
Marjolein J.W. Harmsen-van Hout, P. 
Jean-Jacques Herings, Benedict G.C. 
Dellaert 
 
Communication network 
formation with link specificity 
and value transferability                
            
RM/11/022 
  
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6672394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Communication network formation

with link specificity and value transferability

Marjolein J.W. Harmsen - van Hout1 P. Jean-Jacques Herings2

Benedict G.C. Dellaert3

March 15, 2011

1Institute for Future Energy Consumer Needs and Behavior (FCN), Faculty of Business and Economics
/ E.ON Energy Research Center, RWTH Aachen University, Mathieustraße 6, 52074 Aachen, Germany, e-
mail: mharmsen@eonerc.rwth-aachen.de, fax: +49 241 80 49 829, phone: +49 241 80 49 835, corresponding
author.

2Department of Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands,
e-mail: p.herings@maastrichtuniversity.nl, fax: +31 43 38 84 878, phone: +31 43 38 83 824; +31 43 38 83
636.

3Department of Business Economics / Marketing Section, Erasmus School of Economics, Erasmus Uni-
versity Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands, e-mail: dellaert@ese.eur.nl, fax:
+31 10 40 89 169, phone: +31 10 40 81 353.



Abstract

We propose a model on strategic formation of communication networks with (i) link specificity:

the more direct links somebody maintains, the less she can specify her attention per link, the

lower her links’ value, while this negative externality was previously ignored in the communication

context, and (ii) value transferability via indirect links for informational but not for social value

from communication, while this positive externality was modeled uniformly before. Assuming only

social value to isolate the impact of link specificity, the pairwise stable set includes many non-

standard networks under high or particular combinations of fully connected components under

low link specificity. Allowing for social and informational value, the joint effect of link specificity

and value transferability reduces the stable set to certain fragmented networks under high or the

complete network under low link specificity. These extremes are beneficial for efficiency, whereas

quite inefficient networks may arise for intermediate link specificity.

JEL classification: A14, C79, D85, M31

Keywords: Bilateral communication links, Link specificity, Value transferability, Social vs. in-

formational value, Strategic network formation



1 Introduction

Structures of who communicates with whom are distinguishing empirical phenomena (e.g., Trier,

2008) and can determine important outcome variables such as the extent to which value is shared

throughout a community and how it is distributed (e.g., Granovetter, 2005; Ren et al., 2007).

Therefore, in the current paper we study the structure of bilateral communication links among

individuals. We model their formation as a game-theoretic network formation process in which

agents choose to create and maintain links, only if the participants in the link benefit from doing

so, which results in a pairwise stable network (Jackson and Wolinsky, 1996). The model thus de-

scribes how agents benefit and lose from being connected and predicts which stable communication

networks emerge when agents myopically maximize the resulting payoff value. Herein, we incor-

porate a combination of two important aspects common to communication networks that has not

been investigated before.

First, our model features link specificity in the sense that the more direct connections an

individual has to maintain with other individuals, the less she is able to specify her attention

per link. Therefore, her value per link for others declines and she also derives less value from each

link with others (Currarini, 2007; co-author model Jackson and Wolinsky, 1996). Thus, we go

beyond the standard assumption of a fixed cost per link in communication networks (e.g., Bala and

Goyal, 2000; connections model Jackson and Wolinsky, 1996).

We assume that two connected agents contribute to their bilateral process of communication

value creation according to a standard production function with as inputs the amount of time

invested by each agent in the link. Higher link specificity implies higher output elasticities in each

bilateral value production process and therefore lower advantage of being connected with several

agents. Unit output elasticities are adopted to analyze high link specificity, while constant returns

to scale, i.e., both output elasticities equal to 1/2, reflect low link specificity.

Second, we introduce the important distinction between social and informational value as mo-

tivations for bilateral exchange decisions. This typology was suggested by the virtual community

literature regarding the question why individuals choose to participate in and contribute to such a

community as a whole (e.g., Dholakia et al., 2004). Social value is related to the fact that individu-

als may enjoy communicating with others, for example because they find it entertaining or because

they feel it enhances their self-worth. Informational value refers to the fact that individuals may

obtain new valuable knowledge from others when they communicate. Typically, informational value

can be transferred relatively easily to third parties through indirect links, whereas social value is

more personal and therefore hardly transferable without creating a direct link.

To understand the relative impact of social and informational member orientation, we assume

that social value is only experienced from direct neighbors and that informational value flows via

any path consisting of bilateral communication links connecting two agents. Hereby, we integrate

transferable and nontransferable value in one model, while so far, value transferability was at best

incorporated uniformly for all value (e.g., Bala and Goyal, 2000; connections model Jackson and

Wolinsky, 1996).
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More specifically, we first deal with the case of communication having social value only (Section

2) in order to illustrate the separate impact of link specificity on network structure. When link

specificity is high, the set of pairwise stable networks is characterized by two simple conditions

and is shown to contain a wide range of non-standard networks, including highly connected and

“small world” networks, whereas previous models for social and economic network formation mostly

predicted simple networks like stars and wheels. When link specificity is low, particular combina-

tions of fully connected components are pairwise stable, similar to the prediction of Jackson and

Wolinsky (1996) for the co-author context.

Next, we deal with the case of communication from which both social and informational value is

derived (Section 3) in order to illustrate the impact of value transferability on structure. Under high

link specificity, only networks that consist of disjoint star components of two or three agents are

shown to be pairwise stable. Apparently, the combination of these two features: high link specificity,

which is an example of a negative network externality, and even marginal informational value

transferability, which is an example of a positive network externality (Asvanund et al., 2004), has

a strong fragmentizing effect on the emerging pairwise stable networks. Under low link specificity,

the opposite effect takes place: already with small informational value transferability, only the

complete network is pairwise stable.

Section 4 focuses on efficiency properties of the wide variety of stable networks discussed in

the previous two sections. In particular, it is found that both the fragmentation under high link

specificity and the dense stable networks under low link specificity are most efficient in their own

setting. In Section 5, link specificity values other than 1 and 1/2 are investigated by simulations.

Especially, it is found that 1 and 1/2 are indeed suitable polar cases and that for intermediate link

specificity values the common tension between stability and efficiency (e.g., Jackson and Wolinsky,

1996) is re-established. Subsequently, Section 6 concludes and offers directions for further research.

2 Nontransferable social value

Since the structure of a communication network determines value for participants, we capture its

formation in a game-theoretical model. Although we believe that communication networks typically

combine social and informational value aspects, we first deal with the simpler case in which only

social value is derived from communication. This approach allows us to illustrate the separate

impact of link specificity on communication structure and to exclude value transferability.

Link specificity (Currarini, 2007; Jackson and Wolinsky, 1996) means that the more direct

connections an individual has to maintain with other individuals, the less she is able to specify

her attention per link. Therefore, her value per link for others declines and she also derives less

value from each link with others. These negative externalities of link formation are crucial in our

communication context, since here no benefits arise from individual contributions as such. The

reason is that communication is only valuable if it is two-sided, thus effort has to be invested by
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both sender and receiver.1

In short, the objective of this section is to develop a model for communication network formation

with only social value from communication. We use the concept of pairwise stability to characterize

the collection of stable communication networks.

2.1 Model and stability concept

A communication network is described by (N, g), where N = {1, ..., n} , n ≥ 3, is a community of
agents. A direct link gi,j between agents i and j in this community (i, j ∈ N ; i 6= j) is interpreted

as a communication relationship between i and j which is established if they both wish the link; gi,j
indicates with a 1 or a 0 whether i is directly linked to j or not. These relationships are expressed

by undirected links: for any two agents i and j, gi,j = gj,i. By definition, gi,i = 0, as agents do not

establish communication links with themselves. In this community agents only derive social value

from interaction.

In case of an isolated relationship between two agents, each agent experiences social value

V s > 0 as the outcome of their joint communication production process. However, maintenance

of the communication relationship costs effort: investment of both agents is needed in order to

make the communication specific to their personal circumstances and hence useful. Accordingly,

in case of a network where two agents do not form an isolated pair, both agents are assumed to

divide their effort equally among all their relationships, as a result of which, in an extreme case, the

potential social communication value is divided proportionally by the number of links that agents

face. However, since agents may have economies of scale in coping with several links, the extent of

link specificity can be smaller.

We assume that the contributions of two agents in their bilateral process of communication

value creation are reflected by a Cobb-Douglas production function with the time invested in the

link by the agents as inputs. We assume both output elasticities are equal to ρ, where ρ = 1

corresponds to the case of high link specificity and ρ = 1/2 coincides with constant returns to scale

and results in low link specificity. Therefore, the total payoff for agent i in communication network

g is given by

Πi (g) =

⎧⎨⎩
P

j∈Ni(g)

V s

(μi(g)·μj(g))
ρ if μi (g) > 0

0 if μi (g) = 0,
(1)

where Ni (g) is the set of agents with whom i has a direct link, agent j is a neighbor of agent i if

j ∈ Ni (g), and μi (g) = |Ni (g)| is the number of neighbors of agent i, which is also referred to as
the degree of i ; V s > 0 denotes the social value that i would derive from communication with j if

neither i nor j were linked to any other agent; and ρ ≤ 1 indicates the level of link specificity.2

1 In contrast, in the co-author setting, which has been the subject of investigation in earlier research (Jackson and
Wolinsky, 1996), each co-author can write independently as well.

2For comparison: the payoff function in the co-author model of Jackson and Wolinsky (1996) can be written as

Πi (g) =

⎧⎨⎩ j∈Ni(g)

V s

μi(g)
+ V s

μj(g)
+ V s

μi(g)·μj(g)
if μi (g) > 0

0 if μi (g) = 0.
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For the model thus described we predict which stable networks emerge by using the concept

of pairwise stability (Jackson and Wolinsky, 1996), where a network is stable if no single agent

can strictly improve her payoff by deleting one of her direct links and no pair of agents can both

weakly improve their payoffs by creating a direct link while at least one of the two members strictly

improves her payoff by doing so. This solution concept is weak in the sense that it only assumes

stability against deviations of exactly one link (which involves the permission of two agents in the

case of link formation), reflecting a form of myopia. Alternatively, the model could be analyzed by

applying the Nash solution (Bala and Goyal, 2000), which assumes stability against single-agent

deviations of more than one link. Because of the extreme coordination problem of the Nash concept

in two-sided link formation and since the weak concept of pairwise stability already clearly and

interestingly constrains the number of communication networks that are stable, we choose for the

pairwise stability solution. The study of farsighted stability notions in the setting of communication

networks, following the approaches of for instance the largest pairwise consistent set (Chwe, 1994)

or the pairwise farsightedly stable set (Herings et al., 2009) is left for future research.

In our notation, we have the following definition.

Definition 1 (pairwise stability) The network g is pairwise stable if for all i, j ∈ N with gi,j = 1

it holds that

Πi (g) ≥ Πi
¡
g0
¢
and Πj (g) ≥ Πj

¡
g0
¢
,

where g0 is such that g0i,j = 0 and g
0
k, = gk, for all {k, } 6= {i, j}, and for all i, j ∈ N with gi,j = 0

it holds that

Πi (g) > Πi
¡
g0
¢
or

Πj (g) > Πj
¡
g0
¢
or¡

Πi (g) = Πi
¡
g0
¢
and Πj (g) = Πj

¡
g0
¢¢
,

where g0 is such that g0i,j = 1 and g0k, = gk, for all {k, } 6= {i, j}.

2.2 Stable networks under high link specificity

First, we evaluate pairwise stability in communication networks under high link specificity, which

we obtain by setting ρ = 1. We prove that in this case, the collection of pairwise stable networks

can be described by two easily verifiable conditions: (i) they are what we call equal neighbor degree

networks, meaning that everybody has at least one neighbor and all neighbors of an agent has the

same degree, and (ii) there is at most a difference of one between the degrees of agents in the same

component.

Definition 2 (equal neighbor degree network) A network g is an equal neighbor degree net-
work when it holds for each i ∈ N that μi (g) ≥ 1 and for all j, j0 ∈ Ni (g) that μj (g) = μj0 (g). Here

we adopt the following notation: the own degree of an agent i is denoted by di and her neighbors’

degree by ei.
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Definition 3 (path) A path in g connecting i and j is a sequence of agents k1, . . . , km ∈ N for

whom it holds that gi,k1 = gk1,k2 = ... = gkm−1,km = gkm,j = 1.

Definition 4 (component) A component c in g is a network among a set of agents C ⊆ N for

whom it holds that for all i, j ∈ C, i 6= j, there exists a path in c connecting i and j, and for any

i ∈ C and j ∈ N, gi,j = 1 implies ci,j = 1.

Definition 5 (star) A network g is a star if it has exactly n − 1 links and there exists an agent
j for whom it holds that gj,i = 1 for all i 6= j. Similarly, a component c is a star if it has exactly

|C|− 1 links and it contains an agent j for whom it holds that gj,i = 1 for any other i ∈ C. Agent

j is called the center agent whereas the other agents are the periphery agents of the star.

Example 1 A network consisting of star components is an equal neighbor degree network.

Example 2 The network given in Figure 1 is an equal neighbor degree network.

Figure 1: An equal neighbor degree network

Before providing the main result in Proposition 1, we first derive Lemma 1. It observes that

under high link specificity, pairwise stable communication networks must be equal neighbor degree

networks since it is beneficial for an agent i to delete the link with a neighbor who has to maintain

more direct links than i’s average neighbor. Furthermore, Lemma 1 expresses a condition to exclude

link creation.

Lemma 1 When ρ = 1, a communication network is pairwise stable if and only if it is an equal

neighbor degree network where it holds for each not directly linked pair of agents i, j that

ei ≤ dj or ej ≤ di or (ei = dj + 1 and ej = di + 1) . (2)

Proof. (⇐=) Assume that g is an equal neighbor degree network where for each not directly linked
pair of agents i, j condition (2) is satisfied. The payoff of an agent i as expressed in equation (1)

can be written as

Πi (g) =
P

j∈Ni(g)

V s

μi(g)μj(g)
= di

V s

diei
= V s

ei
,
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so i does not want to delete a link, for then her payoff would reduce to zero if di = 1, whereas if

di > 1 it would remain equal:

(di − 1) V s

(di−1)ei =
V s

ei
.

Moreover, no link between any pair of agents i, j is created if it makes either i or j strictly worse

off or both of them equally well off. Therefore, no link is created if

V s

ei
> di

V s

(di+1)ei
+ V s

(di+1)(dj+1)
or (3)

V s

ej
> dj

V s

(dj+1)ej
+ V s

(di+1)(dj+1)
or (4)³

V s

ei
= di

V s

(di+1)ei
+ V s

(di+1)(dj+1)
and V s

ej
= dj

V s

(dj+1)ej
+ V s

(di+1)(dj+1)

´
. (5)

The following shows that ei ≤ dj implies (3):

ei ≤ dj =⇒ ei + di(dj + 1) < (di + 1)(dj + 1) =⇒ di(dj+1)+ei
(di+1)(dj+1)ei

< 1
ei
.

Analogously, it can be shown that ej ≤ di implies (4), and (ei = dj + 1) and (ej = di + 1) implies

(5). Therefore, g is pairwise stable.

( =⇒ ) Assume that the network g is pairwise stable. First, suppose that there is an agent i for

whom it holds that μi (g) = 0. Then her payoff would strictly improve from a link with some other

agent k. It is obvious that also k ’s payoff would strictly increase if μk (g) = 0, which contradicts

pairwise stability, so consider the case where μk (g) ≥ 1. The payoff of k without this link equals

P
j∈Nk(g)

V s

μk(g)·μj(g)
= V s

μk(g)

Ã P
j∈Nk(g)

1
μj(g)

!
,

whereas by linking with i it would become

P
j∈Nk(g)

V s

(μk(g)+1)·μj(g)
+ V s

(μk(g)+1)·1
= V s

(μk(g)+1)

Ã P
j∈Nk(g)

1
μj(g)

+ 1

!
≥ V s

μk(g)

Ã P
j∈Nk(g)

1
μj(g)

!
.

The inequality follows from the observation that the expression before the inequality equals V s

times the average of the terms 1/μj(g), j ∈ Nk (g) , and 1, the expression after the inequality is

equal to V s times the average of the terms 1/μj(g), j ∈ Nk (g) , and that 1 ≥ 1/μj(g) for all

j ∈ Nk(g). This contradicts pairwise stability of g. It follows that μi (g) ≥ 1 for all i ∈ N .

Secondly, suppose that for some i it does not hold that μj (g) is constant for all j ∈ Ni (g).

Then there is an agent k ∈ Ni (g) such that

μk (g) >
j∈Ni(g)

μj(g)

μi(g)
.
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The payoff for i is given by

P
j∈Ni(g)

V s

μi(g)·μj(g)
= V s

μi(g)

P
j∈Ni(g)

1
μj(g)

,

whereas by deleting the link with k, the payoff for i would become

P
j∈Ni(g)

V s

(μi(g)−1)·μj(g)
− V s

(μi(g)−1)·μk(g)
= V s

(μi(g)−1)

Ã P
j∈Ni(g)

1
μj(g)

− 1
μk(g)

!
> V s

μi(g)

P
j∈Ni(g)

1
μj(g)

,

where the inequality follows immediately from the interpretation of the last two terms as V s times

an average of numbers 1/μj(g), j ∈ Ni (g) . This contradicts pairwise stability, so μj (g) = μj0 (g)

for all j, j0 ∈ Ni (g). We have shown that a pairwise stable network is an equal neighbor degree

network.

Finally, suppose that there exists a not directly linked pair i, j for which condition (2) is not

satisfied, implying

ei ≥ dj + 1 and ej ≥ di + 1 and (ei > dj + 1 or ej > di + 1) . (6)

Then i and j want to create a link between them, since this would cause the payoff for agent i to

become

di
V s

(di+1)ei
+ V s

(di+1)(dj+1)
≥ di

V s

(di+1)ei
+ V s

(di+1)ei
= V s

ei
,

and for agent j to become

dj
V s

(dj+1)ej
+ V s

(dj+1)(di+1)
≥ dj

V s

(dj+1)ej
+ V s

(dj+1)ej
= V s

ej
,

where according to the last condition in (6) at least one of the inequality signs is strict. This

contradicts pairwise stability too. Therefore, g is an equal neighbor degree network where condition

(2) holds for each not directly linked pair of agents i, j.

The condition to exclude link creation in Lemma 1 can be further simplified, leading to the

following main result.

Proposition 1 When ρ = 1, a communication network is pairwise stable if and only if it is an

equal neighbor degree network where it holds for each pair of agents k, in the same component that

|dk − d | ≤ 1. (7)

Proof. Considering Lemma 1, it is sufficient to show that in an equal neighbor degree network
condition (2) holds for each not directly linked pair i, j if and only if condition (7) is satisfied for

each pair k, in the same component.

(⇐=) Assume an equal neighbor degree network where for each pair k, in the same component

condition (7) is satisfied. Let i, j be any not directly linked pair. If ei ≤ dj , condition (2) is satisfied.
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If not, then ei > dj and we can derive by applying condition (7) twice that

ej ≤ dj + 1 ≤ ei ≤ di + 1.

If ej ≤ di, condition (2) is satisfied. If not, then ej = di + 1 and condition (2) is satisfied if it also

holds that ei = dj + 1. Suppose not, then ei ≥ dj + 2 and we can derive by applying condition (7)

that

ei ≥ dj + 2 ≥ (ej − 1) + 2 = di + 2,

which contradicts condition (7). Therefore, condition (2) is satisfied.

( =⇒ ) Assume an equal neighbor degree network where for each not directly linked pair i, j

condition (2) is satisfied. Let k, be any pair in the same component, so there exists at least one

path between k and . Assume that the total number of agents on any of these paths is odd. Due

to the equal neighbor degree network it holds that dk = d , so condition (7) is satisfied.

Assume that the total number of agents on all of these paths is even. We consider three cases.

(i) Nk (g) \ { } = ∅ and Nl (g) \ {k} = ∅. It follows that the component consists of k and only,

so condition (7) trivially holds.

(ii) Nk (g) \ { } 6= ∅ and Nl (g) \ {k} 6= ∅. Consider m ∈ Nk (g) \ { }. Due to the equal neighbor
degree network it holds that

dk = em = e and ek = dm = d .

Since and m are not directly linked, by condition (2) we have

dk = e ≤ dm = d or dk = em ≤ d or (dk = e = dm + 1 = d + 1 and dk = em = d + 1) ,

so dk ≤ d + 1. By the same argument, using some n ∈ N (g) \ {k}, we find d ≤ dk + 1.

Consequently, condition (7) is satisfied.

(iii) (Without loss of generality) Nk (g) \ { } = ∅ and Nl (g) \ {k} 6= ∅. Since k is connected to ,

we have Nk (g) = { }, dk = 1, k ∈ N (g), and d ≥ 2. As in case (ii), using some m ∈ N (g) \ {k} ,
it follows that d ≤ dk + 1 = 2. Therefore, it holds that d = 2. Due to the equal neighbor degree

network we find dm = dk = 1. We have shown that g is a three-agent star. Clearly, condition (7)

holds.

The following examples illustrate the wide range of networks thus proven to be pairwise stable

in the social value case.

Definition 6 (complete network) A network g is complete if all agents are connected, so for all
i, j ∈ N, i 6= j, it holds that gi,j = 1.

Definition 7 (wheel network) A network g is a wheel if it has exactly n links and there exists a
sequence of different agents k1, ..., kn ∈ N for whom it holds that gk1,k2 = gk2,k3 = ... = gkn−1,kn =

gkn,k1 = 1.
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Definition 8 (regular network) A network g is regular if it exists of one component and for

each i ∈ N it holds that di = d.

Corollary 1 When ρ = 1, the complete, wheel, or any regular communication network is pairwise

stable, for it is an equal neighbor degree network where it holds for each pair of agents k, in the

single component that

|dk − d | = 0 ≤ 1.

Example 3 A non-regular communication network that is pairwise stable under ρ = 1 is given in
Figure 2.

Figure 2: A non-regular pairwise stable communication network for ρ = 1

Example 4 A communication network consisting of multiple components that is pairwise stable
under ρ = 1 is given in Figure 3.

Example 5 A “small world” is a network with local clusters of highly interlinked agents together
with agents that link the various clusters. As a consequence, although most agents are not directly

connected, every agent is indirectly linked to every other agent by a relatively small number of

steps. A regular “small world” communication network that is pairwise stable under ρ = 1 is given

in Figure 4.

Note that this wide set of stable communication networks includes complex real-life networks (as

empirically observed by e.g. Dodds et al., 2003), whereas previous models for social and economic

network formation mostly predicted simple networks like stars and wheels (e.g., Bala and Goyal,

2000; Goyal and Vega-Redondo, 2007).

2.3 Stable networks under low link specificity

In this section we study the case of low link specificity, obtained by setting ρ = 1/2. We show that

particular combinations of fully connected components are pairwise stable communication networks.

This is similar to the prediction for the co-author model of Jackson and Wolinsky (1996), where a

pairwise stable network can be partitioned into fully connected components, each of which has a
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Figure 3: A multiple-component pairwise stable communication network for ρ = 1

Figure 4: A “small world” pairwise stable communication network for ρ = 1
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different number of members: if mc1 is the number of members of one such component and mc2 is

the next largest size, then mc1 > (mc2)
2. We obtain a different condition because of the difference

in payoff functions (see Section 2.1).

Proposition 2 Consider a communication network g consisting of fully connected components

c1, . . . , ck with mc1 ≥ mc2 ≥ · · · ≥ mck , where mcj is the number of members of cj . When ρ = 1/2

it holds that g is pairwise stable if and only if mck ≥ 2 and mcj ≥ 4mcj+1 − 2, j = 1, . . . , k − 1.

Proof. We show first that mck ≥ 2. Since n ≥ 3 it holds that mck ≥ 3 if k = 1. Consider the case
k ≥ 2 and suppose mck = 1. A member of ck−1 has payoff V s, whereas creating a link with the

unique member of ck leads to payoffÃ
mck−1 − 1p

mck−1 − 1 + 1
p
mck−1 − 1

+
1p

mck−1 − 1 + 1

!
V s =

p
mck−1 − 1 + 1√

mck−1
V s,

a term larger than V s. Since obviously the unique member of ck wants to link with a member of

ck−1, we obtain a contradiction. Consequently, it holds that mck ≥ 2.
Consider a component with m members. No member wants to delete a link, for the current

payoff for such an agent is V s, whereas deleting a link would reduce it to 0 when m equals 2 and to

m−2√
(m−2)(m−1)

V s

when m ≥ 3.
Consider two distinct components, let one component have members and the otherm. A player

in the -sized component looses from establishing a link with a member of the m-sized component

if and only if
− 1p
( − 1)

+
1√
m

< 1,

which is equivalent to 1/
√
m <

√
−
√
− 1. The latter expression is equivalent tom > 4 −2−1/m.

Using that m is an integer larger than or equal to 2, this last expression is equivalent to m ≥ 4 −2.

Notice that, unless n = 7, the collection of pairwise stable networks described in Proposition 2

contains the pairwise stable networks in the co-author model of Jackson and Wolinsky (1996). It

is a subset of the collection of pairwise stable networks under high link specificity (ρ = 1, Section

2.2).

For ρ = 1/2 we did not find any other pairwise stable communication networks. In particular,

it is not hard to verify that neither regular communication networks with d < n− 1 nor any of the
example networks in Figures 2, 3, or 4 are stable when ρ = 1/2.

11



3 Informational as well as social value

This section introduces the case in which both social and informational value is derived from

communication in networks. Thus, we can illustrate the impact of value transferability on commu-

nication structure in combination with the effect of link specificity. Value transferability (Bala and

Goyal, 2000) means that value from communication is not only derived by direct neighbors, but can

also be transferred via indirect links. More specifically, we make a distinction between social and

informational value derived from communication, where only informational value is transferable

through the network. For example, social value from communication between two Saab enthusiasts

only exists for the two communication partners, but informational value (e.g., from a solution to

a technical problem) can exist for others in the network. After proposing a model for network

formation in this setting, the pairwise stable networks are characterized again. We show that the

set of stable communication networks is much more limited in range than in the purely social value

setting (Section 2).

3.1 Model

A communication network is described by (N, g), where N = {1, . . . , n} , n ≥ 3, is a community
of agents. A direct link gi,j between agents i and j in this community (i, j ∈ N ; i 6= j) can be

interpreted as a communication relationship between i and j which is established if they both

wish the link. These relationships are expressed by undirected links: for any two agents i and j,

gi,j = gj,i, and gi,i = 0.

In case of an isolated relationship between two agents where interaction only has social value,

each agent experiences social value V s > 0 as the outcome of their joint communication production

process. In case of an isolated relationship between two agents where interaction only has infor-

mational value, each agent experiences informational value V i > 0 as the outcome of their joint

communication production process. In general, agents are assumed to give relative attention to

informational and social value in the proportions α and 1− α respectively, where α is assumed to

be constant satisfying 0 ≤ α ≤ 1.
Again we assume that the contributions of two agents in their bilateral process of communication

value creation are reflected by a Cobb-Douglas production function with both output elasticities

equal to ρ, where ρ = 1 corresponds to the case of high link specificity and ρ = 1/2 coincides with

constant returns to scale and results in low link specificity.

Moreover, informational value is, without any decay except for this effort division, transferred

to third parties through indirect links (paths of links), whereas social value is not transferable. This

is due to the fact that in the direct communication production process of two agents, any of them

can use the informational value that she acquired during the bilateral communication creation with

other neighbors. Consequently, agent j0 experiences not only first-step informational payoff from

her direct neighbors:

Π1ij0(g) =
P

j1∈Nj0 (g)

V i

(μj0 (g)·μj1(g))
ρ ,

12



which is similar to the social payoff in equation (1), but also second-step informational payoff:

Π2ij0(g) =
P

j1∈Nj0(g)

1

(μj0(g)·μj1(g))
ρ

P
j2∈Nj1 (g)\{j0}

V i

(μj1 (g)·μj2(g))
ρ ,

third-step informational payoff:

Π3ij0(g) =
P

j1∈Nj0(g)

1

(μj0(g)·μj1(g))
ρ

P
j2∈Nj1 (g)\{j0}

1

(μj1 (g)·μj2(g))
ρ

P
j3∈Nj2 (g)\{j1,j0}

V i

(μj2 (g)·μj3 (g))
ρ ,

and so forth, thus the overall informational payoff for j0 is equal to

Πij0(g) =
n−1P
q=1
Πqij0(g) = V i

n−1P
q=1

qQ
r=1

P
jr∈Njr−1 (g)\{jr−2,jr−3,...,j0}

1

μjr−1 (g)·μjr (g)
ρ

=
n−1P
q=1

P
jq∈Njq−1 (g)\{jq−2,jq−3,...,j0}

V i

μj0(g)·
q−1Q
r=1
(μjr (g))

2·μjq (g)
ρ .

Therefore, the total payoff for agent i in communication network g is given by

Πi (g) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α
P

j∈N̄i(g)

P
p∈Pi,j(g)

V i

μi(g)·
Q
k∈p̆

(μk(g))
2·μj(g)

ρ

+(1− α)
P

j∈Ni(g)

V s

(μi(g)·μj(g))
ρ

if μi (g) > 0

0 if μi (g) = 0,

(8)

where α is the proportion of communication through each link in the community that concerns

information and 1−α is the proportion of communication through each link in the community that
concerns social interaction; N̄i (g) is the set of agents with whom i has either a direct or an indirect

link; Pi,j (g) is the set of paths between i and j, and p̆ is the set of agents on path p between i and
j ; and V i > 0 denotes the informational value that i would derive from communication with j if

neither i nor j were linked to any other agent and interaction would only have informational value,

and V s > 0 denotes the social value that i would derive from communication with j if neither i

nor j were linked to any other agent and interaction would only have social value.

For the model thus described we again use the concept of pairwise stability (Jackson and

Wolinsky, 1996) to predict which communication networks are stable.

3.2 Stable networks under high link specificity

For ρ = 1 and 0 < α < 1, it is proven that the pairwise stable communication networks consist of

two- and three-agent star components only.3 First consider the following lemma in which we show

3The results in the case where the value derived from communication is only informational (α = 1) slightly differ
from those in this mixed case (0 < α < 1). Specifically, it appears that networks also containing one four-agent star
component can be pairwise stable.
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that the star communication network becomes unstable when there are more than three agents.

Lemma 2 When ρ = 1 and 0 < α < 1, the star communication network is pairwise stable if and

only if n = 3.

Proof. From the star network, it is not beneficial for any of the periphery agents to delete her

link with the center agent as then her payoff will be zero. For the center agent, deleting a link

with any of the periphery agents will provide her with the same payoff, since she is not involved in

any indirect links to other agents. Periphery agent i does not create a link with another periphery

agent i’ if and only if this would not decrease her payoff:

αV i
³

1
n−1 +

n−2
(n−1)2

´
+ (1− α)V s 1

n−1 ≥

αV i

⎛⎜⎜⎝ 1
2(n−1) +

1
8(n−1)| {z }

(a)

+ 1
4 +

1
4(n−1)2| {z }
(b)

+ n−3
2(n−1)2 +

n−3
8(n−1)2| {z }

(c)

⎞⎟⎟⎠+ (1− α)V s
³

1
2(n−1) +

1
4

´

⇐⇒ αV i (4− n) + (1− α)V s (3− n) ≥ 0 ⇐⇒ n ≤ 3,

where the informational payoff elements on the right-hand side of the first inequality are derived

from (a) the center agent, (b) agent i’, and (c) the other periphery agents consecutively. Since we

assumed communities to consist of at least three agents, it holds that n = 3.

Now the main result can be proven by tracking that when high link specificity is reinforced by

value transferability, it is beneficial for agents in communication networks to break cycles and to

delete links with tree branches that are longer than one link.

Proposition 3 When ρ = 1 and 0 < α < 1, a communication network is pairwise stable if and

only if it consists of disjoint star components of two or three agents.

Proof. (⇐=) It is not beneficial for any of the periphery agents in a two- or three-agent star
component to delete her single link as then her payoff will be zero. Equivalently, for the center

agent in a three-agent component, deleting a link with any of the two periphery agents is not

beneficial as it will provide her with the same payoff.

Link creation between the periphery agents of one three-agent star is eliminated by Lemma 2.

Therefore, we only have to examine the following cases (a)− (f) related to link formation between

14



two agents in different components:

pair agent center agent

of 3-agent star

periphery agent

of 3-agent star

pair agent
(a) (b) (c)

center agent

of 3-agent star
x (d) (e)

periphery agent

of 3-agent star
x x (f)

For each of these cases, it can be proven by evaluating the payoffs with and without the link that

no link is created: after forming a link in case (a), a pair agent would get payoff

αV i
¡
1
2 +

1
4 +

1
8

¢
+ (1− α)V s

¡
1
2 +

1
4

¢
≤ αV i + (1− α)V s,

after forming a link in case (b), the pair agent would get payoff

αV i
¡
1
2 +

1
6 +

1
18 +

1
18

¢
+ (1− α)V s

¡
1
2 +

1
6

¢
< αV i + (1− α)V s,

after forming a link in case (c), the pair agent would get payoff

αV i
¡
1
2 +

1
4 +

1
16 +

1
32

¢
+ (1− α)V s

¡
1
2 +

1
4

¢
< αV i + (1− α)V s,

after forming a link in case (d), a center agent would get payoff

αV i
¡
1
3 +

1
3 +

1
9 +

1
27 +

1
27

¢
+ (1− α)V s

¡
1
3 +

1
3 +

1
9

¢
≤ αV i

¡
1
2 +

1
2

¢
+ (1− α)V s

¡
1
2 +

1
2

¢
,

after forming a link in case (e), the center agent would get payoff

αV i
¡
1
3 +

1
3 +

1
6 +

1
24 +

1
48

¢
+ (1− α)V s

¡
1
3 +

1
3 +

1
6

¢
< αV i

¡
1
2 +

1
2

¢
+ (1− α)V s

¡
1
2 +

1
2

¢
,

and after forming a link in case (f), a periphery agent would get payoff

αV i
¡
1
4 +

1
4 +

1
8 +

1
16 +

1
32

¢
+ (1− α)V s

¡
1
4 +

1
4

¢
≤ αV i

¡
1
2 +

1
4

¢
+ (1− α)V s 12 .

(=⇒) For this part of the proof, we need some extra notation. The payoff function in (8) can
be rewritten as

Πi (g) =
1

μi(g)

P
j∈Ni(g)

Ti,j (g) ,
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where Ti,j (g) is the total payoff that j transmits to i via her direct link with i. Formally,

Ti,j (g) = α

⎛⎝ V i

μj(g)
+

P
(j0∈N̄j(g)\{i})

P
(p∈Pj,j0(g):i/∈p̆)

V i

μj0(g)·(μj(g))
2·
Q
k∈p̆

(μk(g))
2

⎞⎠+ (1− α) V s

μj(g)
.

Assume that g is a pairwise stable network. Let i be an agent in g and k ∈ Ni (g) be such that

Ti,k (g) = min
j∈Ni(g)

Ti,j (g) .

Suppose that there exists an agent ∈ Ni (g) for whom it holds that

Ti, (g) > Ti,k (g) .

Deleting the link between i and k results in network g0, where it holds that

Ti,j
¡
g0
¢
≥ Ti,j (g) , ∀j ∈ Ni

¡
g0
¢
,

since k, to whom j might be (in)directly linked, has one costly direct link less, so more informational

value might flow from j to i via k. The payoff for i then becomes

Πi
¡
g0
¢
= 1

μi(g)−1
P

j∈Ni(g0)
Ti,j

¡
g0
¢
> 1

μi(g)

P
j∈Ni(g)

Ti,j (g) = Πi (g) ,

which contradicts pairwise stability of g. It follows that

Ti,j (g) = Ti,j0 (g) , ∀j, j0 ∈ Ni (g) . (9)

Next, suppose that g contains a cycle, meaning that there exists a sequence of agents k1, ..., kn ∈
N for whom it holds that gk1,k2 = gk2,k3 = ... = gkn−1,kn = gkn,k1 = 1. Let i be an agent in this

cycle. Deleting the link with one of i’s neighbors in the cycle, say k, results in g0, where it holds

for the other neighbor of i in the cycle, say m, that

Ti,m
¡
g0
¢
> Ti,m (g) ,

since k, to whom m is (in)directly linked, has one costly direct link less, so more informational

value flows from k to i via m. Moreover,

Ti,j
¡
g0
¢
≥ Ti,j (g) , ∀j ∈ Ni

¡
g0
¢
.

The payoff for i then becomes

Πi
¡
g0
¢
= 1

μi(g)−1
P

j∈Ni(g0)
Ti,j

¡
g0
¢
> 1

μi(g)−1
P

j∈Ni(g0)
Ti,j (g) =

1
μi(g)

P
j∈Ni(g)

Ti,j (g) = Πi (g) ,
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where the second equality follows from equation (9). This implies that g is not pairwise stable,

leading to a contradiction. We have therefore shown that g does not contain any cycle.

Since we have already shown that g contains no cycles, all components of g are trees. In a tree

the number of links is one less than the number of agents. Moreover, in a tree there is a unique

path between any two agents. A tree that is not a star contains an agent, say i, with a neighbor

h that only has i as a neighbor, and, moreover, i is directly linked to an agent j who has another

neighbor different from i. According to equation (9) it holds that

Ti,h(g) = Ti,j(g). (10)

Since h has only one neighbor, i, it follows that

Ti,h(g) = αV i + (1− α)V s.

We now evaluate Ti,j(g) and show it is smaller than Ti,h(g).

Think of the component to which h belongs as a tree with h as top agent, denoted N̄h(g). For

players k, k0 ∈ N̄h(g), k 6= k0, player k0 is a subordinate of k, denoted k0 ∈ S̄(k), if k is on the unique

path from h to k0. Player k0 is a direct subordinate of k, denoted k0 ∈ S(k), if k0 is a subordinate

of k and there is a link between k and k0. We write

Ti,j(g) = αT ii,j(g) + (1− α)T si,j(g),

where

T si,j(g) =
V s

μj(g)
≤ V s

2 , (11)

and

T ii,j(g) =
V i

μj(g)
+

P
k∈S̄(j)

V i

μk(g)(μj(g))
2
Q

k0∈p̆j,k

(μk0(g))
2
,

where pj,k is the unique path between j and k.

Consider k ∈ S̄(i). We define the informational payoff that k receives from its subordinates by

U ik(g) =
1

μk(g)

P
k0∈S(k)

T ik,k0(g),

where T ik,k0(g) is defined analogously to T
i
i,j(g). We obtain a recursive relation by observing that

T ik,k0(g) =
V i+U i

k0(g)

μk0(g)
.

We show by induction that

U ik(g) ≤ V i(μk(g)− 1), (12)
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from which it follows that

T ik,k0(g) ≤
V i+V i(μk0(g)−1)

μk0(g)
= V i,

and, consequently,

T ii,j(g) ≤ V i. (13)

Let K0 ⊂ N̄h(g) be the set of agents without subordinates. For m ≥ 1, let Km be the set of

agents with all subordinates in K0 ∪ · · ·∪Km−1. Let m0 be the smallest integer for which j ∈ Km0
.

First consider an agent k in K0, the set of agents without subordinates. Then U ik(g) = 0 =

V i(μk(g)− 1), so (12) is satisfied.
Suppose that (12) holds for agents in Km, m < m0. Consider an agent k ∈ Km+1.

U ik(g) =
1

μk(g)

P
k0∈S(k)

T ik,k0(g) ≤ 1
μk(g)

P
k0∈S(k)

³
V i+V i(μk0(g)−1)

μk0(g)

´
= μk(g)−1

μk(g)
V i ≤ 1

2V
i(μk(g)− 1),

so (12) holds for all k ∈ S̄(i).

Combining (11) and (13) implies Ti,j(g) < Ti,h(g), a contradiction to equation (10), so g consists

of star components only.

The proof of Lemma 2 implies that these stars have at most three agents. “Stars” of a single

agent cannot be part of g, for it is always strictly beneficial for this single agent to create a link

to the center agent of another star, whereas this center agent is indifferent or improves if she is

isolated too.

Table 1 pictures all communication networks thus proven to be pairwise stable in the case with

both social and informational value from communication and ρ = 1 for n ≤ 6. Comparing these
results to the purely social value case (Section 2.2), clearly a much smaller range of very fragmented

networks turns out to be pairwise stable in the mixed case where transferable informational value

also plays a role. Specifically, even with α slightly above zero, regular communication networks are

never pairwise stable and also the example networks in Figures 2, 3, and 4 are not stable anymore.

n = 3

n = 4

n = 5

n = 6

Table 1: Pairwise stable communication networks for ρ = 1 and α > 0
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This may seem counter-intuitive, since apparently transferability of informational value causes

networks to become more fragmented and therefore less able to transfer information. The intuition

behind this finding is that the link specificity property of communication is now strong enough to

prevent individuals from maintaining many links since it is strengthened by the transferability of

informational value. For example, in a wheel network of three agents, an agent cannot improve

(or decrease) her social payoff by deleting one of her links, but she can improve her informational

payoff:
V i

2 +
V i

4 > 2V i

4 + 2V i

16 .

The co-author model of Jackson and Wolinsky (1996) also contains a type of link specificity,

but since it is not combined with value transferability, the resulting stable networks are not as

fragmented. Similarly, the connections model of Jackson and Wolinsky (1996) contains value trans-

ferability, but since it is not combined with link specificity, the resulting networks are not fragmented

at all. Likewise, most studies reveal less fragmented stable networks, e.g., Goyal & Vega-Redondo

(2007) find large star networks in their setting of structural holes. Therefore, our model can explain

real-life phenomena like marriage and the evolvement of threads in online communities into strong

reciprocal ties (as empirically observed by Fisher et al., 2006).

3.3 Stable networks under low link specificity

For ρ = 1/2, we prove that the complete communication network is pairwise stable by retracing

that also with value transferability it is never beneficial for an agent in the complete network to

delete one of her links under this low level of link specificity.

Proposition 4 When ρ = 1/2 and 0 ≤ α ≤ 1, the complete communication network is pairwise
stable.

Proof. We normalize payoffs by setting V i = 1. For α = 1, the payoff for an agent in the complete
network is

1 +
n−1P
q=2

qQ
r=2

(n−r)

(n−1)q−1 ,

where q indicates the step level, and if she deletes a link her payoff becomes

1+2(n−2)
√
n−2√
n−1

n−1 +
n−1P
q=3

qQ
r=3

(n−r)

(n−1)q−1
³
1 + n2−5n+q+4√

n−1
√
n−2

´
,

where the first term combines payoffs resulting from paths with length 1 and 2. Subtracting the

latter from the former gives

n−1P
q=3

⎛⎜⎝
qQ

r=3

(n−r)

(n−1)q−1
³
n− 3− n2−5n+q+4√

n−1
√
n−2

´
+

2(n−2)−2(n−2)
√
n−2√
n−1

(n−1)(n−3)

⎞⎟⎠ . (14)
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We have to prove that (14) is nonnegative. Multiplying by (n− 1), we find that it is sufficient to
show that

n−1P
q=3

µµ
qQ

r=3

n−r
n−1

¶
(n− 3− n2−5n+q+4√

n−1
√
n−2 ) +

2(n−2)
n−3 −

2(n−2)2
(n−3)

√
n−1

√
n−2

¶
≥ 0. (15)

When we define

a(q) =
qQ

r=3

n−r
n−1 ,

b(q) = n− 3− n2−5n+q+4√
n−1

√
n−2 ,

then the first term in (15) is given by
n−1P
q=3

a(q)b(q).

The second minus the third term in (15) is positive. We show by means of contradiction that the

first term is nonnegative. Suppose the first term is negative, implying n ≥ 4.
Notice that a(q) ≥ 0 and b(q) is decreasing in q, so there is q̄ ≥ 3 such that 3 ≤ q < q̄ implies

a(q)b(q) ≥ 0 and q̄ ≤ q ≤ n− 1 implies a(q)b(q) < 0. This fact together with the supposition

n−1P
q=3

a(q)b(q) < 0,

implies that
n−1P
q=3

a(q)b(q) >
n−1P
q=3

λ(q)a(q)b(q)

for coefficients λ(q) larger than or equal to 1 and nondecreasing in q. We define

λ(q) =
q−1Q
r=3

n−1
n−r ,

with λ(3) = 1 by definition. Then we have obtained the desired contradiction once we show that

n−1P
q=3

³
n−q
n−1(n− 3−

n2−5n+q+4√
n−1

√
n−2 ) +

2(n−2)
n−3 −

2(n−2)2
(n−3)

√
n−1

√
n−2

´
≥ 0.

It holds that

n−1P
q=3

n−q
n−1(n− 3) = (n−2)(n−3)2

2(n−1) ,

n−1P
q=3

n−q
n−1

n2−5n+4√
n−1

√
n−2 = (n−2)(n−3)(n−4)

2
√
n−1

√
n−2 ,

n−1P
q=3

n−q
n−1

q√
n−1

√
n−2 = n(n−3)(n+2)

2(n−1)
√
n−1

√
n−2 −

2n3−3n2+n−30
6(n−1)

√
n−1

√
n−2 ,

n−1P
q=3

2(n−2)
n−3 −

2(n−2)2
(n−3)

√
n−1

√
n−2 = 2(n− 2)− 2(n−2)2√

n−1
√
n−2 ,
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where for the third inequality we use the fact that 12 + 22 + · · · + r2 = 1
3r
3 + 1

2r
2 + 1

6r. After

multiplying by 6 and rewriting we obtain the inequality

3n3−12n2+27n−30
n−1 − 3n4−17n3+45n2−73n+54

(n−1)
√
n−1

√
n−2 ≥ 0.

The expression on the left-hand side exceeds

3n3−12n2+27n−30
n−1 − 3n4−17n3+45n2−73n+54

(n−1)(n−8
5
)

.

Cross multiplying, we find that the last expression is larger than or equal to zero if and only if

3n4 − 1645n
3 + 4615n

2 − 7315n+ 48 ≥ 3n
4 − 17n3 + 45n2 − 73n+ 54.

For n ≥ 4, such is clearly the case. Thus, the complete network is pairwise stable for α = 1.
Since it follows from Proposition 2 that the complete network is stable for α = 0 and given the

linear combination in equation (8), the complete network is pairwise stable for 0 ≤ α ≤ 1.

The following example illustrates that already at relatively low α, multi-component communi-

cation networks (cf. Proposition 2 for α = 0) are not pairwise stable anymore.

i k 

Figure 5: A communication network that is pairwise stable when ρ = 1/2 and α = 0

Example 6 Assume ρ = 1/2 and consider the communication network in Figure 5. When α = 0,

the current payoff for agent i is V s and if she would create a link with agent k it would become¡
1/
√
2 + 1/

√
12
¢
V s ≈ 0.99578V s. When α = 1, the payoff for i is V i and with a link to k would

become
¡
1/
√
2 + 1/

√
12 + 523/250

√
10
¢
V i ≈ 1.65733V i. When 0 < α < 1, the payoff for i is

αV i + (1− α)V s and with a link to k would become

1.65733αV i + 0.99578(1− α)V s,

which for V i = V s exceeds the current payoff if α > 0.0064. Since k is willing to create a link with

i for any α, it holds that this network is not pairwise stable when α > 0.0064.
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4 Efficiency

In this section, the structural results from the previous sections are assessed by their impact on

efficiency. We define the efficiency of a network as the sum of payoffs for all agents.4 It appears

that the fragmented stable communication networks under high link specificity as well as the dense

stable communication networks under low link specificity can be most efficient in their own setting.

Therefore, although not all pairwise stable communication networks found for ρ = 1 and ρ = 1/2

are most efficient, we conclude in contrast to Jackson and Wolinsky (1996), that stability and

efficiency are compatible.

Definition 9 (efficiency) The efficiency provided by network g is given by

W (g) =
X
i∈N
Πi (g) .

We conjecture that for ρ = 1/2, the densification that characterizes the pairwise stable commu-

nication networks has a generally beneficial influence on efficiency, as well as that for ρ = 1, the

fragmentation that characterizes the pairwise stable communication networks whenever α > 0 has

a generally beneficial influence on efficiency.5

Conjecture 1 (i) When ρ = 1 and n is even, a communication network consisting of disjoint pair

components is most efficient, and when ρ = 1 and n is odd, a communication network consisting

of one three-agent star component and furthermore disjoint pair components is most efficient.

(ii) When ρ = 1/2, the complete communication network is most efficient.

For tractability, we proof the conjecture for low n and for the class of communication networks

having only complete components.

Proposition 5 Conjecture 1 holds when n = 3, 4, 5, or 6.

Proof. Table 2 lists the normalized efficiency for α = 1 and α = 0 at ρ = 1/2 and ρ = 1 for

all possible nonisomorphic communication networks when n = 3, 4, 5, and 6, ordered according to

their efficiency level at α = 1, ρ = 1/2. Given the linear combination in equation 8, the conjecture

is hereby proven for all 0 ≤ α ≤ 1 and n = 3, 4, 5, or 6.

Proposition 6 Consider the class of communication networks consisting of fully connected com-
ponents c1, . . . , ck. When mcj is the number of members of cj , the following holds.

(i) When ρ = 1/2, g is most efficient in this class when k = 1 and mc1 = n, so g is complete.

(ii) When ρ = 1 and n is even, g is most efficient when k = n/2 and mcj = 2 for all j, so g

consists of disjoint pairs.6

4Alternatively, it may be interesting to study the structural effects on the actual amount of information exchanged,
thus disregarding the value derived from social aspects of communication.

5For α = 0, pairwise stable communication networks tend to be overconnected, cf. Morrill (2010) and Section 5.
6Notice that for odd n, the most efficient communication network as predicted by Conjecture 1 includes a compo-

nent that is not complete.
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α = 1 α = 0
ρ = 1

2
ρ = 1 ρ = 1

2
ρ = 1

n = 3 0.000 0.000 0.000 0.000
2.000 2.000 2.000 2.000
3.828 2.500 2.828 2.000 3-agent star
4.500 1.875 3.000 1.500 complete

n = 4 0.000 0.000 0.000 0.000
2.000 2.000 2.000 2.000
3.828 2.500 2.828 2.000
4.000 4.000 4.000 4.000 2 disjoint pairs
4.500 1.875 3.000 1.500
5.464 2.667 3.464 2.000
5.743 3.125 3.828 2.500
6.352 2.333 3.788 1.833
7.000 2.625 4.000 2.000
7.121 1.975 3.933 1.556
7.556 1.663 4.000 1.333 complete

n = 5 0.000 0.000 0.000 0.000
2.000 2.000 2.000 2.000
3.828 2.500 2.828 2.000
4.000 4.000 4.000 4.000
4.500 1.875 3.000 1.500
5.464 2.667 3.464 2.000
5.743 3.125 3.828 2.500
5.828 4.500 4.828 4.000 3-agent star +
6.352 2.333 3.788 1.833 disjoint pair
6.500 3.875 5.000 3.500
7.000 2.625 4.000 2.000

α = 1 α = 0
ρ = 1

2
ρ = 1 ρ = 1

2
ρ = 1

n = 5 7.000 2.750 4.000 2.000
cont. 7.121 1.975 3.933 1.556

7.394 3.389 4.540 2.667
7.556 1.663 4.000 1.333
7.700 3.781 4.828 3.000
7.993 2.594 4.414 2.000
8.232 2.815 4.609 2.222
8.298 3.097 4.864 2.500
8.829 3.042 4.788 2.333
8.909 2.337 4.625 1.833
8.993 2.508 4.828 2.000
9.035 2.503 4.788 2.000
9.375 3.320 5.000 2.500
9.407 2.071 4.732 1.667
9.654 2.648 4.933 2.056
9.676 2.062 4.743 1.625
9.826 2.166 4.966 1.778
9.865 2.620 4.869 1.722
10.245 2.261 4.899 2.000
10.257 1.709 4.890 1.514
10.570 1.762 4.976 1.556
10.766 1.794 4.964 1.375
11.094 1.849 5.000 1.250 complete

n = 6 0.000 0.000 0.000 0.000
2.000 2.000 2.000 2.000
3.828 2.500 2.828 2.000

α = 1 α = 0
ρ = 1

2
ρ = 1 ρ = 1

2
ρ = 1

n = 6 4.000 4.000 4.000 4.000
cont. 4.500 1.875 3.000 1.500

5.464 2.667 3.464 2.000
5.743 3.125 3.828 2.500
5.828 4.500 4.828 4.000
6.000 6.000 6.000 6.000 3 disjoint pairs
6.352 2.333 3.788 1.833
6.500 3.875 5.000 3.500
7.000 2.625 4.000 2.000
7.000 2.750 4.000 2.000
7.121 1.975 3.933 1.556
7.394 3.389 4.540 2.667
7.464 4.667 5.464 4.000
7.556 1.663 4.000 1.333
7.657 5.000 5.657 4.000
7.700 3.781 4.828 3.000
7.743 5.125 5.828 4.500
7.993 2.594 4.414 2.000
8.232 2.815 4.609 2.222
8.298 3.097 4.864 2.500
8.328 4.375 5.828 3.500
8.352 4.333 5.788 3.833
8.472 2.800 4.472 2.000
8.829 3.042 4.788 2.333
8.909 2.337 4.625 1.833

α = 1 α = 0
ρ = 1

2
ρ = 1 ρ = 1

2
ρ = 1

n = 6 8.932 3.531 5.121 2.750
cont. 8.993 2.508 4.828 2.000

9.000 4.625 6.000 4.000
9.000 3.750 6.000 3.000
9.035 2.503 4.788 2.000
9.047 3.728 5.285 2.889
9.121 3.975 5.933 3.556
9.352 4.125 5.616 3.333
9.358 4.069 5.540 3.167
9.375 3.320 5.000 2.500
9.407 2.071 4.732 1.667
9.526 2.760 4.948 2.100
9.556 3.663 6.000 3.333
9.654 2.648 4.933 2.056
9.676 2.062 4.743 1.625
9.678 4.445 5.828 3.500
9.826 2.166 4.869 1.722
9.865 2.620 4.899 2.000
9.882 3.097 5.256 2.417
9.937 3.398 5.536 2.750
9.955 3.469 5.609 2.722
10.099 3.317 5.464 2.667
10.204 3.586 5.685 2.889
10.245 2.261 4.966 1.778
10.257 1.880 4.890 1.514
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α = 1 α = 0
ρ = 1

2
ρ = 1 ρ = 1

2
ρ = 1

n = 6 10.271 3.788 5.864 3.000
cont. 10.450 3.281 5.414 2.500

10.529 2.578 5.203 2.000
10.570 1.943 4.976 1.556
10.586 2.765 5.424 2.200
10.645 3.468 5.575 2.667
10.645 3.494 5.609 2.722
10.701 2.824 5.454 2.222
10.709 2.707 5.328 2.125
10.766 1.688 4.964 1.375
10.824 2.877 5.500 2.306
10.824 3.802 5.864 3.000
10.865 3.224 5.933 2.556
10.870 3.161 5.746 2.583
10.894 3.024 5.670 2.417
10.971 3.034 5.643 2.444
11.014 3.287 5.864 2.667
11.066 2.352 5.338 1.867
11.094 1.516 5.000 1.250
11.151 3.722 5.788 2.833
11.271 2.485 5.476 2.014
11.368 2.907 5.853 2.417
11.401 2.356 5.360 1.850
11.410 2.994 5.625 2.333
11.471 3.189 5.828 2.500
11.487 3.126 5.754 2.444

α = 1 α = 0
ρ = 1

2
ρ = 1 ρ = 1

2
ρ = 1

n = 6 11.537 2.464 5.492 1.956
cont. 11.593 3.170 5.788 2.500

11.597 2.619 5.679 2.100
11.604 2.943 5.571 2.250
11.616 2.626 5.638 2.125
11.625 3.996 6.000 3.000
11.647 2.560 5.593 2.042
11.716 2.773 5.869 2.222
11.761 2.717 5.744 2.194
11.765 3.130 5.754 2.444
12.004 3.318 5.933 2.556
12.024 2.203 5.535 1.772
12.045 2.640 5.678 2.083
12.104 2.660 5.698 2.111
12.128 2.786 5.821 2.222
12.133 2.417 5.814 1.967
12.143 2.306 5.646 1.875
12.149 2.126 5.460 1.680
12.197 2.452 5.785 2.014
12.217 2.699 5.743 2.125
12.218 3.319 5.933 2.556
12.331 2.825 5.933 2.222
12.348 3.285 5.899 2.500
12.362 2.269 5.627 1.822
12.363 2.815 5.869 2.222
12.373 2.762 5.835 2.167

α = 1 α = 0
ρ = 1

2
ρ = 1 ρ = 1

2
ρ = 1

n = 6 12.410 2.292 5.669 1.833
cont. 12.434 2.358 5.720 1.903

12.528 2.605 5.657 2.000
12.551 2.381 5.780 1.911
12.567 2.746 5.815 2.139
12.576 2.347 5.743 1.875
12.583 2.031 5.631 1.658
12.591 2.436 5.857 1.958
12.664 2.125 5.732 1.750
12.688 2.912 5.966 2.278
12.792 2.510 5.890 2.014
12.830 2.026 5.662 1.636
12.912 2.863 5.933 2.222
12.938 1.870 5.683 1.550
12.956 2.456 5.857 1.958
12.962 2.430 5.837 1.931
12.974 2.089 5.745 1.692
13.006 2.481 5.922 1.972
13.018 2.863 5.933 2.222
13.035 2.161 5.844 1.756
13.041 2.153 5.828 1.750
13.076 2.397 5.805 1.889
13.207 2.522 5.942 2.000
13.270 2.142 5.824 1.728
13.332 2.498 5.922 1.972
13.361 2.186 5.890 1.764

α = 1 α = 0
ρ = 1

2
ρ = 1 ρ = 1

2
ρ = 1

n = 6 13.448 1.893 5.780 1.547
cont. 13.473 2.222 5.910 1.792

13.478 2.206 5.915 1.778
13.506 2.541 6.000 2.000
13.509 1.942 5.865 1.591
13.541 1.943 5.852 1.592
13.566 2.182 5.878 1.750
13.616 2.215 5.952 1.778
13.730 2.234 5.964 1.792
13.838 1.979 5.920 1.614
13.842 1.758 5.848 1.455
13.852 2.555 6.000 2.000
13.861 1.993 5.914 1.625
13.912 2.242 5.964 1.792
13.967 1.969 5.908 1.600
13.976 1.747 5.848 1.440
14.058 2.000 5.964 1.625
14.069 1.783 5.909 1.472
14.122 2.018 5.976 1.639
14.305 1.813 5.960 1.492
14.411 1.639 5.932 1.365
14.484 1.827 6.000 1.500
14.602 1.660 5.978 1.380
14.797 1.524 5.978 1.280
15.062 1.417 6.000 1.200 complete

Table 2: Normalized efficiency for all nonisomorphic communication networks when α = 1, 0,
ρ = 1/2, 1, and n = 3, 4, 5, 6
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Proof. Because of symmetry in a complete component it suffices to consider the payoffs for one
member and because of the linear combination in equation 8 it suffices to consider the cases α = 0

and α = 1.

(i) For ρ = 1/2 and α = 0, the normalized payoff for an agent in component cj is 0 whenmcj = 1

and 1 when mcj ≥ 2. For ρ = 1/2 and α = 1, the normalized payoff for an agent in component cj
is 0 when mcj = 1, 1 when mcj = 2 and

1 +
mcj−1P
q=2

qQ
r=2
(mcj−r)

(mcj−1)
q−1 = 1 +

mcj−1P
q=2

qQ
r=2

mcj−r
mcj−1

when mcj ≥ 3, which is 3/2 for mcj = 3 and increasing in mcj .

(ii) For ρ = 1 and α = 0, the normalized payoff for an agent in component cj is 0 when mcj = 1

and 1/
¡
mcj − 1

¢
when mcj ≥ 2, which is 1 for mcj = 2 and decreasing in mcj . For ρ = 1 and α = 1,

the normalized payoff for an agent in component cj is 0 when mcj = 1, 1 when mcj = 2 and

1
mcj−1

+
mcj−1P
q=2

qQ
r=2
(mcj−r)

(mcj−1)
2q−1 =

1 +
Pmcj−1

q=2

qQ
r=2

mcj−r

(mcj−1)
2

mcj − 1

when mcj ≥ 3, which is 5/8 for mcj = 3 and decreasing in mcj .

5 Other values of link specificity

In this section, other link specificity values than 1 and 1/2 are investigated by simulations of our

communication network formation model. They illustrate that 1 and 1/2 are indeed suitable polar

cases and that for intermediate values the common tension between stability and efficiency (e.g.,

Jackson and Wolinsky, 1996) is re-established.

5.1 Method

5.1.1 Pairwise stability

A simulation starts with a random network in the sense that for every i, j ∈ N with i 6= j, the link

gi,j is randomly chosen to be equal to 0 or 1.

In every iteration we randomly determine whether there will be an attempt to delete or create

a link. If this turns out to be delete, one agent is randomly drawn from the community and

subsequently another one. If there exists a link between these two agents, the first agent calculates

the payoff she will earn when she deletes this link (equation (8)). If this is strictly higher than the

payoff she earns with the current network, the link is deleted. If no link exists between the two

agents or the first agent does not gain by its deletion, the current network is maintained until the

next iteration.
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If the attempt appears to be create, two agents are randomly drawn from the community. If

no link exists between these two agents, they both calculate the payoff they will earn when they

create such a link. If this is weakly higher for both agents and strictly higher for at least one of

them, the link is created. If there already exists a link between these two agents or one of them

loses or none of them gains by its creation, the current network is maintained.

In this way, 5,000 iterations are performed consecutively. Afterwards it is verified whether the

simulation converged to a pairwise stable network. We perform 500 of these simulations for each

of 15 (ρ = 0.1, 0.2, ..., 1.4, 1.5) x 3 (α = 0, 1/2, 1) parameter value combinations.

5.1.2 Local efficiency

We also perform simulations to compute locally efficient communication networks. This is achieved

by repeating the procedure of Section 5.1.1, assuming that agents all hold efficiency as their objective

function (Definition 9). Pairwise stability after such a simulation establishes local efficiency.

Definition 10 The network g is locally efficient if for all i, j ∈ N with gi,j = 1 it holds that

W (g) ≥W
¡
g0
¢
,

where g0 is such that g0i,j = 0 and g0k,l = gk,l for all {k, l} 6= {i, j}, and for all i, j ∈ N with gi,j = 0

it holds that

W (g) ≥W
¡
g0
¢
,

where g0 is such that g0i,j = 1 and g0k,l = gk,l for all {k, l} 6= {i, j}.

5.1.3 Further specifications

Community size n = 6 is chosen for all simulations, since it is large enough to illustrate interesting

tendencies as well as small enough to generate reasonable calculation times regarding the expo-

nentially increasing number of paths in the payoff function (equation (8)). Furthermore, we take

V i = V s = 6. We have verified that our results are robust for the case with an odd number of

agents n = 5.

In order to compare simulation outcomes among levels of ρ and α, we use the density of a

network (Wasserman and Faust, 1994, p.164):

D(g) =

Pn
i=1 μi (g)

n (n− 1) =
1

30

6X
i=1

μi (g) .

For example, the empty network has density 0, a network consisting of three disjoint pair compo-

nents has density 0.2, a network consisting of two disjoint three-agent star components has density

0.27, a network consisting of a four-agent wheel component and a disjoint pair component or a

network consisting of a three-agent complete component and a disjoint three-agent star component
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has density 0.33, a wheel network or a network consisting of two disjoint complete three-agent com-

ponents has density 0.4, a network consisting of a complete four-agent component and a disjoint

pair component has density 0.47, a regular network with degree 3 has density 0.6, a regular network

with degree 4 has density 0.8, and the complete network has density 1.

Our intuitive prediction is that in general, a higher level of link specificity ρ makes communi-

cation more costly, and therefore the density of a simulated communication network lower. This

intuition is confirmed by the analytically found potential outcomes for the cases ρ = 1 and ρ = 1/2

(Sections 2 and 3). A higher level of focus on informational value α provides more value spillovers

from indirect links, and thus the expected density of a pairwise stable communication network

is higher. As noted at the end of Section 3.2, this intuition is not confirmed by the analytically

found potential outcomes: whereas in Section 2.2 a large range of possibly dense communication

networks is proven to be pairwise stable for ρ = 1 and α = 0, in Section 3.2 only very fragmented

communication networks turn out to be pairwise stable for ρ = 1 and α = 1.

5.2 Results

It appears that all 500 simulations in every setting converge to pairwise stable networks as described

in Section 5.1.1. Therefore, we deal with density and efficiency of these networks.

5.2.1 Density

For each combination of 15 levels of link specificity ρ and three levels of focus on informational

versus social value from communication α, the average density of the 500 simulated pairwise stable

and locally efficient networks are given in Table 3 and represented in Figure 6.

ρ\α 0 1
2 1

pws locef pws locef pws locef
0.1 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 0.58 1.00 1.00 1.00 1.00
0.6 1.00 0.22 1.00 0.43 1.00 0.52
0.7 0.95 0.22 1.00 0.25 1.00 0.40
0.8 0.70 0.23 0.69 0.23 0.54 0.22
0.9 0.38 0.23 0.37 0.24 0.36 0.24
1.0 0.27 0.23 0.23 0.24 0.23 0.24
1.1 0.20 0.20 0.20 0.23 0.20 0.24
1.2 0.20 0.20 0.20 0.20 0.20 0.23
1.3 0.20 0.20 0.20 0.20 0.20 0.20
1.4 0.20 0.20 0.20 0.20 0.20 0.20
1.5 0.20 0.20 0.20 0.20 0.20 0.20

Table 3: Simulated effect of ρ on density of pairwise stable and locally efficient communication
networks for n = 6 and α = 0, 1/2, 1

The basic intuition about the effect of ρ on density in communication networks is thus confirmed

by the simulation outcomes as it was by the analytical results of Sections 2 and 3, as the density
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Figure 6: Simulated effect of ρ on density of pairwise stable and locally efficient communication
networks for n = 6 and α = 0, 0.5, 1

of the pairwise stable networks is generally decreasing in ρ. Notice that this also roughly holds for

the local efficiency simulation outcomes, although a few small exceptions appear, for example at

ρ = 0.8.

The intuition about the effect of α on density in communication networks is again contradicted

by the simulation outcomes, e.g., for ρ = 0.8 we find a higher average density for α = 1/2 (0.69)

than for α = 1 (0.54), and for ρ = 1.0 we find a higher average density for α = 0 (0.27) than for

α = 1/2 (0.23).7 This can again be ascribed to the interaction effect of value transferability and

high link specificity (cf. end of Section 3.2). Notice that our intuition about the effect of α on

density in communication networks is still confirmed by the local efficiency simulation outcomes,

in particular for ρ around 0.6.

The simulations confirm that ρ = 1 and ρ = 1/2 are suitable polar cases, since outside these

boundaries the simulated pairwise stable as well as locally efficient communication networks largely

coincide with either the complete network or rather a network consisting of pairs only, whereas

in between we find large differences in density between the locally efficient and pairwise stable

communication networks, where pairwise stable networks are more connected than locally efficient

networks. Thus, for intermediate levels of ρ, the pairwise stable communication networks are

highly connected as with lower levels of link specificity, whereas the locally efficient communication

networks are very fragmented as with higher levels of link specificity. The following example

elaborates such a case.
7Thus, for α = 0 the simulation process on average selects relatively sparse networks from the wide range of

pairwise stable networks, which reduces the conflict with intuition.
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Example 7 Let ρ = 3/4, α = 1/2. Table 4 provides an overview of the types and numbers of

pairwise stable communication networks resulting from 100 simulations and the types and numbers

of locally efficient communication networks resulting from another 100 simulations.

pairwise stable networks

84 6

8 2

locally efficient networks

67 9
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Table 4: Example of simulated communication networks

5.2.2 Efficiency

As a means to investigate to what extent the density differences between the locally efficient and

pairwise stable communication networks actually lead to efficiency differences, the average effi-

ciency of the 500 simulated pairwise stable and locally efficient networks are given in Table 5 and

represented in Figure ?? for each parameter setting. For comparison, the expected efficiency from
a random network (based on 5000 randomly generated networks) and the maximum efficiency have

also been calculated for each setting.

ρ\α 0 1
2

1
pws locef rand max pws locef rand max pws locef rand max

0.1 130.5 130.5 73.4 130.5 1758.8 1758.8 274.3 1758.8 3387.2 3387.2 471.8 3387.2
0.2 94.6 94.6 59.9 94.6 601.3 601.3 160.3 601.3 1108.1 1108.1 258.8 1108.1
0.3 68.5 68.5 49.1 68.5 243.0 243.0 101.8 243.0 417.4 417.4 154.3 417.4
0.4 49.7 49.7 40.4 49.7 115.8 115.8 70.0 115.8 181.8 181.8 99.2 181.8
0.5 36.0 35.9 33.4 36.0 63.2 63.2 50.4 63.2 90.4 90.4 67.3 90.4
0.6 26.1 34.8 27.6 36.0 38.0 42.6 37.8 43.0 50.0 54.6 48.0 55.4
0.7 19.7 34.5 23.0 36.0 24.5 35.9 29.3 36.0 29.9 43.6 35.7 43.6
0.8 19.3 32.2 19.2 36.0 22.1 33.8 23.2 36.0 30.1 35.7 27.2 36.0
0.9 23.9 31.6 16.1 36.0 26.8 32.0 18.7 36.0 30.0 33.6 21.3 36.0
1.0 29.2 30.2 13.5 36.0 32.3 31.0 15.2 36.0 32.9 32.2 17.0 36.0
1.1 36.0 36.0 11.5 36.0 36.0 31.3 12.5 36.0 36.0 31.1 13.7 36.0
1.2 36.0 36.0 9.7 36.0 36.0 36.0 10.5 36.0 36.0 31.8 11.2 36.0
1.3 36.0 36.0 8.3 36.0 36.0 36.0 8.8 36.0 36.0 36.0 9.4 36.0
1.4 36.0 36.0 7.1 36.0 36.0 36.0 7.5 36.0 36.0 36.0 7.9 36.0
1.5 36.0 36.0 6.1 36.0 36.0 36.0 6.4 36.0 36.0 36.0 6.7 36.0

Table 5: Simulated effect of ρ on efficiency of pairwise stable, locally efficient, random, and optimal
communication networks for n = 6 and α = 0, 1/2, 1

Although we have seen in Section 5.2.1 that a higher α and thus more value transferability does

not always lead to more dense communication networks, it apparently does always lead to higher

efficiency, as the efficiency of the pairwise stable networks is increasing in α, even strictly so for

ρ ≤ 1.0.8

8Notice that this claim is dependent on the assumption V i = V s chosen for the simulations. For example, it can
be shown that for ρ = 1 and V s = xV i , α has an opposite effect on efficiency if x > 5/4.
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Figure 7: Simulated effect of ρ on efficiency of pairwise stable, locally efficient, random, and optimal
communication networks for n = 6 and α = 0, 0.5, 1

Furthermore, though a lower ρ has been shown to lead to higher density in communication

networks, it only leads to subsequent higher efficiency when link specificity is low enough, since

for intermediate values of ρ, efficiency is much lower and partly even strictly increases in ρ. Thus,

a community should either specialize in the quantity (low ρ) or in the quality (high ρ) of her

communication.

Moreover, we find that the density difference between pairwise stability and local efficiency

in communication networks found for α = 0, ρ = 0.5 does not lead to a subsequent efficiency

difference, but for intermediate levels of link specificity (1/2 < ρ < 1), the tension between local

efficiency and pairwise stability is considerable (up to larger than 40% for α = 0 and ρ = 0.7, 0.8).

In the most extreme intervals (i.e., around ρ = 0.7), the simulated pairwise stable communication

networks are on average even less efficient than a random network.

Interestingly, on the other hand a few parameter combinations exist where social preferences

appear to be harmful for efficiency in the sense that the simulated locally efficient communication

networks are not globally optimal, whereas individual incentives do lead to maximum efficiency

(α = 1/2, ρ = 1.1 and α = 1, ρ = 1.1, 1.2).

6 Discussion

6.1 Summary

This paper has shown that the structure of bilateral communication links within communication

networks can be appropriately studied using a model based on the game-theoretic literature of social
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and economic network formation. A combination of important aspects common to communication

networks was incorporated that had not been investigated until now: the negative externality

of link specificity, which was neglected in the communication network context so far, and the

positive externality of informational value transferability, while previous research modeled all value

uniformly in this respect.

In the case of communication having nontransferable social value only (Section 2), illustrating

the separate impact of link specificity on structure, the set of pairwise stable communication net-

works was characterized for high link specificity and shown to include a wide range of non-standard

networks like highly connected and “small world” networks, whereas previous models for social

and economic network formation mostly predicted simple networks like stars and wheels. For low

link specificity, particular combinations of fully connected components were proven to be pairwise

stable communication networks in line with the co-author model of Jackson and Wolinsky (1996).

In the case of communication from which both social and informational value is derived (Section

3), illustrating the joint impact of link specificity and value transferability on structure, under high

link specificity only networks that consist of disjoint star components of two or three agents were

shown to be pairwise stable. Herewith, we predict much more fragmentation than usually in the

literature about social and economic network formation, where mostly only either of these two

features was included. Under low link specificity, the opposite extreme effect takes place: already

with small informational value transferability, multi-component communication networks may fail

to be pairwise stable.

Both the fragmentation under high link specificity and the dense pairwise stable communication

networks under low link specificity are most efficient in their own setting (Section 4), whereas for

intermediate link specificity values quite inefficient communication networks may arise (Section 5).

6.2 Implications

Intuition predicts that a higher level of link specificity ρ makes communication more costly, and

therefore stable communication networks will be sparser. This is confirmed by the analytical results

for the cases ρ = 1 and ρ = 1/2 (Sections 2 and 3) as well as by the simulation outcomes for other

ρ values (Section 5).

However, lower link specificity and thus higher density only leads to subsequent higher efficiency

when link specificity is low enough, since for intermediate values of ρ, efficiency is much lower

(Section 5). This implies that enhancing communication in the community by decreasing link

specificity from a high to an intermediate level results in lower efficiency from communication.

Although at first sight counterintuitive, these results are in line with the laws of specialization: a

community should either focus on quantity (low ρ) or on quality (high ρ) in her communication

efforts.

A higher level of focus on transferable informational value α provides more value spillovers from

indirect links, so intuition predicts higher density for pairwise stable communication networks.

This is contradicted by the analytical results for ρ = 1 (Sections 2 and 3) and to a smaller extent
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by the simulation outcomes for relatively high ρ values (Section 5), which can be ascribed to the

interaction effect of value transferability and high link specificity.

However, when the potential social and informational value present in a community are equal,

higher α does always lead to higher efficiency, even strictly so for ρ ≤ 1.0 (Section 5). Therefore,
stimulating the focus on informational value of communication can be a generally effective tool for

boosting efficiency. In line with intuition, this effectivity is larger the smaller ρ.

6.3 Further research

Future studies could introduce valuation heterogeneity in the sense that individuals represent dif-

ferent values for their fellows or have different opinions on the values of their fellows, like Galeotti

et al. (2006) for standard communication network formation models. For example, when ρ = 1

and 0 < α < 1, if we assume a valuation pattern deviating from full homogeneity in the sense

that there is one agent j who is valued differently than all other agents, it can be proven that all

pairwise stable communication networks consist of small star components and one possibly larger

component without cycles containing the differing agent j but not at the periphery. In particular,

this component may be a star component with agent j at the center.

Another extension of the current model could be to relax the assumption that agents divide

their available effort equally among all their relationships, thus entering the subject of link strength

and dropping the common one-zero formulation of links. Bloch and Dutta (2009) performed such

a task for a different setting with one-sided link formation and found rather similar results as in

their discrete variant. However, this similarity is partly ascribed to the assumption of a convex

relationship between individual effort and link strength because of a fixed cost of link formation,

whereas in our model a linear relationship would be more in line with the assumed costs of link

maintenance rather than formation.

Besides, a possible follow-up would be to empirically examine the applicability of the used

payoff function in diverse contexts. The model could be tested experimentally, contributing to an

emerging literature as surveyed by Kosfeld (2004).

Accordingly, we hope that our current work stimulates future research in the appealing area of

communication networks and the roles of affecting link specificity as well as balancing nontransfer-

able social and transferable informational value.
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