt

∣∣∣∣∣ = OP (T−1/2−δ),

sup
x∈I

∣∣∣∣∣
1
T

T∑
t=1

Kb(ĥ
(k)
t − x)− 1

T

T∑
t=1

Kb(ĥ
(0)
t − x)

∣∣∣∣∣ = OP (
√

b T−δ).

Thus (42) follows from our results on 1
T

∑T
t=1 Kb(ĥ

(0)
t − x)εt and 1

T

∑T
t=1 Kb(ĥ

(0)
t − x) in the proof of

Theorem 1.

For a proof of (43) we write

m̂(k)(x) =
r̂A(x) + r̂B(x)

f̂
(k)
h (x)

+ mbγ(x),

where r̂A(x) = T−1
∑T

t=1 Kb(ĥ
(k−1)
t − x)εt, r̂B(x) = T−1

∑T
t=1 Kb(ĥ

(k−1)
t − x)[mγ0(ht)−mbγ(ĥ(0)

t )], and

f̂
(k)
h (x) = T−1

∑T
t=1 Kb(ĥ

(k−1)
t − x). For the proof of (39) it suffices to show for 0 ≤ j ≤ 2 that

supx∈I

∣∣Dj r̂
A(x)

∣∣ + supx∈I

∣∣Dj r̂
B(x)

∣∣ + supx∈I

∣∣∣Dj f̂
(k)
h (x)

∣∣∣ ≤ C(Tb2j+1)−1/2
√

log(T ) + C and

supx∈I

∣∣∣f̂ (k)
h (x)−1

∣∣∣ ≤ C, almost shurely for C > 0 large enough. This can be done by similar arguments

as in the proof of (40) and (41).
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