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Abstract

The mechanism used in Nash implementation is a form of direct democracy, tak-

ing everyone’s opinion into account. We augment this mechanism with a political

process that selects the opinions of a subset of the individuals. We study three such

processes – oligarchy, oligarchic democracy and random sampling – and compare the

social choice rules (SCRs) that can be implemented using each of these processes with

those that can be Nash implemented. In oligarchy, only the opinions of a fixed subset

of the individuals – the oligarchs – determine the implemented alternative. We obtain

a negative result for oligarchies: there exist Nash implementable SCRs that cannot be

implemented by any oligarchy. Oligarchic democracy is a perturbation of oligarchy,

in which the opinions of the oligarchs “almost always” determine the implemented

alternative but sometimes, everyone’s opinions are considered. In a sharp contrast

to the negative result for oligarchies, we show that in economic environments, every

Nash implementable SCR can be implemented by an oligarchic democracy in which

any three individuals act as oligarchs. In random sampling, opinions of a fixed number

of individuals are selected randomly, which then determine the implemented alterna-

tive. We show that in economic environments, every Nash implementable SCR can be

implemented by randomly sampling opinions of four individuals.
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1 Introduction

Consider a community of n individuals having a social choice rule (SCR) that specifies

the socially desirable alternatives conditional on the true preferences of these individuals.

This community would like to design a mechanism such that individuals’ incentives in the

mechanism are “aligned” with its SCR, i.e., given their true preferences, any Nash equilibrium

of the mechanism must lead to a socially desirable alternative and every socially desirable

alternative must be obtained under some Nash equilibrium of the mechanism. This is the

implementation problem under complete information.1 The standard mechanism in this

literature is defined by a set of messages for each individual and an outcome function mapping

each message profile to an alternative. This mechanism is a form of direct democracy since

every individual’s message is considered in the outcome function. However, direct democracy

is seldom used by communities to make decisions at national, state or even local levels.

Indeed, when n is large, it will be too costly and time consuming to collect opinions of every

individual in the community while making social decisions. By the time a data collector

gathers everyone’s opinions, the state of the economy might change, rendering the whole

exercise meaningless. In this paper, we augment the standard mechanism with a political

process that selects a subset of the individuals, which we call a senate. The messages of

the selected senators determine the implemented alternative while the messages of all other

individuals are ignored. We are interested in the relationship between a political process and

the SCRs that a community can implement if it were to adopt that political process.

In his seminal contribution, Maskin (1999) studied Nash implementation which, using

our terminology, is the implementation problem under direct democracy. He showed that

any Nash implementable SCR must be Maskin monotonoic. Maskin (1999) further proved

that if n ≥ 3, then Maskin monotonicity and no-veto power are sufficient conditions for a

SCR to be Nash implementable.2 It follows that in economic environments (i.e., when at

most n−2 individuals have a common most-preferred alternative) with at least 3 individuals,

Maskin monotonicity is sufficient for Nash implementation of a SCR. We use these results

for direct democracy as benchmarks. In particular, for each political process studied in

this paper, we are interested in knowing whether every SCR that is Nash implementable

is also implementable using that political process. If the answer is yes, then replacing

direct democracy with such a political process based on messages of only a small number of

individuals can reduce the costs and time involved in collecting everyone’s opinions.3

1See Maskin and Sjöström (2002) and Serrano (2004) for surveys of implementation theory.
2For necessary and sufficient conditions for Nash implementation see Moore and Repullo (1990), Sjöström

(1991), Danilov (1992) and Yamato (1992).
3We do not explicitly model such costs of collecting messages. One possibility is to assume that there
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We restrict attention to three political processes: oligarchy, oligarchic democracy and

random sampling. In an oligarchy, the senate is exogenously fixed to a strict subset of the

individuals, whom we refer to as the oligarchs. Thus, only the messages of the oligarchs de-

termine the implemented alternative in an oligarchy. Oligarchic democracy is a perturbation

of the oligarchy in which the senate is “almost always” the exogenously fixed set of oligarchs

but there is a small chance of “regulating” this oligarchy through direct democracy. That is,

in an oligarchic democracy, the messages of only the oligarchs determine the implemented

alternative with probability “arbitrarily” close to 1 while with the rest of the probability, the

messages of all individuals determine the implemented alternative. Finally, in random sam-

pling, an exogenously fixed number of individuals, which is strictly less than n, are selected

at random to form the senate and only the messages of these selected individuals determine

the implemented alternative.4

A mechanism is now defined by a set of messages for each player, a political process that

selects the senate, and a set of outcome functions, one for each possible senate, mapping

messages of the senators to alternatives. This mechanism defines a strategic-form game in

which all individuals simultaneously announce their messages. The political process then

selects the senate and finally, the messages of the selected senators determine the imple-

mented alternative. Since the selection of the senate is stochastic, for any given message

profile, the outcome could be a lottery over the set of alternatives. We study the SCRs

that are implementable in Nash equilibrium of this game. That is, we require that every

Nash equilibrium outcome of the game is a socially desirable alternative and every socially

desirable alternative must be obtained as a Nash equilibrium outcome of the game. Thus,

Nash equilibrium outcomes are deterministic (i.e., the same alternative is implemented for

all possible senates) and hence, only off-the-equilibrium outcomes can be lotteries.

We must point out that it is possible to alter the mechanisms under each political process

so that an individual announces a message if and only if she is selected as the senator. There

is no change in our results under this participation requirement, which seems more reasonable

is a fixed cost of collecting each message equal to c. In Section 6, we briefly discuss the implication of our
results under this assumption. We must also point out that we do not consider the issue of communication
and processing burdens imposed on, respectively, the individuals and mechanism designer due to large size
of the message space (see, for e.g., Saijo (1988) and McKelvey (1989), who tackle this issue in the context
of Nash implementation).

4The selection of the senate in all these political processes is exogenous. Alternatively, one can consider
political processes in which the senate is selected endogenously, e.g., through elections. This alternative
model will be appropriate to situations when the community is aware of the implementation problem at the
time of the elections. On the other hand, if a new implementation problem arises after the elections and the
elected senate has a fixed term (e.g., due to an unanticipated financial crisis, the current senate must vote
on bailouts for financial institutions), then the model of oligarchy might be more appropriate. Nevertheless,
endogenous selection of senators offers an interesting area of research that we hope will be pursued in future.
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in socio-economic problems. A description of our results follows.

We show that any SCR that is implementable by oligarchy is also Nash implementable

by making the outcome function under the direct democracy unresponsive to the messages

of the commoners (individuals who are not in the oligarchy). However, the converse is not

true: we give an example of a SCR that is Nash implementable but it is not implementable

under any oligarchy. The reason is that the necessary condition for implementation under

oligarchy is stronger than Maskin monotonicity. This necessary condition says that if some

alternative a drops out of the SCR when the preferences change, then for some oligarch, there

must be a reversal of her preferences over alternatives around a (i.e., there exists alternative

b which goes from being weakly worse than a to strictly preferred to a). In contrast, Maskin

monotonicity requires the same preference reversal for some individual.

The perturbed process of oligarchic democracy, on the other hand, generates dramatically

opposite conclusions. We show that in economic environments, any Nash implementable SCR

is implementable by any oligarchic democracy that has at least three oligarchs. The identity

of the oligarchs does not matter for this result; any three players can be designated as the

oligarchs. In fact, the necessary and sufficient condition for implementation by oligarchic

democracy is even weaker than Maskin monotonicity.5 Thus, “regulation” of the oligarchy

by a “minimal” probability of direct democracy makes it possible to implement a larger

class of SCRs in economic environments. This success of oligarchic democracy, however,

does not carry over to non-economic environments. We give an example of a non-economic

environment and a SCR that is Nash implementable but not implementable by oligarchic

democracy with any subset of the individuals designated as oligarchs. The reason for this

failure of oligarchic democracy is the lack of “sufficient” diversity in the sets of most-preferred

alternatives of the oligarchs. As we show, any SCR satisfying Maskin monotonicity and no-

veto power can be implemented by an oligarchic democracy of at least three oligarchs who

never have a common most-preferred alternative. Furthermore, whenever such oligarchs exist

and everyone has a unique most-preferred alternative (e.g., strict preferences, single-peaked

preferences), then any Maskin monotonic SCR can be implemented by oligarchic democracy;

thus, we do not need the SCR to satisfy no-veto power in this case.

The last political process that we study is random sampling. We show that in economic

environments, any Nash implementable SCR is implementable by random sampling of at least

four individuals (actually, we prove this for a slightly larger class of environments). Thus,

in economic environments, instead of collecting the messages of everyone in the community,

5This is because the oligarchs can generate lotteries by changing their messages and we use the information
about their preferences over lotteries to construct the mechanism. Benôıt and Ok (2008, Remark 3) provide
an example to show that Maskin monotonicity is not necessary for Nash implementation if the planner can
implement lotteries and use the information about individuals’ preferences over lotteries.

4



we simply have to collect the messages of four randomly selected individuals in order to

implement any Nash implementable SCR. It turns out, four is in fact the minimal sample

size that guarantees this result. We give an example of a SCR that is Nash implementable in

an economic environment but it is not implementable by random sampling when the sample

size is smaller than four.

Bochet (2007) and Benôıt and Ok (2008) introduce lottery mechanisms in the imple-

mentation problem under complete information. In a lottery mechanism, lotteries over al-

ternatives can be implemented at off-the-equilibrium messages. Thus, like in our notion of

implementation, equilibrium outcomes are deterministic. Under mild domain restrictions,

these authors show that Maskin monotonicity is both necessary and sufficient for imple-

mentation of a SCR using lottery mechanisms.6 In general, an off-the-equilibrium message

profile can be mapped to any arbitrary lottery in a lottery mechanism. On the other hand,

in our oligarchic democracy and random sampling processes, the “structure” of the lottery is

constrained by the particular stochastic selection of the senate since once a senate has been

selected, a pure alternative is implemented. Nevertheless, in their proofs, Bochet (2007) and

Benôıt and Ok (2008) use simple lotteries with at most two alternatives in their respective

supports. This is similar to the lottery generated under oligarchic democracy (because the

senate is either the oligarchs or all individuals). In contrast to Bochet (2007) and Benôıt

and Ok (2008), however, commoners cannot induce a lottery in oligarchic democracy since

their messages are considered only in one senate.

The rest of the paper is organized as follows. We outline the implementation problem and

provide preliminary definitions in Section 2. In Sections 3, 4 and 5, we present the results

for, respectively, implementation by oligarchy, oligarchic democracy and random sampling.

We provide a brief conclusion in Section 6. Longer proofs are collected in Appendix.

2 Preliminaries

There is a finite set of players N = {1, . . . , n} with n ≥ 3. The set of social alternatives is A,

which can be infinite but not singleton. A lottery l is a probability distribution with a finite

support in A. For any lottery l, let l(a) denote the probability assigned by l to alternative

a ∈ A. We write a for both the alternative a ∈ A and the degenerate lottery that puts

probability 1 on the alternative a. Let ∆A denotes the set of lotteries.

Let Θ be set of states with at least two elements. A typical state is denoted by θ. We

assume that the players have complete information about the realized state.

6To prove the necessary part, they constrain the planner to use only the information about individuals’
preferences over alternatives.
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Each player has a state dependent preference ordering (i.e., complete and transitive

relation) �θi over ∆A.7 Let �θi and ∼θi denote, respectively, the strict and indifference

relations derived from �θi .
For any i, θ and for all natural numbers k ≥ 1, define:

P1(i, θ) = {a ∈ A : a �θi a′, ∀a′ ∈ A}

Pk+1(i, θ) = {a ∈ A \ Pk(i, θ) : a �θi a′,∀a′ ∈ A \ Pk(i, θ)}

Thus, P1(i, θ) is the set of most-preferred alternatives for player i in state θ, P2(i, θ) is the

set of second preferred alternatives for player i in state θ and so on.

Assumption 2.1. Preferences over Lotteries are Monotone: We assume that for all i ∈ N ,

θ ∈ Θ, and l, l′ ∈ ∆A, we have

K∑
k=1

∑
a∈Pk(i,θ)

l(a) ≥
K∑
k=1

∑
a∈Pk(i,θ)

l′(a),∀K ≥ 1 =⇒ l �θi l′

and whenever at least one inequality is strict, then l �θi l′.

Hence, shifting probability from alternatives lower in the preference ordering to alterna-

tives higher in the preference ordering generates a preferred lottery.

2.1 Environment

The environment is E =
〈
N,A,

(
(�θi )i∈N

)
θ∈Θ

〉
. We consider different classes of environ-

ments, the most important being economic environment as defined by Bergemann and Morris

(2008).

Definition 2.2. An environment E is economic in state θ if for any a ∈ A, there exist i 6= j

and alternatives ai and aj such that

ai �θi a and aj �θj a.

An environment E is economic if it is economic in every state θ ∈ Θ.

Observe that E is an economic environment if and only if in any state θ, an alternative

is most-preferred by at most n − 2 players, i.e.,
⋂
i∈S P1(i, θ) = ∅ for all S ⊆ N such that

7We take these state-dependent preference orderings over ∆A as primitives of the model instead of the
state-dependent preference orderings over the set of probability measures on A (set of probability measures
on A is in general a superset of ∆A). This is because every outcome in the mechanisms that we study lies
in ∆A.
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|S| ≥ n− 1. This definition of economic environment is weaker than the usual definition in

the literature. For instance, Serrano (2004) calls an environment as economic when, as part

of the description of alternatives, there exists a private good like money over which players

have strictly monotonic preferences (in such an environment, no two players have a common

most-preferred alternative).

Benôıt and Ok (2008) define the class of environments satisfying top-coincidence condi-

tion.

Definition 2.3. The environment E satisfies top-coincidence condition if for any θ ∈ Θ and

S ⊂ N such that |S| = n− 1,
⋂
i∈S P1(i, θ) is at most a singleton.

Thus, an environment that satisfies top-coincidence condition is such that in any state,

any subset of n − 1 players have at most one common most-preferred alternative. Clearly,

any economic environment satisfies the top-coincidence condition. Therefore, the class of

environments identified by top-coincidence condition is weaker than the class of economic

environments.

We define two other classes of environments.

Definition 2.4. The environment E satisfies unique-top condition if for all i ∈ N and θ ∈ Θ,

the set of most-preferred alternatives P1(i, θ) is singleton.

In an environment satisfying unique-top condition, every player has exactly one most-

preferred alternative in each state. An example of such an environment is when all players

have strict preferences, i.e., for all i ∈ N , θ ∈ Θ, and a, a′ ∈ A, we have a ∼θi a′ ⇐⇒ a = a′.

Another example of an environment satisfying the unique-top condition is when every player’s

preference is single-peaked over A. It is easy to see that any environment that satisfies

unique-top condition must also satisfy top-coincidence condition. However, there is no logical

relation between the class of economic environments and the class of environments satisfying

the unique-top condition, i.e., there exist both economic environments that do not satisfy the

unique-top condition and noneconomic environments that satisfy the unique top condition.

Definition 2.5. Let S ⊆ N . The environment E satisfies diversity of top alternatives for

S (DTA-S) if in any state, there does not exist an alternative that is unanimously most-

preferred by every player in S, i.e.,
⋂
i∈S P1(i, θ) = ∅ for any θ ∈ Θ.

For a given S ⊆ N , there are both economic and noneconomic environments that sat-

isfy DTA-S. Moreover, if |S| ≥ n − 1, then every economic environment satisfies DTA-S.

However, if |S| ≤ n− 2, then there exist economic environments that do not satisfy DTA-S.

7



2.2 Social Choice Rules

Social goals are embodied in a social choice rule (SCR), which is a nonempty-valued corre-

spondence F : Θ � A.

The following two properties of SCRs are prominent in the literature on Nash implemen-

tation.

Definition 2.6. SCR F is Maskin monotonic if whenever an alternative a ∈ F (θ) and

a /∈ F (θ′) for some θ and θ′, there exist player i ∈ N and a′ ∈ A such that

a �θi a′ and a′ �θ′i a.

Definition 2.7. SCR F satisfies no-veto power if for any θ ∈ Θ and S ⊆ N such that

|S| ≥ n− 1, we have ⋂
i∈S

P1(i, θ) ⊆ F (θ).

We will later introduce other notions of monotonicity and no-veto power among a subset

of the players.

2.3 Mechanism

A social planner, who does not know the realized state, designs a mechanism in order to

“implement” a SCR. The standard definition of a mechanism involves a set of messages for

each player and an outcome function that maps a profile of messages of all players into the

set of alternatives. We augment this definition with a political process that selects a senate,

i.e., a subset of the players. Ultimately, the outcome is a function of only the messages of

the senators. Formally, let N = 2N \ ∅ be the set of all possible senates. Then a mechanism

is a triplet Γ = ((Mi)i∈N , P, (g
S)S∈N ), where

• Mi is the set of opinions or messages that player i can announce.

• P is a political process for selecting a senate. If S ⊆ N is the selected senate, then the

messages of the players in S, (mi)i∈S, are transmitted to the planner and the messages

of all players j /∈ S are ignored.

• gS :
∏

i∈SMi → A is the outcome function conditional on the selection of the senate

S ⊆ N . Note that the outcome function gS is deterministic.

We let m denote a typical element of
∏

i∈N Mi. For any m ∈
∏

i∈N Mi and S ⊆ N , let

mS be the projection of m into
∏

i∈SMi (note that if S = N , then mN = m). That is, given
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any profile m of messages of all players, mS is the profile of messages of only the players in

S.

2.4 Political Processes

In this paper, we consider the following political processes: direct democracy, oligarchy,

oligarchic democracy and random sampling. We define these processes next.

2.4.1 Direct Democracy

We define direct democracy, denoted by D, as the political process that selects N as the

senate with probability 1. Hence, in direct democracy, every player’s message is transmitted

to the planner. A direct-democratic mechanism, ΓD = ((Mi)i∈N , D, (g
S)S∈N ), is a mechanism

that uses direct democracy to select the senate.8

For any realization θ, the direct-democratic mechanism ΓD defines the strategic-form

game 〈ΓD, θ〉. In this game, each player i announces a message mi ∈Mi. Since the political

process is direct democracy, the messages of all the players are transmitted to the planner.

The planner then implements the alternative gN(m). The players’ preferences are given by

the profile (�θi )i∈N . Let NE(ΓD, θ) denote the set of Nash equilibria of 〈ΓD, θ〉.9

The literature has exclusively focused on direct-democratic mechanisms. The correspond-

ing notion of implementation is called Nash implementation.

Definition 2.8. SCR F is Nash implementable if there exists a direct-democratic mechanism

ΓD = ((Mi)i∈N , D, (g
S)S∈N ) such that{
gN(m) : m ∈ NE(ΓD, θ)

}
= F (θ), for all θ ∈ Θ.

Maskin (1999) proves that Maskin monotonicity is necessary for Nash implementation.

Theorem 2.9 (Maskin (1999)). If SCR F is Nash implementable, then F is Maskin

monotonic.

In general environments with at least three players, Maskin (1999) shows that Maskin

monotonicity and no-veto power are sufficient for Nash implementation.

8Since messages of all players are transmitted to the planner, we only need to specify the outcome function
gN as none of the other outcome functions are ever used in a direct democracy. However, we continue to list
these functions in the definition of direct-democratic mechanisms just to make it consistent with the general
definition of mechanisms given earlier. Similar remarks apply to other political processes.

9Like most of the literature on implementation, we restrict ourselves to pure strategies throughout this
paper.
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Theorem 2.10 (Maskin (1999)). If n ≥ 3, then any Maskin monotonic SCR that satisfies

no-veto power is Nash implementable.

Since no-veto power is vacuously satisfied in economic environments, we have the follow-

ing corollary:

Corollary 2.11. SCR F is Nash implementable in an economic environment with n ≥ 3 if

and only if it is Maskin monotonic.

2.4.2 Oligarchy

Let S be any proper subset of N . We define S oligarchy, denoted by O(S), as the political

process that selects S as the senate with probability 1. Hence, in S oligarchy, the messages

of all players in S – the oligarchs – are transmitted to the planner whereas the messages of

all players in N \ S – the commoners – are ignored. An S-oligarchic mechanism, ΓO(S) =

((Mi)i∈N , O(S), (gS
′
)S′∈N ), is a mechanism that uses S oligarchy to select the senate.

For any realization θ, the S-oligarchic mechanism ΓO(S) defines the strategic-form game

〈ΓO(S), θ〉. In this game, each player i announces a message mi ∈Mi. Since the political pro-

cess is S oligarchy, the messages of all the oligarchs S and only these players are transmitted

to the planner. The planner then implements the alternative gS(mS). The players’ prefer-

ences are given by the profile (�θi )i∈N . Let NE(ΓO(S), θ) denote the set of Nash equilibria of

〈ΓO(S), θ〉.

Definition 2.12. Let S ⊂ N . SCR F is implementable by S oligarchy if there exists a

S-oligarchic mechanism ΓO(S) = ((Mi)i∈N , O(S), (gS
′
)S′∈N ) such that{

gS(mS) : m ∈ NE(ΓO(S), θ)
}

= F (θ), for all θ ∈ Θ.

Remark 2.13. In a S-oligarchic mechanism, the commoners also announce their messages

even though they know for sure that their messages will be ignored. A more reasonable

assumption is that a player announces her message if and only if she knows that she is a

senator. This alternative assumption can be easily incorporated into the model since for

every S-oligarchic mechanism that implements F , there exists a corresponding game form

that also implements F but asks only the oligarchs to announce their messages. To see this,

fix an S-oligarchic mechanism ΓO(S) that implements F . Consider the following game form:

all the oligarchs S simultaneously announce their messages (mi)i∈S ∈
∏

i∈SMi, which are

transmitted to the planner who then implements gS((mi)i∈S). Clearly, this game form also

implements F in Nash equilibrium.
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2.4.3 Oligarchic Democracy

By S-oligarchic democracy, we mean the political process in which the senate is either a

fixed S ⊂ N or N but the probability it is N is arbitrarily close to 0. To capture the idea of

“arbitrarily close to 0”, we define a sequence of political processes in which the probability

of selecting N as the senate is converging to 0.

Formally, for any S ⊂ N and ε ∈ (0, 1), let (S, ε)-oligarchic democracy, denoted by

O(S, ε), be the political process that selects S as the senate with probability 1 − ε and N

as the senate with probability ε. Hence, in (S, ε)-oligarchic democracy, either the messages

of only the players in S – the oligarchs – are transmitted to the planner with probability

1 − ε or the messages of all players in N are transmitted to the planner with probability

ε. An (S, ε)-oligarchic-democratic mechanism, ΓO(S,ε) = ((Mi)i∈N , O(S, ε), (gS
′
)S′∈N ), is a

mechanism that uses (S, ε)-oligarchic democracy to select the senate.

For any realization θ, the (S, ε)-oligarchic-democratic mechanism ΓO(S,ε) defines a strategic-

form game 〈ΓO(S,ε), θ〉. In this game, each player i announces a message mi ∈Mi. Since the

political process is (S, ε)-oligarchic democracy, either the messages of all the oligarchs S are

transmitted to the planner with probability 1− ε or the messages of all the players in N are

transmitted to the planner with probability ε. If the planner only receives the messages of

the oligarchs S, then she implements the alternative gS(mS); on the other hand, if the plan-

ner receives the messages of all the players in N , then she implements the alternative gN(m).

This induces the lottery l[S, ε,m] in ∆A such that l[S, ε,m] assigns probability 1 − ε to al-

ternative gS(mS) and probability ε to alternative gN(m). The players’ preferences are given

by the profile (�θi )i∈N . Let NE(ΓO(S,ε), θ) denote the set of Nash equilibria of 〈ΓO(S,ε), θ〉.

Definition 2.14. Let S ⊂ N . SCR F is implementable by S-oligarchic democracy if there

exists a sequence of (S, εk)-oligarchic-democratic mechanisms(
ΓO(S,εk) = ((Mi)i∈N , O(S, εk), (g

S′
)S′∈N )

)∞
k=1

such that for all k,

(i) εk ∈ (0, 1) with limk→∞ εk → 0 and

(ii)
{
l[S, εk,m] : m ∈ NE(ΓO(S,εk), θ)

}
= F (θ), for all θ ∈ Θ.

Condition (i) in the above definition formalizes the idea that the probability of selecting

N as the senate is “arbitrarily close to 0”. Condition (ii) has two requirements. First, if m ∈
NE(ΓO(S,εk), θ), then we must have l[S, εk,m] ∈ F (θ), i.e., l[S, εk,m] is deterministic with

gS(mS) = gN(m) ∈ F (θ). Second, for any a ∈ F (θ), there must exist m ∈ NE(ΓO(S,εk), θ)
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such that l[S, εk,m] = a. Hence, although lotteries are generated in the selection of the

senators, implementation by S-oligarchic democracy requires exact implementation of the

SCR by every (S, εk)-oligarchic-democratic mechanism.

Remark 2.15. The alternative assumption that a player announces her message if and

only if she is a senator can also be incorporated into oligarchic democracy. Fix a (S, ε)-

oligarchic-democratic mechanism that implements F . Consider the following extensive-form

game: first, the oligarchs S announce their messages (mi)i∈S ∈
∏

i∈SMi. Then, with prob-

ability 1 − ε, the game ends and planner implements gS((mi)i∈S); but with probability ε,

the planner asks the commoners to announce their messages (mj)j∈N\S ∈
∏

j∈N\SMj and

then implements gN
(
(mi)i∈S, (mj)j∈N\S

)
. A crucial assumption is that the commoners do

not observe the oligarchs’ messages when they are asked to announce their messages. In this

extensive-form game, every player moves at exactly one information set and thus, it has the

same strategic form as ΓO(S,ε). Hence, the extensive-form game also implements F in Nash

equilibrium.10

2.4.4 Random Sampling

The final political process that we consider is random sampling. In this process, denoted

by R(n̄), the planner randomly chooses a sample of the messages of the players, where the

sample size is fixed at some positive integer n̄ < n. Let Nn̄ denote the set of all senates

S ∈ N such that |S| = n̄. Thus, in random sampling, the senate is equally likely to be any

S ∈ Nn̄. The R(n̄)-sampling mechanism, ΓR(n̄) = ((Mi)i∈N , R(n̄), (gS)S∈N ), is a mechanism

that uses R(n̄) sampling procedure to select the senate.

For any realization θ, the R(n̄)-sampling mechanism ΓR(n̄) defines a strategic-form game

〈ΓR(n̄), θ〉. In this game, each player i announces a message mi ∈ Mi. Since the political

process is R(n̄), a subset S ∈ Nn̄ is chosen with probability 1/|Nn̄| and the messages of

all the players in S are transmitted to the planner. The planner then implements the

alternative gS(mS). Thus, the probability that the alternative gS(mS) is implemented is

equal to 1/|Nn̄|. Let l[R(n̄),m] be the lottery in ∆A, which for all S ∈ Nn̄, assigns probability

1/|Nn̄| to alternative gS(mS). The players’ preferences are given by the profile (�θi )i∈N . Let

NE(ΓR(n̄), θ) denote the set of Nash equilibria of 〈ΓR(n̄), θ〉.

Definition 2.16. SCR F is implementable by n̄-random sampling if there exists a R(n̄)-

10In fact, we can argue that in each state, the set of Perfect Bayesian equilibria of the extensive-form game
coincides with the set of Nash equilibria of ΓO(S,ε). This is because all players have the same incentives at
their respective information sets in both game forms. This is clearly true for the oligarchs. Although the
commoners find out that they are in the senate if they are asked to play the game yet, since preferences over
lotteries are monotone, their incentives in the extensive-form game are the same as in ΓO(S,ε).
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sampling mechanism ΓR(n̄) = ((Mi)i∈N , R(n̄), (gS)S∈N ) such that{
l[R(n̄),m] : m ∈ NE(ΓR(n̄), θ)

}
= F (θ), for all θ ∈ Θ.

Thus, just like in the model of oligarchic democracy, implementation by n̄-random sam-

pling requires exact implementation of the SCR even though a lottery is used in the sampling

of the messages.

Remark 2.17. The alternative assumption that a player announces her message if and only

if she is a senator can also be incorporated into random sampling. Fix a R(n̄)-sampling

mechanism that implements F . Consider the following extensive-form game: first, a senate

of size n̄ is randomly chosen but the selected senators S are not informed of each other’s

identities. Then the senators S announce their messages (mi)i∈S ∈
∏

i∈SMi and gS((mi)i∈S)

is implemented. In this extensive-form game, every player moves at exactly one information

set and thus, it has the same strategic form as ΓR(n̄). Hence, the extensive-form game also

implements F in Nash equilibrium.11

3 Implementation by Oligarchy

Consider any set of oligarchs S ⊂ N . It is easy to see that a S oligarchy in environment

E =
〈
N,A,

(
(�θi )i∈N

)
θ∈Θ

〉
is equivalent to a direct democracy in the restricted environment

E(S) =
〈
S,A,

(
(�θi )i∈S

)
θ∈Θ

〉
. Hence, the necessary and sufficient conditions for implemen-

tation by S oligarchy in environment E will be equivalent to the corresponding conditions

for Nash implementation in environment E(S).

Restricting attention to a set of oligarchs S, we can define notions of monotonicity and

no-veto power with respect to S as follows:

Definition 3.1. Let S ⊂ N . SCR F is S-monotonic if whenever a ∈ F (θ) and a /∈ F (θ′)

for some a, θ and θ′, there exist player i ∈ S and a′ ∈ A such that

a �θi a′ and a′ �θ′i a.

11Under the stronger assumption that players’ preferences over lotteries satisfy the independence axiom,
we can argue that in each state, the set of Perfect Bayesian equilibria of the extensive-form game coincides
with the set of Nash equilibria of ΓR(n̄). When a player is asked to play, she finds out that she is in the
senate but she does not know who else is in the senate. However, due to the independence axiom, the player’s
incentives in the extensive-form game are the same as in ΓR(n̄).
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Definition 3.2. Let S ⊂ N . SCR F satisfies S-no-veto power if for any θ ∈ Θ and S ′ ⊆ S

such that |S ′| ≥ |S| − 1, we have ⋂
i∈S′

P1(i, θ) ⊆ F (θ).

We easily obtain the following corollaries from, respectively, Theorems 2.9 and 2.10:

Corollary 3.3. If SCR F is implementable by S oligarchy, then F is S-monotonic.

Corollary 3.4. If 3 ≤ |S| < n, then any SCR that satisfies S-monotonicity and S-no-veto

power is implementable by S oligarchy.

S-no-veto power is vacuously true if E(S) is an economic environment. Hence, we have

the following result:

Corollary 3.5. Suppose 3 ≤ |S| < n and E(S) is an economic environment. SCR F is

implementable by S oligarchy if and only if it is S-monotonic.

3.1 Comparison

Clearly, S-monotonicity is stronger than Maskin monotonicity. Furthermore, we have the

following result:

Proposition 3.6. If an SCR F is implementable by S oligarchy for some S ⊂ N , then F

is Nash implementable.

Proof. Let ΓO(S) = ((Mi)i∈N , O(S), (gS
′
)S′∈N ) be the S-oligarchic mechanism that imple-

ments F . Define the direct democracy ΓD = ((Mi)i∈N , D, (ĝ
S′

)S′∈N ) such that ĝN(m) =

gS(mS),∀m ∈ M , and ĝS
′

= gS
′
,∀S ′ 6= N . It is easy to show that for all θ, we have

m ∈ NE(ΓO(S), θ) ⇐⇒ m ∈ NE(ΓD, θ), and hence, the result follows.

Thus, in any environment, any SCR that is implementable by an oligarchy is also im-

plementable by direct democracy (i.e., Nash implementable). However, the converse is not

true. That is, there are SCRs that are Nash implementable but not implementable by S

oligarchy for any S ⊂ N . Consider the following example:

Example 3.7. Let N = {1, 2, 3, 4}, A = {a, b, c, d} and Θ = {θ, θ′}. The preferences of the
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four players over alternatives in the two states are as follows:

θ θ′

a �θ1 b �θ1 c �θ1 d b �θ′1 a �θ′1 c �θ′1 d

b �θ2 c �θ2 d �θ2 a c �θ′2 b �θ′2 d �θ′2 a

c ∼θ3 d �θ3 a �θ3 b d �θ′3 c �θ′3 a �θ′3 b

a �θ4 d �θ4 b �θ4 c d ∼θ′4 a �θ′4 b �θ′4 c

Consider the SCR F such that F (θ) = {a, b, c} and F (θ′) = {d}. Player 1 is the only player

i for whom there exists an alternative â such that a �θi â and â �θ′i a. Player 2 is the only

player i for whom there exists an alternative â such that b �θi â and â �θ′i b. Player 3 is the

only player i for whom there exists an alternative â such that c �θi â and â �θ′i c. Finally,

player 4 is the only player i for whom there exists an alternative â such that d �θ′i â and

â �θi d. Therefore, F is Maskin monotonic but not S-monotonic for any S ⊂ N . Since the

environment is economic, it follows that F is Nash implementable but it is not implementable

by any S oligarchy. �

4 Implementation by Oligarchic Democracy

4.1 Necessary Condition

Definition 4.1. Let S ⊂ N . SCR F is weak S-monotonic if there exists a sequence (εk)
∞
k=1

with εk ∈ (0, 1),∀k, and limk→∞ εk = 0 such that whenever a ∈ F (θ) and a /∈ F (θ′) for some

a, θ and θ′ then for all k either:

(i) there exist player ik ∈ N \ S and alternative a′k such that a �θik a
′
k and a′k �θ

′
ik
a or

(ii) there exist player ik ∈ S, lottery lk, and alternatives âk and ãk such that

lk(âk) = εk, lk(ãk) = 1− εk, a �θik lk and lk �θ
′

ik
a.

Thus, weak S-monotonicity requires that there exists a sequence of positive probabilities

εk converging to 0 such that whenever an alternative a is in the SCR for some state θ but

drops out of the SCR in state θ′, then in going from θ to θ′, there must exist either (i)

some commoner, for whom there is reversal of her preferences over alternatives around a

(i.e., there is another alternative that she weakly prefers to a in θ but this is not true in θ′)

or (ii) some oligarch, for whom there is reversal of her preferences over lotteries around a

(i.e., there is a lottery that she weakly prefers to a in θ but this is not true in θ′), where we
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consider only those lotteries that have at most two alternatives in their supports and assign

probability of εk to one of those alternatives.

As we show in the next result, weak S-monotonicity is a necessary condition for imple-

mentation by S-oligarchic democracy.

Theorem 4.2. If SCR F is implementable by S-oligarchic democracy, then F is weak S-

monotonic.

Proof. Let
(

ΓO(S,εk) = ((Mi)i∈N , O(S, εk), (g
S′

)S′∈N )
)∞
k=1

be the sequence of (S, εk)-oligarchic-

democratic mechanisms with εk ∈ (0, 1),∀k, and limk→∞ εk → 0, which implement F by

S-oligarchic democracy. We show that F is weak S-monotonic.

Consider the sequence (εk)
∞
k=1. Suppose there exist a, θ and θ′ such that a ∈ F (θ) but

a /∈ F (θ′). Then for all k, there must exist mk ∈ NE(ΓO(S,εk), θ) with l[S, εk,m
k] = a, i.e.,

gN(mk) = gS(mkS) = a. Since a /∈ F (θ′), it must be that mk /∈ NE(ΓO(S,εk), θ
′). Hence,

there must exist ik ∈ N and mik ∈Mik such that

a �θik l[S, εk, (mik ,m
k
−ik)] and l[S, εk, (mik ,m

k
−ik)] �θ′ik a.

If ik ∈ N \ S, then gS
(
(mik ,m

k
−ik)S

)
= a. Hence, in this case, l[S, εk, (mik ,m

k
−ik)] is a

lottery which assigns probability εk to alternative gN(mik ,m
k
−ik) = a′k and probability 1− εk

to alternative a. Since the preferences over lotteries are monotone, we have a �θik a
′
k and

a′k �θ
′
ik
a. Thus, the first condition in the definition of weak S-monotonicity is satisfied.

If ik ∈ S, then l[S, εk, (mik ,m
k
−ik)] is a lottery which assigns probability εk to alter-

native gN(mik ,m
k
−ik) = âk and probability 1 − εk to gS

(
(mik ,m

k
−ik)S

)
= ãk with a �θik

l[S, εk, (mik ,m
k
−ik)] and l[S, εk, (mik ,m

k
−ik)] �θ′ik a. Hence, in this case, the second condition

in the definition of weak S-monotonicity is satisfied.

The above proof also makes it clear why we require a reversal of preferences over al-

ternatives for a commoner while a reversal of preferences over lotteries with at most two

alternatives in their supports for oligarchs. In S-oligarchic democracy, the messages of the

commoners are only considered in case N is selected as the senate. As a result, by changing

her message in an oligarchic-democratic mechanism, a commoner can at most change the

alternative that is implemented when the senate is N . Hence, whenever a commoner has an

improving unilateral deviation, it must be that she is able to generate a strictly preferred

alternative when the senate is N . On the other hand, the messages of the oligarchs are

considered irrespective of whether S or N is the senate. Hence, by changing her message in

an oligarchic-democratic mechanism, an oligarch can, in principle, change any of the alter-

natives that are implemented when the senate is S and when the senate is N . That is why,

16



whenever an oligarch has an improving unilateral deviation, it must be that she is able to

generate a strictly preferred lottery with at most two alternatives in its support.

Note that the reversal of preferences over lotteries around an alternative is a weaker

requirement than the reversal of preferences over alternatives around an alternative. Thus,

we have the following lemma (proof is omitted):

Lemma 4.3. If F is Maskin monotonic, then F is weak S-monotonic for all S ⊂ N .

4.2 Economic Environments

4.2.1 Sufficient Condition

It turns out, if there are at least three oligarchs in S, then weak S-monotonicity of an SCR

is also a sufficient condition for its implementation by S-oligarchic democracy in economic

environments.

Theorem 4.4. Suppose 3 ≤ |S| < n and E is an economic environment. If SCR F is weak

S-monotonic, then F is implementable by S-oligarchic democracy.

Sketch of the proof : Consider the sequence (εk)
∞
k=1 with respect to which F satisfies the defi-

nition of weak S-monotonicity. For all k, define the (S, εk)-oligarchic-democratic mechanism

ΓO(S,εk) = ((Mi)i∈N , O(S, εk), (g
S′

)S′∈N ) such that for all i ∈ N ,

Mi = Θ× A× A× A× Z+,

where Z+ is the set of nonnegative integers. Let a typical message mi be of the form

(θi, a
1
i , a

2
i , a

3
i , zi). The outcome function gN is as follows:

(i) If for every player i ∈ N , mi = (θ, a1
i , a, a, 0) and a ∈ F (θ), then gN(m) = a.

(ii) If for n − 1 players i 6= j in N , mi = (θ, a1
i , a, a, 0) and a ∈ F (θ), but mj =

(θj, a
1
j , a

2
j , a

3
j , zj) 6= (θ, a1

j , a, a, 0), then

j ∈ N \ S =⇒ gN(m) =

{
a if a2

j �θj a
a2
j if a �θj a2

j ,

j ∈ S =⇒ gN(m) =

{
a if lk[j] �θj a
a2
j if a �θj lk[j],

where lk[j] is the lottery that assigns probability εk to a2
j and probability 1− εk to a3

j .
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(iii) In all other cases, gN(m) = a1
j where j ∈ N is the player with the lowest index among

those who announce the highest integer.12

The outcome function gS is as follows:

(i’) If for every player i ∈ S, mi = (θ, a1
i , a, a, 0) and a ∈ F (θ), then gS

(
(mi)i∈S

)
= a.

(ii’) If for |S| − 1 players i 6= j in S, mi = (θ, a1
i , a, a, 0) and a ∈ F (θ), but mj =

(θj, a
1
j , a

2
j , a

3
j , zj) 6= (θ, a1

j , a, a, 0), then

gS
(
(mi)i∈S

)
=

{
a if lk[j] �θj a.

a3
j if a �θj lk[j].

(iii’) In all other cases, gS
(
(mi)i∈S

)
= a1

j where j ∈ S is the player with the lowest index

among those players in S who announce the highest integer in the profile (mi)i∈S.

Finally, for all S ′ ∈ N \ {N,S}, the outcome function gS
′

can be arbitrary.

Thus, each player sends a message with five components (θi, a
1
i , a

2
i , a

3
i , zi). The outcome

functions gN and gS are defined like in the canonical mechanism of Maskin (1999) with

three rules. The first rules are used when there is agreement in all the messages received

by the planner, except possibly in the second components a1
i . In this case, the planner

implements the commonly agreed alternative. The second rules allow the planner to use

weak S-monotonicity of the SCR to eliminate the possibility that players agree on a message

with a “bad” alternative. In such a situation, rule (ii) gives any commoner j the opportunity

to deviate and implement a strictly preferred alternative a2
j when the senate is N by using

the reversal of her preferences over alternatives around the “bad” alternative. Although the

probability that a2
j will be implemented is arbitrarily small, the fact that it is positive and

deviations by commoner j do not affect the alternative that is implemented when the senate

is S provide sufficient incentives for j to deviate. Similarly, whenever the players agree on

a “bad” alternative, rules (ii) and (ii’) give any oligarch j the opportunity to deviate and

12The advantage of the integer game in our framework is that by announcing a high enough integer, a
player can win the integer game in every senate. Notice that this cannot be achieved by using the modulo
game in which each player announces a single integer. A particular integer might make the player win
the modulo game in one senate but she could at the same time lose the modulo game in some other senate.
Hence, in order to replace the integer game with the modulo game, we need each player to announce as many
integers between 1 and n as the number of senates she can be a member of. Thus, in oligarchic democracy,
oligarchs must announce two integers. The mechanisms used in the proofs for oligarchic democracy can
be altered in this fashion without changing the results. In contrast, the proof of the main result in the
random-sampling model relies heavily on the existence of a unique player who has the lowest index among
those who announce the highest integer in the whole population. Thus, replacing the integer game with the
modulo game seems difficult in that model. However, the use of both these games in implementation has
been criticized; see Jackson (1992).
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implement a strictly preferred lottery by using the reversal of her preferences over lotteries,

which have at most two alternatives in their supports, around the “bad” alternative. This is

done by implementing a2
j in case the senate is N , and a3

j when the senate is S. Finally, the

third rules eliminate the possibility of any equilibria other than those in which all players

agree in their messages. In these situations, at least n − 1 players are such that each of

them can implement her most-preferred alternative when the senate is N by announcing

such an alternative in the second component of her message and a high enough integer.

However, such a deviation will be improving if it does not cause a worse alternative to be

implemented when the senate is S. This is obviously true for the commoners. On the other

hand, since rule (ii’) does not depend on the second and the last components of the deviating

oligarch’s message, every oligarch also ensures that a worse alternative is not implemented

when the senate is S. As a result, we obtain a contradiction with the assumption of economic

environment. These arguments are formalized in the proof presented in the Appendix. �

4.2.2 Comparison

We obtain the following result as a corollary of Theorem 2.9, Lemma 4.3 and Theorem 4.4:

Corollary 4.5. Suppose 3 ≤ |S| < n and E is an economic environment. If F is Nash

implementable, then F is implementable by S-oligarchic democracy.

Thus, in economic environments, any SCR that is implementable by direct democracy

(i.e., Nash implementable) is also implementable by any S-oligarchic democracy that has at

least three oligarchs. In particular, any three players can be designated as the oligarchs in

order to implement any SCR in economic environments using oligarchic democracy.

The next example shows that there are SCRs that are implementable by oligarchic democ-

racies but not Nash implementable. Hence, weak S-monotonicity is strictly weaker than

Maskin monotonicity.

Example 4.6 (Strong Pareto Correspondence). Let N = {1, 2, 3, 4}, A = {a, b, c, d} and

Θ = {θ, θ′}. The preferences of the four players over alternatives in the two states are as

follows:
θ θ′

a �θ1 b �θ1 c �θ1 d a �θ′1 b ∼θ′1 c �θ′1 d

b �θ2 c �θ2 d �θ2 a b ∼θ′2 c ∼θ′2 d ∼θ′2 a

c �θ3 d �θ3 a �θ3 b d �θ′3 c �θ′3 a �θ′3 b

a �θ4 c ∼θ4 d �θ4 b c �θ′4 a ∼θ′4 d �θ′4 b

Furthermore, we assume that players’ preferences over lotteries are represented by expected

utility.
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Let SCR F be the strong Pareto correspondence, i.e., for all θ′′ ∈ Θ,

F (θ′′) = {â ∈ A : @a′ ∈ A s.t. ∀i ∈ N, a′ �θ′′i â and ∃j ∈ N with a′ �θ′′j â}

It is easy to see that F (θ) = {a, b, c} and F (θ′) = {a, c, d}. F is not Maskin monotonic since

b ∈ F (θ), b /∈ F (θ′) but there does not exist any player i and alternative â such that b �θi â
and â �θ′i b. Therefore, F is not Nash implementable.

We argue that F is weak S-monotonic for any S ⊂ N such that 1 ∈ S. Since player 1 has

expected-utility preferences, a �θ1 b �θ1 c and a �θ′1 b ∼θ′1 c imply that there exists a small

enough ε′ ∈ (0, 1) such that for all ε ∈ (0, ε′], we have

b �θ1 lε and lε �θ
′

1 b,

where lε is the lottery with lε(a) = ε and lε(c) = 1− ε. Moreover, for alternative d, which is

such that d ∈ F (θ′) but d /∈ F (θ), we have player 3 with d �θ′3 c and c �θ3 d. Therefore, if

1 ∈ S, then for any sequence (εk)
∞
k=1 such that εk ∈ (0, ε′] and limk→∞ εk = 0, F satisfies the

conditions for weak S-monotonicity.

It is easy to see that the environment is economic. Hence, Theorem 4.4 implies that F

is implementable by S-oligarchic democracy, where 1 ∈ S and |S| = 3. �

Here, we note that the strong Pareto correspondence is not necessarily weak S-monotonic

in every economic environment. Still, as the above example illustrates, compared to Nash

implementation, we can implement the strong Pareto correspondence by S-oligarchic democ-

racy in a larger set of economic environments.

4.3 Noneconomic Environments

Interestingly, when the environment is not economic, there can exist SCRs that are Nash im-

plementable but not implementable by any S-oligarchic democracy. An example is provided

next.

Example 4.7. Let N = {1, 2, 3, 4}, A = {a, b} and Θ = {θ, θ′, θ′′, θ̂, θ̂′, θ̂′′}. The preferences

of the four players over alternatives in the six states are as follows:

θ θ′ θ′′ θ̂ θ̂′ θ̂′′

a �θ1 b a �θ′1 b b ∼θ′′1 a b ∼θ̂1 a a �θ̂′1 b a �θ̂′′1 b

a ∼θ2 b b �θ′2 a b �θ′′2 a b �θ̂2 a b �θ̂′2 a a ∼θ̂′′2 b

a ∼θ3 b b �θ′3 a b �θ′′3 a b �θ̂3 a a ∼θ̂′3 b b �θ̂′′3 a

a �θ4 b b ∼θ′4 a a �θ′′4 b b ∼θ̂4 a a �θ̂′4 b a �θ̂′′4 b
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This environment is not economic. For instance, in state θ, a �θi b for all i ∈ N .

Let SCR F be such that F (θ) = F (θ̂′) = F (θ̂′′) = {a} and F (θ′) = F (θ′′) = F (θ̂) = {b}.
F is Maskin monotonic and hence, weak S-monotonic for any S ⊂ N . Furthermore, F

satisfies no-veto power. Hence, F is Nash implementable.

We argue that F is not implementable by S-oligarchic democracy for any S ⊂ N . Suppose

there exists a sequence of (S, εk)-oligarchic-democratic mechanisms
(
ΓO(S,εk)

)∞
k=1

such that

εk ∈ (0, 1),∀k, with limk→∞ εk → 0, and for all k,
{
l[S, εk,m] : m ∈ NE(ΓO(S,εk), θ̃)

}
= F (θ̃)

for all θ̃ ∈ Θ.

Pick any εk and consider mk ∈ NE(ΓO(S,εk), θ
′). It must be that gS(mkS) = gN(mk) = b.

Moreover, for any m1 ∈ M1, we must have gS((m1,m
k
−1)S) = gN(m1,m

k
−1) = b because

otherwise, player 1 has an incentive to deviate to m1 in state θ′. This further implies that

there must exist m4 ∈M4 such that either gS((m4,m
k
−4)S) = a or gN(m4,m

k
−4) = a because

otherwise, mk ∈ NE(ΓO(S,εk), θ).

If 4 /∈ S. Then gS((m4,m
k
−4)S) = gS(mkS) = b. Hence, it must be that gN(m4,m

k
−4) = a.

We claim that (m4,m
k
−4) ∈ NE(ΓO(S,εk), θ). Clearly, players 2, 3 and 4 do not have any

improving unilateral deviations. On the other hand, if player 1 were to deviate to any m1,

then gS((m1,m4,m
k
−{1,4})

S) = gS((m1,m
k
−1)S) = b. Hence, player 1 also does not have an

improving unilateral deviation. Hence, (m4,m
k
−4) ∈ NE(ΓO(S,εk), θ). But then we have a

contradiction since gS((m4,m
k
−4)S) = b. Therefore, 4 ∈ S.

The above argument involved θ′ and θ. Similarly, using θ′′ and θ we can argue that 1 ∈ S;

using θ̂′ and θ̂ we can argue that 3 ∈ S, and finally, using θ̂′′ and θ̂ we can argue that 2 ∈ S.

Hence, we obtain a contradiction to the fact that S ⊂ N . �

4.3.1 Sufficient Conditions

The environment in the previous example does not satisfy DTA-S for all S. The problem for

implementation using oligarchic democracy when S is the set of oligarchs and the environ-

ment does not satisfy DTA-S can be intuitively explained as follows. Suppose the players

have expected-utility preferences. Let a be in the SCR in state θ and consider the equilib-

rium m of an (S, εk)-oligarchic-democratic mechanism that implements a. It must be that by

unilaterally changing her message, no oligarch can implement an alternative when the senate

is S that she strictly prefers to a in state θ. If this were not true, and if εk is small enough,

the oligarch will prefer to deviate. Now, consider another state θ′ such that in going from

state θ to θ′, alternative a drops out of the SCR but for every oligarch, there is no reversal of

her preferences over alternatives around a (i.e., for all i ∈ S, a �θi b =⇒ a �θ′i b,∀b). Pick

any message profile m′ = ((mi)i∈S, (m
′
j)j /∈S), i.e., the messages of the oligarchs in m′ are the
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same as in m. Since m′S = mS, alternative a is still implemented when the senate is S. But

a is not in the SCR in state θ′ and hence, m′ must not be an equilibrium in state θ′. Since for

any oligarch, there is no reversal of her preferences over alternatives around a, it follows from

the previous argument that no oligarch can implement a strictly preferred alternative when

the senate is S. Thus, the only way an oligarch will deviate from m′ is if she can implement

a strictly preferred alternative when the senate is N . However, now suppose that m′ is such

that the alternative implemented when the senate is N is unanimously most-preferred by all

the players, which is possible since the environment it not economic. Then clearly, no player

will have an incentive to deviate from m′ and hence, we will not be able to implement the

SCR.

As the next result shows, this problem can be avoided if we restrict attention to environ-

ments satisfying DTA-S (proof is in the Appendix).

Theorem 4.8. Suppose 3 ≤ |S| < n and E satisfies DTA-S. Any Maskin monotonic SCR

F that satisfies no-veto power is implementable by S-oligarchic democracy.

Stronger results can be established under further restrictions on the environments. For

instance, consider the class of environments that satisfy both DTA-S and unique-top condi-

tion. Note that this class of environments is not a subset of economic environments. The next

result shows that we can drop the requirement of no-veto power in this class of environments

(proof is in the Appendix).

Theorem 4.9. Suppose 3 ≤ |S| < n and E satisfies DTA-S and unique-top condition. Any

Maskin monotonic SCR F is implementable by S-oligarchic democracy.

As an application of the above theorem, consider an environment with single-peaked

preferences. For instance, suppose a large society faces the problem of implementing a

tax rate. A state describes the “ideological” biases of each individual. The “left-wing”

individuals have the peaks of their preferences at higher tax rates whereas “right-wing”

individuals have the peaks of their preferences at lower tax rates. Furthermore, suppose

that there are two individuals, say il and ir, whose “ideological” biases never coincide, i.e.,

the peaks of their preferences are different in every state. Then the above theorem says

that we can implement any Maskin monotonic SCR by oligarchic democracy if we designate

individuals il, ir and any other third individual j as oligarchs.

Remark 4.10. We are unable to strengthen either Theorem 4.8 or 4.9 by replacing Maskin

monotonicity with weak S-monotonicity of the SCR. However, we can reduce this gap be-

tween necessary and sufficient conditions in case of environments satisfying unique-top con-

dition. That is, suppose 3 ≤ |S| < n and E satisfies DTA-S and unique-top condition. Then
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any weak S-monotonic SCR F that satisfies no-veto power is implementable by S-oligarchic

democracy (proof upon request).

5 Implementation by Random Sampling

5.1 Necessary Condition

We first present the necessary condition. Recall the definitions of Nn̄ and let Nn̄(i) be the

set of all senates S ∈ Nn̄ such that i ∈ S. For any function h : Nn̄ → A, define the lottery

induced by h, denoted by l[h], as the lottery that assigns to each a ∈ A the probability

|{S ∈ Nn̄ : h(S) = a}|/|Nn̄|.

Definition 5.1. SCR F is R(n̄)-monotonic if whenever a ∈ F (θ) and a /∈ F (θ) for some a,

θ and θ′, then there exist player i ∈ N and function hi : Nn̄ → A such that

hi(S) = a,∀S ∈ Nn̄ \ Nn̄(i), a �θi l[hi] and l[hi] �θ
′

i a.

Thus, R(n̄)-monotonicity requires that whenever an alternative a is in the SCR for some

state θ but drops out of the SCR in state θ′, then in going from θ to θ′, there must exist

some player i for whom there is reversal of her preferences over lotteries around a (i.e., there

is a lottery that she weakly prefers to a in θ but this is not true in θ′), where we consider

only those lotteries that are induced by all possible mappings hi : Nn̄ → A with the property

that hi(S) = a for any S ∈ Nn̄ \ Nn̄(i).

The following theorem shows that R(n̄)-monotonicity is necessary for implementation by

n̄-random sampling.

Theorem 5.2. If SCR F is implementable by n̄-random sampling, then F is R(n̄)-monotonic.

Proof. Let Γ = ((Mi)i∈N , R(n̄), (gS)S∈N ) be the R(n̄)-sampling mechanism that implements

F . Suppose there exist a, θ and θ′ such that a ∈ F (θ) but a /∈ F (θ′). Then there must exist

m ∈ NE(ΓR(n̄), θ) with l[R(n̄),m] = a, i.e., gS(mS) = a for all S ∈ Nn̄. Since a /∈ F (θ′), we

have m /∈ NE(ΓR(n̄), θ
′). Hence, there must exist i ∈ N and m′i ∈Mi such that

a �θi l[R(n̄), (m′i,m−i)] and l[R(n̄), (m′i,m−i)] �θ
′

i a.

Lottery l[R(n̄), (m′i,m−i)] assigns to each alternative a′ ∈ A, the probability of |{S ∈ Nn̄ :

gS((m′i,m−i)
S) = a′}|/|Nn̄|. But gS((m′i,m−i)

S) = gS(mS) = a for all S ∈ Nn̄ \ Nn̄(i).

Hence, player i and function hi : Nn̄ → A such that hi(S) = gS((m′i,m−i)
S) for all S ∈ Nn̄

satisfy the required condition.

23



The proof clarifies why R(n̄)-monotonicity requires the particular reversal of preferences

over lotteries. In n̄-random sampling, the messages of any player i are considered only if she

is selected in the sample, i.e., whenever the senate is S ∈ Nn̄(i). Hence, by changing her

message, player i can change the alternative that is implemented when the senate is S only

if S ∈ Nn̄(i). That is why, whenever player i has an improving unilateral deviation in R(n̄)-

sampling mechanism, it must be that she is able to generate a strictly preferred lottery that

is induced by some hi : Nn̄ → A with the property that hi(S) = a for any S ∈ Nn̄ \ Nn̄(i).

The particular reversal of preferences over lotteries around an alternative required in

R(n̄)-monotonicity is obviously weaker than the reversal of preferences over alternatives

around an alternative required in Maskin monotonicity. Hence, we easily have the following

lemma (proof is omitted):

Lemma 5.3. If F is Maskin monotonic, then F is R(n̄)-monotonic for all positive n̄ < n.

5.2 Sufficient Condition

The next result gives the sufficient condition for implementation by n̄-random sampling.

Theorem 5.4. Let 4 ≤ n̄ < n and E satisfy DTA-N and top-coincidence condition. If SCR

F is Maskin monotonic, then F is implementable by n̄-random sampling.

Sketch of the proof : For each player j ∈ N , let

S(j) =

{
{S ∈ Nn̄(j) : {1, 2} ⊂ S}, if j > 2.

{S ∈ Nn̄(j) : {3, 4} ⊂ S}, if j ∈ {1, 2}.

Define the R(n̄)-sampling mechanism ΓR(n̄) = ((Mi)i∈N , R(n̄), (gS)S∈N ) in which for all

i ∈ N ,

Mi = Θ× A× A× Z+.

Let a typical message mi be of the form (θi, a
1
i , a

2
i , zi).

For each S ∈ Nn̄, the outcome function gS is as follows:

(i) If for every player i ∈ S, mi = (θ, a1
i , a, 0) and a ∈ F (θ), then gS

(
(mi)i∈S

)
= a

(ii) If for |S|−1 players i 6= j in S, mi = (θ, a1
i , a, 0) and a ∈ F (θ), butmj = (θj, a

1
j , a

2
j , zj) 6=

(θ, a1
j , a, 0), then

gS
(
(mi)i∈S

)
=

{
a if a2

j �θj a or S /∈ S(j)

a2
j if a �θj a2

j and S ∈ S(j).
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(iii) In all other cases, gS
(
(mi)i∈S

)
= a1

j where j ∈ S is the player with the lowest index

among those players in S who announce the highest integer in the profile (mi)i∈S.

Finally, for all S ′ ∈ N \ Nn̄, the outcome function gS
′

can be arbitrary.

Thus, each player sends a message with four components (θi, a
1
i , a

2
i , zi). For every possible

senate S ∈ Nn̄ that can be selected by random sampling, the outcome function gS is defined

like in the canonical mechanism of Maskin (1999) with three rules. The first rule is used

when there is agreement in all the messages sampled by the planner, except possibly in

the second components a1
i . In this case, the planner implements the commonly agreed

alternative. The second rule allows the planner to use Maskin monotonicity of the SCR to

eliminate the possibility that players agree on a message with a “bad” alternative. In such

a situation, rule (ii) gives any player j the opportunity to deviate and implement a strictly

preferred alternative a2
j if the senate is S ∈ S(j) by using the reversal of her preferences over

alternatives around the “bad” alternative. However, if the senate is S /∈ S(j), then player j

cannot undo the implementation of the “bad” alternative by being the only one to disagree

with the rest of the players in S. Since the probability that some S ∈ S(j) will be sampled

is positive, the probability that a2
j will be implemented is positive. Moreover, deviations by

player j do not affect the alternative implemented when the sampled senate is S ∈ Nn̄ \S(j).

This provides sufficient incentives for j to deviate. Finally, the third rule eliminates the

possibility of any equilibria other than those in which all players agree in their messages.

There are two possibilities:

(a) There are at least three individuals whose messages disagree amongst each other. In

this case, we find an alternative that is unanimously most-preferred by all players, which

contradicts DTA-N . To see how this is done, suppose one of these three players is player i1

who is defined as the player with the lowest index among the players in N who announce

the highest integer (the proof takes care of other cases). Then for any player j, we consider

the senate in which the three disagreeing players are selected along with player j, which

is possible since the sample size is four. Due to the disagreement, rule (iii) is used in this

senate, and hence alternative announced by i1 in the second component of her message, say

a1
i1

, is implemented. Since rule (iii) is used in this senate, player j could have also announced

her most-preferred alternative and a higher integer than that of i1 in order to implement

her most-preferred alternative in this senate. Furthermore, since rule (ii) does not depend

on the second and last components of player j’s message, she would not be worse-off by this

deviation in any other senate selection. Therefore, it must be that a1
i is most-preferred by

all players j, contradicting DTA-N .

(b) There are only two individuals whose messages disagree (as already pointed out, the
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cases when all players agree are taken care of by rules (i) and (ii)). Then every other player

agrees with at least one of these two and hence, there is a unique disagreeing player, say i. In

this case, we find two alternatives that are most-preferred by n−1 players, which contradicts

top-coincidence condition. To do this, for any player j 6= i, we consider two senates that

contain both players j and i such that one senate S ′1 is in S(i) and the other senate S ′2 is not

in S(i). This is possible because n̄ ≥ 4. Due to the presence of a unique disagreeing player,

rule (ii) is used in both these senates. Suppose the alternative announced by j in her third

component, say a2 – which is the same for all j 6= i since their messages coincide –, is weakly

preferred by i to her third component, say a2
i , and a2 6= a2

i (the proof takes care of other

cases). Then a2
i is implemented if the senate is S ′1 and a2 is implemented if the senate is S ′2.

Now, if either a2 or a2
i is not a most-preferred alternative of j, then player j can be better-off

by deviating like in (a) above. Thus, we obtain that both a2 and a2
i must be most-preferred

by all player j 6= i, contradicting top-coincidence condition.

The above arguments are formalized in the proof presented in the Appendix. �

Since every economic environment satisfies both DTA-N and top-coincidence condition,

we have the following corollary:

Corollary 5.5. Let 4 ≤ n̄ < n and E be an economic environment. If SCR F is Maskin

monotonic, then F is implementable by n̄-random sampling.

Remark 5.6. We are unable to strengthen either Theorem 5.4 or Corollary 5.5 by replacing

Maskin monotonicity with R(n̄)-monotonicity of the SCR. However, we can close this gap

between necessary and sufficient conditions in case of economic environments that satisfy

unique-top condition. That is, let 4 ≤ n̄ < n and E be an economic environment satisfying

unique-top condition. Then any R(n̄)-monotonic SCR F is implementable by n̄-random

sampling (proof upon request).

5.3 Comparison

The following result easily follows from Theorem 2.9 and Corollary 5.5:

Corollary 5.7. Suppose 4 ≤ n̄ < n and E is an economic environment. If F is Nash

implementable, then F is implementable by n̄-random sampling.

Thus, in economic environments, any SCR that is implementable by direct democracy

(i.e., Nash implementable) is also implementable by randomly sampling only four – or more

– messages of the players.

The next example shows that even in economic environments, four is the minimal sample

size that guarantees the implementation of Maskin monotonic SCRs by random sampling.
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Example 5.8. Let N = {1, 2, 3, 4, 5}, A = {a, b} and Θ = {θ, θ′}. The preferences of the

five players over alternatives in the two states are as follows:

θ θ′

a �θ1 b a �θ′1 b

a �θ2 b a �θ′2 b

a �θ3 b b �θ′3 a

b �θ4 a b �θ′4 a

b �θ5 a b �θ′5 a

Let SCR F be such that F (θ) = {a, b} and F (θ′) = {b}. The environment is economic

and F is Maskin monotonic. Hence, F is Nash implementable.

We argue that F is not implementable by R(n̄)-random sampling for any n̄ ≤ 3. Suppose

there exists a R(n̄)-sampling mechanism ΓR(n̄) such that
{
l[R(n̄),m] : m ∈ NE(ΓR(n̄), θ̃)

}
=

F (θ̃) for all θ̃ ∈ Θ.

Consider m ∈ NE(ΓR(n̄), θ) such that l[R(n̄),m] = a. It must be that gS(mS) = a,∀S ∈
Nn̄. Moreover, for i ∈ {4, 5}, there must not exist any m′i such that for some S ∈ Nn̄
with i ∈ S, we have gS

(
(m′i,m−i)

S
)

= b; otherwise, player i has an incentive to deviate

to m′i in state θ. Consider m̂ ∈ NE(ΓR(n̄), θ) such that l[R(n̄), m̂] = b. It must be that

gS(m̂S) = b,∀S ∈ Nn̄. Moreover, for i ∈ {1, 2, 3}, there must not exist any m′i such that for

some S ∈ Nn̄ with i ∈ S, we have gS
(
(m′i, m̂−i)

S
)

= a; otherwise, player i has an incentive

to deviate to m′i in state θ.

Consider the message profile m̃ = (m1,m2,m3, m̂4, m̂5).

• Suppose n̄ = 3. If S ∈ {1, 4, 5}
⋃
{2, 4, 5}

⋃
{3, 4, 5}, then gS(m̃S) = b whereas if

S ∈ Nn̄ \ {1, 4, 5}
⋃
{2, 4, 5}

⋃
{3, 4, 5}, then gS(m̂S) = a. Then m̃ ∈ NE(ΓR(n̄), θ)

since players 1, 2 and 3 cannot unilaterally change the alternative implemented for any

S ∈ {1, 4, 5}
⋃
{2, 4, 5}

⋃
{3, 4, 5} whereas players 4 and 5 cannot unilaterally change

the alternative implemented for any S ∈ Nn̄ \ {1, 4, 5}
⋃
{2, 4, 5}

⋃
{3, 4, 5}. But both

a and b are in the support of the lottery l[R(n̄), m̃], a contradiction.

• Suppose n̄ = 2. Then for S = {3, 4}, we have gS(m̃S) = gS(m3, m̂4). We have already

argued that for S = {3, 4}, there does not exist any m′4 such that gS(m3,m
′
4) = b.

Hence, gS(m3, m̂4) = a. For S = {3, 4}, we have also argued that there does not exist

any m′3 such that gS(m′3, m̂4) = a. Hence, gS(m3, m̂4) = b, a contradiction.

• Suppose n̄ = 1. We have already argued that for S = {4}, there does not exist

any m′4 such that gS
(
(m′4,m−4)S

)
= gS(m′4) = b. But that contradicts the fact that
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gS(m̂4) = b. �

The next two examples show that the sufficiency result of Theorem 5.4 is not longer

true if we consider environments outside the class of environments satisfying DTA-N and

top-coincidence condition. In the first example, the environment satisfies top-coincidence

condition but not DTA-N . The SCR in the example is Nash implementable as it satisfies

Maskin monotonicity and no-veto power but it is not implementable by n̄-random sampling

when sample size n̄ = 4.

Example 5.9. Let N = {1, 2, 3, 4, 5}, A = {a, b} and Θ = {θ, θ′}. The preferences of the

five players over alternatives in the two states are as follows:

θ θ′

a ∼θ1 b b �θ′1 a

a ∼θ2 b b �θ′2 a

a ∼θ3 b b �θ′3 a

a �θ4 b a �θ′4 b

a �θ5 b b �θ′5 a

Let SCR F be such that F (θ) = {a} and F (θ′) = {b}. Since F is Maskin monotonic and

satisfies no-veto power, F is Nash implementable.

The environment satisfies top-coincidence condition but does not satisfy DTA-N since a is

the unanimously most-preferred alternative in state θ. We argue that F is not implementable

by R(n̄)-random sampling for n̄ = 4. Suppose there exists a R(n̄)-sampling mechanism ΓR(n̄)

such that
{
l[R(n̄),m] : m ∈ NE(ΓR(n̄), θ̃)

}
= F (θ̃) for all θ̃ ∈ Θ.

Consider m ∈ NE(ΓR(n̄), θ
′) such that l[R(n̄),m] = b. It must be that gS(mS) = b,∀S ∈

Nn̄. Moreover, there must not exist any m′4 such that for some S ∈ Nn̄ with 4 ∈ S, we

have gS
(
(m′4,m−4)S

)
= a; otherwise, player 4 has an incentive to deviate to m′4 in state θ′.

Since b /∈ F (θ), it must be that m /∈ NE(ΓR(n̄), θ). Now, only player i ∈ {4, 5} is such that

there exists an alternative that she prefers to b in state θ. However, given m−4, player 4

cannot change the alternative implemented for any senate by changing her message. Hence,

it must be player 5 for whom there exists m′5 such that for some S ∈ Nn̄ with 5 ∈ S, we

have gS
(
(m′5,m−5)S

)
= a. Without loss of generality, let m′5 be the best response to m−5 in

state θ.

If m′ = (m′5,m−5) ∈ NE(ΓR(n̄), θ), then alternative b is implemented when the senate is

S = {1, 2, 3, 4}, a contradiction. Hence, m′ /∈ NE(ΓR(n̄), θ). Since m′5 is a best response to

m−5 = (m1,m2,m3,m4), and players 1, 2, and 3 are indifferent between a and b, it must be

that player 4 has an improving unilateral deviation. Let m̂4 be the best response to m′−4 =
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(m1,m2,m3,m
′
5). Since m′ was such that for at least one S ∈ Nn̄, we have gS(m′S) = a, the

new message profile m̂ = (m1,m2,m3, m̂4,m
′
5) must be such that for at least two S ∈ Nn̄, we

have gS(m̂S) = a; otherwise, player 4 will not strictly improve with her deviation to m̂4. If

m̂ ∈ NE(ΓR(n̄), θ), then the alternative b is implemented when the senate is S = {1, 2, 3, 4}
because, as already argued, gS(m1,m2,m3, m̂4) = b, which is a contradiction. Hence, m̂ /∈
NE(ΓR(n̄), θ). Since m̂4 is a best response to m̂−4 = (m1,m2,m3,m

′
5), and players 1, 2,

and 3 are indifferent between a and b, it must be that player 5 has an improving unilateral

deviation. Let m̃5 be the best response to m̂−5 = (m1,m2,m3, m̂4). Since m̂ was such that for

at least two S ∈ Nn̄, we have gS(m̂S) = a, the new message profile m̃ = (m1,m2,m3, m̂4, m̃5)

must be such that for at least three S ∈ Nn̄, we have gS(m̃S) = a; otherwise, player 5 will

not strictly improve with her deviation to m̃5. If m̃ ∈ NE(ΓR(n̄), θ), then the alternative b

is implemented when the senate is S = {1, 2, 3, 4} because gS(m1,m2,m3, m̂4) = b, which

is a contradiction. Hence, m̃ /∈ NE(ΓR(n̄), θ). By repeating the above argument, player

4 will switch to her best response m̂′4 and the message profile m̂′ = (m1,m2,m3, m̂
′
4, m̃5)

will be such that for at least four S ∈ Nn̄, we have gS(m̂′S) = a. This means that for all

S ∈ Nn̄ such that 5 ∈ S, we have gS(m̂′S) = a. Then m̂′ ∈ NE(ΓR(n̄), θ) because player 4

is already playing a best response to m̃−4 = (m1,m2,m3, m̃5) and player 5 cannot change

the alternative implemented when S = {1, 2, 3, 4}. However, gS(m1,m2,m3, m̂
′
4) = b for

S = {1, 2, 3, 4}, a contradiction. �

In the next example, the environment satisfies DTA-N but not top-coincidence condition.

The SCR is Nash implementable but it is not implementable by n̄-random sampling when

sample size n̄ = 4.

Example 5.10. Let N = {1, 2, 3, 4, 5}, A = {a, b, c} and Θ = {θ, θ′}. The preferences of

the five players over alternatives in the two states are as follows:

θ θ′

c �θ1 a ∼θ1 b c �θ′1 a �θ′1 b

a ∼θ2 b �θ2 c a ∼θ′2 b �θ′2 c

a ∼θ3 b �θ3 c a ∼θ′3 b �θ′3 c

a ∼θ4 b �θ4 c a ∼θ′4 b �θ′4 c

a ∼θ5 b �θ5 c a ∼θ′5 b �θ′5 c

Let SCR F be such that F (θ) = {a, b} and F (θ′) = {a}. F is Maskin monotonic.

However, F does not satisfy no-veto power since in θ′, b is most-preferred alternative for four

players but b /∈ F (θ′). Still, F is Nash implementable. To show this, first we argue that F

is implementable by S oligarchy, where S = {1}. Define an S-oligarchic mechanism such
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that M1 = {a, b} and gS(m1) = m1 for all m1 ∈ M1. Since only the message of player 1 is

transmitted to the planner, in state θ, player 1 is indifferent between announcing messages a

and b whereas in state θ′, player 1 will announce a. Thus, {gS(mS) : m ∈ NE(ΓO(S), θ)} =

{a, b} and {gS(mS) : m ∈ NE(ΓO(S), θ
′)} = {a}. Hence, F is implementable by S = {1}

oligarchy. It follows from Proposition 3.6 that F is Nash implementable.

The environment satisfies DTA-N but not top-coincidence condition since both a and b

are most-preferred alternatives for all players 2 through 5 in both states θ and θ′. We argue

that F is not implementable by R(n̄)-random sampling for n̄ = 4. Suppose there exists a

R(n̄)-sampling mechanism ΓR(n̄) such that
{
l[R(n̄),m] : m ∈ NE(ΓR(n̄), θ̃)

}
= F (θ̃) for all

θ̃ ∈ Θ.

Consider m ∈ NE(ΓR(n̄), θ) such that l[R(n̄),m] = b. It must be that gS(mS) = b, ∀S ∈
Nn̄. Observe that for any m′′1 and S ∈ Nn̄ which includes player 1, gS

(
(m′′1,m−1)S

)
6= c;

otherwise, player 1 would unilaterally deviate to m′′1 from m in state θ. Moreover, because

b /∈ F (θ′), it must be that b /∈ NE(ΓR(n̄), θ
′). Hence, there must exist player i, m′i ∈ Mi

and S ∈ Nn̄ such that gS
(
(m′i,m−i)

S
)
�θ′i b. Because b is a most-preferred alternative for

players 2 through 5 in state θ′, it must be that i = 1. We already know gS
(
(m′1,m−1)S

)
6= c.

Consequently, gS
(
(m′1,m−1)S

)
= a.

Now consider
(
m′1,m−1

)
. As argued, alternative a is implemented for some S ∈ Nn̄

such that 1 ∈ S. However, alternative b is implemented when the senate is S = {2, 3, 4, 5}
since gS

(
(m′1,m−1)S

)
= gS(mS) = b as (m′1,m−1)S = mS. Hence, to reach the desired

contradiction, it suffices to show
(
m′1,m−1

)
∈ NE(ΓR(n̄), θ).

If 1 /∈ S ∈ Nn̄, then gS
(
(m′1,m−1)S

)
= b because (m′1,m−1)S = mS. In addition, if

1 ∈ S ∈ Nn̄, then gS
(
(m′1,m−1)S

)
is either a or b. Since both alternatives a and b are

most-preferred by players 2 through 5 in state θ, none of these players has an incentive to

deviate from (m′1,m−1). We already know that for any m′′1 and S ∈ Nn̄ which includes

player 1, gS
(
(m′′1,m−1)S

)
6= c. Therefore, for any unilateral deviation by player 1 from

(m′1,m−1), either a or b is implemented. But player 1 is indifferent between a and b in

state θ. Hence, player 1 also has no incentive to deviate from (m′1,m−1) in state θ. Thus,(
m′1,m−1

)
∈ NE(ΓR(n̄), θ). �

6 Conclusion

Within the large class of economic environments, our results suggest that costs and time

involved in collecting opinions of individuals in a community in order implement Maskin

monotonic SCRs can be substantially reduced by using alternative political processes. For

simplicity, let’s assume that there is a fixed cost c of collecting each individual’s message.
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Then the cost incurred in direct democracy is nc. On the other hand, our result on oligarchic

democracy implies that the expected cost of collecting individuals’ messages can be reduced

to arbitrarily close to 3c in economic environments. However, there is a positive, though very

small chance, that the realized cost will be nc when N is selected as the senate in oligarchic

democracy. If we are concerned with the ex-post cost of collecting individuals’ messages,

then random sampling with sample size of four can be used in economic environments,

guaranteeing an ex-post cost of only 4c.

Our positive results, however, need not carry over to incomplete information environ-

ments. For instance, if players have private values, then the state of the world cannot be

known even if n − 1 individuals truthfully report their types. Thus, SCRs that are not

“measurable” with respect to the information of the selected subset of individuals cannot

be implemented in such an environment. Nevertheless, we expect that similar positive re-

sults can be obtained for incomplete information environments in which some subsets of the

individuals are “better” informed than others. We leave these issues for future research.

7 Appendix

Proof of Theorem 4.4: Consider the sequence of (S, εk)-oligarchic-democratic mechanisms(
ΓO(S,εk)

)∞
k=1

defined in the sketch of the proof.

Step 1. For all k and θ ∈ Θ, F (θ) ⊆
{
l[S, εk,m] : m ∈ NE(ΓO(S,εk), θ)

}
.

Fix k and θ. Pick any a ∈ F (θ). Consider m ∈ M such that mi = (θ, a, a, a, 0) for all

i ∈ N . Then l[S, εk,m] = a. We argue that m ∈ NE(ΓO(S,εk), θ). Suppose player i deviates

from mi to m′i = (θi, a
1
i , a

2
i , a

3
i , zi).

First, suppose i ∈ S. Then rule (ii) will be used when N is the senate. In that case,

a is implemented if lk[i] �θi a and a2
i is implemented if a �θi lk[i]. On the other hand, rule

(ii’) will be used when S is the senate. In that case, a is implemented if lk[i] �θi a and a3
i

is implemented if a �θi lk[i]. Therefore, if lk[i] �θi a, then l[S, εk, (m
′
i,m−i)] = a whereas if

a �θi lk[i], then l[S, εk, (m
′
i,m−i)] = lk[i]. Hence, in either case, player i does not improve by

her deviation.

Second, suppose i ∈ N \ S. Then rule (ii) will be used when N is the senate. In that

case, a is implemented if a2
i �θi a and a2

i is implemented if a �θi a2
i . On the other hand, a

will be implemented when S is the senate. Therefore, if a2
i �θi a, then l[S, εk, (m

′
i,m−i)] = a

whereas if a �θi a2
i , then l[S, εk, (m

′
i,m−i)] is the lottery that assigns probability εk to a2

i

and probability 1− εk to a. Since preferences over lotteries are monotone, player i does not

improve by her deviation.

Therefore, m ∈ NE(ΓO(S,εk), θ).
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Step 2. For all k and θ ∈ Θ,
{
l[S, εk,m] : m ∈ NE(ΓO(S,εk), θ)

}
⊆ F (θ).

Fix k and θ. Pick any m̂ ∈ NE(ΓO(S,εk), θ). For any i, let m̂i = (θ̂i, â
1
i , â

2
i , ẑi). We show

that l[S, εk, m̂] ∈ F (θ).

First, suppose m̂ is such that gN(m̂) follows rule (iii). This means for any i ∈ N , gN(m̂)

is a most-preferred alternative in state θ. If not, then i can deviate to mi that differs from m̂i

only in the second and last components, with a1
i being one of her most-preferred alternatives

in state θ and zi > maxj 6=i ẑj. If N is the selected senate, then gN(mi, m̂−i) follows rule (iii)

and hence, gN(mi, m̂−i) = a1
i . On the other hand, if S is the selected senate, then one of the

following in true:

• i ∈ N \ S and gS((mi, m̂−i)
S) = gS(m̂S).

• i ∈ S and gS((mi, m̂−i)
S) follows rule (iii’). Then gS((mi, m̂−i)

S) = a1
i .

• i ∈ S and gS((mi, m̂−i)
S) follows rule (ii’). There are two possibilities: gS(m̂S) followed

either rule (i’) or (ii’). However, in either case gS((mi, m̂−i)
S) = gS(m̂S) since the

alternative implemented in rule (ii’) does not depend on the second and last components

of player i’s message.

Since preferences over lotteries are monotone, player i will be better-off after the deviation to

mi, a contradiction. But if gN(m̂) is the most-preferred alternative in state θ for all players,

then that contradicts the fact that E is an economic environment.

Second, suppose m̂ is such that gN(m̂) follows rule (ii). Using a similar argument as in

the previous case, gN(m̂) must be a most-preferred alternative in state θ for at least n − 1

players, which again contradicts with E being economic.

Therefore, gN(m̂) follows rule (i). Hence, m̂i = (θ̂, â1
i , â, â, 0) for all i ∈ N , where

â ∈ F (θ̂). If â ∈ F (θ), then we are done. On the other hand, suppose â /∈ F (θ). Then, due

to weak S-monotonicity of F , at least one of the following is true:

• There exist player ik ∈ N \S and alternative a′k such that â �θ̂ik a
′
k and a′k �θik â. Then,

thanks to rule (ii), player ik has an incentive to deviate to (θ̂, â1
i , a
′
k, â, 0).

• There exist player ik ∈ S, lottery lk, and alternatives âk and ãk such that

lk(âk) = εk, lk(ãk) = 1− εk, â �θ̂ik lk and lk �θik â.

Thanks to rules (ii) and (ii’), player ik has an incentive to deviate to (θ̂, â1
i , âk, ãk, 0).

Proof of Theorem 4.8: For any ε ∈ (0, 1), define ΓO(S,ε) = ((Mi)i∈N , O(S, ε), (gS
′
)S′∈N )

such that for all i ∈ N ,

Mi = Θ× A× A× Z+.
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Let a typical message mi be of the form (θi, a
1
i , a

2
i , zi). For all S ′ ∈ {N,S}, the outcome

function gS
′

is as follows:

(i) If for every player i ∈ S ′, mi = (θ, a1
i , a, 0) and a ∈ F (θ), then gS

′(
(mi)i∈S′

)
= a.

(ii) If for |S ′| − 1 players i 6= j in S ′, mi = (θ, a1
i , a, 0) and a ∈ F (θ), but mj =

(θj, a
1
j , a

2
j , zj) 6= (θ, a1

j , a, 0), then

gS
′(

(mi)i∈S′
)

=

{
a if a2

j �θj a.

a2
j if a �θj a2

j .

(iii) In all other cases, gS
′(

(mi)i∈S′
)

= a1
j where j ∈ S ′ is the player with the lowest index

among those players in S ′ who announce the highest integer in the profile (mi)i∈S′ .

Finally, for all S ′ ∈ N \ {N,S}, the outcome function gS
′

can be arbitrary.

Step 1. For all ε ∈ (0, 1) and θ ∈ Θ, F (θ) ⊆
{
l[S, ε,m] : m ∈ NE(ΓO(S,ε), θ)

}
.

Fix ε ∈ (0, 1) and θ. Pick any a ∈ F (θ). Consider m ∈ M such that mi = (θ, a, a, 0) for

all i ∈ N . Then l[S, ε,m] = a. We argue that m ∈ NE(ΓO(S,ε), θ). Suppose player i deviates

from mi to m′i = (θi, a
1
i , a

2
i , zi).

First, suppose i ∈ S. Then rule (ii) will be used irrespective of whether N or S is the

senate. In either case, a2
i is implemented if a �θi a2

i whereas a is implemented if a2
i �θi a.

Thus, player i does not improve by her deviation.

Second, suppose i ∈ N \ S. Then rule (ii) will be used when N is the senate. In that

case, a2
i is implemented if a �θi a2

i whereas a is implemented if a2
i �θi a. On the other hand,

a is implemented when S is the senate. Since the preferences over lotteries are monotone,

player i does not improve by her deviation.

Therefore, m ∈ NE(ΓO(S,ε), θ).

Step 2. For all ε ∈ (0, 1) and θ ∈ Θ,
{
l[S, ε,m] : m ∈ NE(ΓO(S,ε), θ)

}
⊆ F (θ).

Fix ε ∈ (0, 1) and θ. Pick any m̂ ∈ NE(ΓO(S,ε), θ). For any i, let m̂i = (θ̂i, â
1
i , â

2
i , ẑi). We

show that l[S, ε, m̂] ∈ F (θ).

First, suppose m̂ is such that gN(m̂) follows rule (iii). This means for any i ∈ N , gN(m̂)

is a most-preferred alternative in state θ. If not, then i can deviate to mi that differs from m̂i

only in the second and last components, with a1
i being one of her most-preferred alternatives

in state θ and zi > maxj 6=i ẑj. If N is the selected senate, then gN(mi, m̂−i) follows rule (iii)

and hence, gN(mi, m̂−i) = a1
i . On the other hand, if S is the selected senate, then one of the

following in true:

• i ∈ N \ S and gS((mi, m̂−i)
S) = gS(m̂S).
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• i ∈ S and gS((mi, m̂−i)
S) follows rule (iii). Then gS((mi, m̂−i)

S) = a1
i .

• i ∈ S and gS((mi, m̂−i)
S) follows rule (ii). Then gS((mi, m̂−i)

S) = gS(m̂S).

Since preferences over lotteries are monotone, player i will be better-off after the deviation

to mi, a contradiction. But gN(m̂) being the most-preferred alternative in state θ for all

players contradicts DTA-S.

Second, suppose m̂ is such that gN(m̂) follows rule (ii). It must be that for n− 1 players

i 6= j in N , m̂i = (θ̂, â1
i , â, 0) and â ∈ F (θ̂), but m̂j = (θ̂j, â

1
j , â

2
j , ẑj) 6= (θ̂, â1

j , â, 0). Using a

similar argument as in the previous case, gN(m̂) must be a most-preferred alternative in state

θ for all i 6= j. Since F satisfies no-veto power, we have gN(m̂) ∈ F (θ). If j ∈ N \S, then that

contradicts DTA-S. Hence, j ∈ S. It follows from rule (ii) that gS(m̂S) = gN(m̂) ∈ F (θ).

Finally, suppose gN(m̂) follows rule (i). Hence, each player i sends the message m̂i =

(θ̂, â1
i , â, 0), where â ∈ F (θ̂). If â ∈ F (θ), then we are done. On the other hand, suppose

â /∈ F (θ). Then, since F is Maskin monotonic, there exist player i ∈ N and alternative a′

such that â �θ̂i a′ and a′ �θi â. Then, thanks to rule (ii), player i has an incentive to deviate

to (θ̂, â1
i , a
′, 0).

Since the above argument was made for all ε ∈ (0, 1), it follows that F is implementable

by S-oligarchic democracy.

Proof of Theorem 4.9: For any ε ∈ (0, 1), define ΓO(S,ε) = ((Mi)i∈N , O(S, ε), (gS
′
)S′∈N )

such that for all i ∈ N ,

Mi = Θ× A× A× Z+.

Let a typical message mi be of the form (θi, a
1
i , a

2
i , zi). The outcome function gN is as follows:

(i) If for every player i ∈ N , mi = (θ, a1
i , a, 0) and a ∈ F (θ), then gN(m) = a.

(ii) If for n−1 players i 6= j in N , mi = (θ, a1
i , a, 0) and a ∈ F (θ), but mj = (θj, a

1
j , a

2
j , zj) 6=

(θ, a1
j , a, 0), then

j ∈ N \ S =⇒ gN(m) =

{
a if a2

j �θj a.

a2
j if a �θj a2

j .

j ∈ S =⇒ gN(m) = a.

(iii) In all other cases, gN(m) = a1
j where j ∈ N is the player with the lowest index among

those who announce the highest integer.

The outcome function gS is as follows:
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(i’) If for every player i ∈ S, mi = (θ, a1
i , a, 0) and a ∈ F (θ), then gS

(
(mi)i∈S

)
= a.

(ii’) If for |S|−1 players i 6= j in S, mi = (θ, a1
i , a, 0) and a ∈ F (θ), butmj = (θj, a

1
j , a

2
j , zj) 6=

(θ, a1
j , a, 0), then

gS
(
(mi)i∈S

)
=

{
a if a2

j �θj a.

a2
j if a �θj a2

j .

(iii’) In all other cases, gS
(
(mi)i∈S

)
= a1

j where j ∈ S is the player with the lowest index

among those players in S who announce the highest integer in the profile (mi)i∈S.

Finally, for all S ′ ∈ N \ {N,S}, the outcome function gS
′

can be arbitrary.

Step 1. For all ε ∈ (0, 1) and θ ∈ Θ, F (θ) ⊆
{
l[S, ε,m] : m ∈ NE(ΓO(S,ε), θ)

}
.

Fix ε ∈ (0, 1) and θ. Pick any a ∈ F (θ). Consider m ∈ M such that mi = (θ, a, a, 0) for

all i ∈ N . Then l[S, ε,m] = a. We argue that m ∈ NE(ΓO(S,ε), θ). Suppose player i deviates

from mi to m′i = (θi, a
1
i , a

2
i , zi).

First, suppose i ∈ S. Then rule (ii) will be used when N is the senate and hence, a will

be implemented. On the other hand, rule (ii’) will be used when S is the senate. In that

case, a2
i is implemented if a �θi a2

i whereas a is implemented if a2
i �θi a. Since the preferences

over lotteries are monotone, player i does not improve by her deviation.

Second, suppose i ∈ N \ S. Then rule (ii) will be used when N is the senate. In that

case, a2
i is implemented if a �θi a2

i whereas a is implemented if a2
i �θi a. On the other hand,

a is implemented when S is the senate. Since the preferences over lotteries are monotone,

player i does not improve by her deviation.

Therefore, m ∈ NE(ΓO(S,ε), θ).

Step 2. For all ε ∈ (0, 1) and θ ∈ Θ,
{
l[S, ε,m] : m ∈ NE(ΓO(S,ε), θ)

}
⊆ F (θ).

Fix ε ∈ (0, 1) and θ. Pick any m̂ ∈ NE(ΓO(S,ε), θ). For any i, let m̂i = (θ̂i, â
1
i , â

2
i , ẑi). We

show that l[S, ε, m̂] ∈ F (θ).

First, suppose m̂ is such that gN(m̂) follows rule (iii). This means for any i ∈ N , gN(m̂)

is a most-preferred alternative in state θ. If not, then i can deviate to mi that differs from m̂i

only in the second and last components, with a1
i being one of her most-preferred alternatives

in state θ and zi > maxj 6=i ẑj. If N is the selected senate, then gN(mi, m̂−i) follows rule (iii)

and hence, gN(mi, m̂−i) = a1
i . On the other hand, if S is the selected senate, then one of the

following in true:

• i ∈ N \ S and gS((mi, m̂−i)
S) = gS(m̂S).

• i ∈ S and gS((mi, m̂−i)
S) follows rule (iii’). Then gS((mi, m̂−i)

S) = a1
i .

• i ∈ S and gS((mi, m̂−i)
S) follows rule (ii’). Then gS((mi, m̂−i)

S) = gS(m̂S).
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Since preferences over lotteries are monotone, player i will be better-off after the deviation

to mi, a contradiction. But gN(m̂) being the most-preferred alternative in state θ for all

players contradicts DTA-S.

Second, suppose m̂ is such that gN(m̂) follows rule (ii). It must be that for n− 1 players

i 6= j in N , m̂i = (θ̂, â1
i , â, 0) and â ∈ F (θ̂), but m̂j = (θ̂j, â

1
j , â

2
j , ẑj) 6= (θ̂, â1

j , â, 0). Using

a similar argument as in the previous case, gN(m̂) must be a most-preferred alternative in

state θ for all i 6= j. If j ∈ N \ S, then that contradicts DTA-S. Hence, j ∈ S. It follows

from rule (ii) that gN(m̂) = â. If S is the senate, then rule (ii’) will be used. We argue

that gS(m̂S) = â. Suppose not; then due to rule (ii’), gS(m̂S) = â2
j . This means for any

i ∈ S \ {j}, â2
j is a most-preferred alternative in state θ. If not, then such an i can deviate

to mi that differs from m̂i only in the second and last components, with a1
i being one of

her most-preferred alternatives in state θ and zi > ẑj. If N is the selected senate, then

gN(mi, m̂−i) follows rule (iii), whereas if S is the selected senate, then gS((mi, m̂−i)
S) follows

rule (iii’). Hence, gN(mi, m̂−i) = gS((mi, m̂−i)
S) = a1

i . Since preferences over lotteries are

monotone, player i will be better-off after the deviation to mi, a contradiction. Thus, both â2
j

and â are in P1(i, θ) for all i ∈ S \ {j}. By assumption, the environment satisfies unique-top

condition. Hence, it must be that â2
j = â. Now, if â ∈ F (θ), then we are done. On the other

hand, â ∈ F (θ̂), â /∈ F (θ), and Maskin monotonicity of F imply that there exists a i′ ∈ N
and a′ ∈ A such that â �θ̂i′ a′ but a′ �θi′ â. But â ∈ P1(i, θ) for all i 6= j. Hence, i′ = j.

But then m̂ cannot be a Nash equilibrium since due to rules (ii) and (ii’), player j has an

improving deviation mj = (θ̂j, â
1
j , a
′, ẑj), a contradiction.

Finally, suppose gN(m̂) follows rule (i). Hence, each player i send the message m̂i =

(θ̂, â1
i , â, 0), where â ∈ F (θ̂). If â ∈ F (θ), then we are done. On the other hand, suppose

â /∈ F (θ). Then, since F is Maskin monotonic, there exist player i ∈ N and alternative a′

such that â �θ̂i a′ and a′ �θi â. Then, thanks to rules (ii) and (ii’), player i has an incentive

to deviate to (θ̂, â1
i , a
′, 0).

Since the above argument was made for all ε ∈ (0, 1), it follows that F is implementable

by S-oligarchic democracy.

Proof of Theorem 5.4: Consider the R(n̄)-sampling mechanism ΓR(n̄) defined in the sketch

of the proof.

Step 1. For any θ ∈ Θ, F (θ) ⊆
{
l[R(n̄),m] : m ∈ NE(ΓR(n̄), θ)

}
.

Pick any a ∈ F (θ) and consider m ∈ M such that mi = (θ, a, a, 0) for all i ∈ N . Then

l[R(n̄),m] = a. We argue that m ∈ NE(ΓR(n̄), θ). Suppose player i deviates from mi to

m′i = (θi, a
1
i , a

2
i , zi). Pick any S ∈ Nn̄. First, suppose S ∈ Nn̄ \ Nn̄(i). Then rule (i) will be

used when S is the senate and hence, a will be implemented. Second, suppose S ∈ Nn̄(i).

Since |S| = n̄ ≥ 4, rule (ii) will be used when S is the senate. In that case, a is implemented
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if a2
i �θi a or S /∈ S(i) and a2

i is implemented if a �θi a2
i and S ∈ S(i). Since preferences over

lotteries are monotone, player i does not improve by her deviation. So, m ∈ NE(ΓR(n̄), θ).

Step 2. For any θ ∈ Θ,
{
l[R(n̄),m] : m ∈ NE(ΓR(n̄), θ)

}
⊆ F (θ).

We show that if m̂ ∈ NE(ΓR(n̄), θ), then l[R(n̄), m̂] ∈ F (θ). For any i, let m̂i =

(θ̂i, â
1
i , â

2
i , ẑi). Let i1 be the player with the lowest index amongst the players who announce

the highest integer in m̂.

First, suppose m̂ is such that there exist at least three players, i2, i3 and i4 such that

(θ̂i2 , â
2
i2
, ẑi2) 6= (θ̂i3 , â

2
i3
, ẑi3) 6= (θ̂i4 , â

2
i4
, ẑi4) – notice that the second components of these

players’ messages are not being considered. Clearly, there is at most one player in {i2, i3, i4},
denoted by ik, such that (θ̂i1 , â

2
i1
, ẑi1) = (θ̂ik , â

2
ik
, ẑik). Consider any j ∈ N and pick any

S(j) ∈ Nn̄(j) such that (a) if ik = i1, then {i2, i3, i4} ⊂ S(j) and (b) if ik 6= i1, then

{i1, i2, i3, i4} \ {ik} ⊂ S(j) (this is possible since n̄ ≥ 4). Now if S(j) is selected as the

senate, then since there are three players in S(j) with different messages, rule (iii) will be

used. Moreover, since player i1 ∈ S(j), the alternative announced by player i1 in the second

component of her message, â1
i1

, will be implemented when S(j) is selected. We claim that

for any j ∈ N , â1
i1

is a most-preferred alternative in state θ. Suppose not and let j ∈ N be

such that â1
i1
/∈ P1(j, θ). Let player j deviate to mj that differs from m̂j only in the second

and last components, with a1
j being one of her most-preferred alternatives in state θ and

zj > ẑi1 . If the selected senate is some S ′ ∈ Nn̄(j), then one of the following will hold:

• gS′
((mj, m̂−j)

S′
) follows rule (iii). Then gS

′
((mj, m̂−j)

S′
) = a1

j . Moreover, this will be

the case when S ′ = S(j).

• gS′
((mj, m̂−j)

S′
) follows rule (ii). There are two possibilities: gS

′
(m̂S′

) followed either

rule (i) or (ii). However, in either case gS
′
((mj, m̂−j)

S′
) = gS

′
(m̂S′

) since the alternative

implemented in rule (ii) does not depend on the second and last components of player

j’s message.

On the other hand, if the selected senate is S ′ ∈ Nn̄\Nn̄(j), then gS
′
((mj, m̂−j)

S′
) = gS

′
(m̂S′

).

Since preferences over lotteries are monotone, player j will be better-off after the deviation

to mj, a contradiction. But if â1
i1

is the most-preferred alternative in state θ for all players,

then that contradicts E satisfying DTA-N .

Second, suppose m̂ is such that there exist at least two players, i2 and i3 such that

(θ̂i2 , â
2
i2
, ẑi2) 6= (θ̂i3 , â

2
i3
, ẑi3) – again, notice that the second components of these players’

messages are not being considered. If there exists a player j such that (θ̂i2 , â
2
i2
, ẑi2) 6=

(θ̂i3 , â
2
i3
, ẑi3) 6= (θ̂j, â

2
j , ẑj), then we are back in the first case. Hence, for every player j

there exists a player in {i2, i3}, denoted by i(j), such that (θ̂j, â
2
j , ẑj) = (θ̂i(j), â

2
i(j), ẑi(j)). Let

J2 = {j ∈ N : i(j) = i2} and J3 = {j ∈ N : i(j) = i3}. As before, i1 is the player with the
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lowest index amongst the players who announce the highest integer in m̂. Without loss of

generality, suppose i1 ∈ J2.

• Suppose there exists j2 6= i1 and j3 6= i3 such that j2 ∈ J2 and j3 ∈ J3. Consider

any j ∈ N and define S(j) as follows. If j ∈ {i1, j2, i3, j3}, then let S(j) be any set

in Nn̄(j) such that {i1, j2, i3, j3} ⊆ S(j). If j ∈ J2 \ {i1, j2}, then let S(j) be any set

in Nn̄(j) such that {i1, j, i3, j3} ⊆ S(j). Finally, if j ∈ J3 \ {i3, j3}, then let S(j) be

any set in Nn̄(j) such that {i1, j2, i3, j} ⊆ S(j). In defining S(j), we have made sure

that there are at least two players each from J2 and J3, which is possible since n̄ ≥ 4.

Therefore, if S(j) is selected as the senate, then rule (iii) will be used and hence, the

alternative announced by player i1 in the second component of her message, â1
i1

, will

be implemented. As before, we can show that for any j ∈ N , â1
i1

is a most-preferred

alternative in state θ, which contradicts E satisfying DTA-N .

• Suppose there exists j2 6= i1 such that j2 ∈ J2 but J3 = {i3}. Consider any j ∈ N and

let S(j) be any set in Nn̄(j) such that {i1, j2, i3} ⊂ S(j). Again, this is possible since

n̄ ≥ 4. If S(j) is selected as the senate, then player i3 is the only player in S(j) who

“disagrees”. If ẑi1 6= 0 or â2
i1
/∈ F (θ̂i1), then rule (iii) will be used in S(j). In this case,

â1
i1

will be implemented in S(j). As before, we can show that for any j ∈ N , â1
i1

is a

most-preferred alternative in state θ, which contradicts E satisfying DTA-N .

On the other hand, if ẑi1 = 0 and â2
i1
∈ F (θ̂i1), then rule (ii) will be used in S(j).

In fact, in this case, rule (ii) will be used for any S ∈ Nn̄(i3) (since i3 is the only

player in S who “disagrees”) whereas rule (i) will be used for any S ∈ Nn̄ \ Nn̄(i3)

(since all players in S “agree”). Therefore, alternative â2
i1

will be implemented for all

S ∈ Nn̄ \ S(i3).

– Suppose â2
i3
�θ̂i1i3 â2

i1
. Then â2

i1
is also implemented for all S ∈ S(i3). If â2

i1
∈ F (θ),

then we are done. If â2
i1

/∈ F (θ), then by Maskin monotonicity, there exists

a player i and a′ such that â2
i1
�θ̂i1i a′ but a′ �θi â2

i1
. Let player i deviate to

m′i = (θ̂i, a
′, a′, z′), where z′ > 0 = ẑi1 ≥ ẑi3 . If the selected senate is some

S ′ ∈ Nn̄(i), then one of the following will hold:

∗ gS′
((m′i, m̂−i)

S′
) follows rule (iii). Then gS

′
((m′i, m̂−i)

S′
) = a′.

∗ gS′
((m′i, m̂−i)

S′
) follows rule (ii). Then gS

′
((m′i, m̂−i)

S′
) = a′ if S ′ ∈ S(i) and

gS
′
((m′i, m̂−i)

S′
) = gS

′
(m̂S′

) = â2
i1

if S ′ /∈ S(i).

Since there is a positive probability of selecting a senate in S(i), player i has an

incentive to deviate, which is a contradiction.
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– Suppose â2
i1
�θ̂i1i3 â2

i3
. Then â2

i3
is implemented for all S ∈ S(i3). If â2

i1
= â2

i3
∈

F (θ), then we are done. If â2
i1

= â2
i3
/∈ F (θ), then we are back in the previous

case. So suppose â2
i1
6= â2

i3
. We argue that {â2

i1
, â2

i3
} ∈ P1(j, θ) for all j 6= i3.

If not, then let player j deviate to mj such that mj differs from m̂j only in the

second and last components, with a1
j being her most-preferred alternative in state

θ and zj > 0 = ẑi1 ≥ ẑi3 . If the selected senate is some S ′ ∈ Nn̄(j), then one of

the following will hold:

∗ gS′
((mj, m̂−j)

S′
) follows rule (iii). Then gS

′
((mj, m̂−j)

S′
) = a1

j . This will

be the case for all S ′ ∈ Nn̄(j) such that i3 ∈ S ′. Furthermore, there exist

S ′1 ∈ S(i3) and S ′2 ∈ Nn̄ \S(i3) such that {i3, j} ∈ S ′1 and {i3, j} ∈ S ′2. This is

because n > n̄ ≥ 4. Before the deviation, gS
′
1(m̂S′

1) = â2
i3

while gS
′
2(m̂S′

2) = â2
i1

with at least one alternative out of those two being strictly worse for j than

a1
j . On the other hand, after the deviation, player j will be able to implement

her most-preferred alternative both when the senate is S ′1 and S ′2.

∗ gS′
((mj, m̂−j)

S′
) follows rule (ii). This will be the case for all S ′ ∈ Nn̄(j) such

that i3 /∈ S ′. Hence, gS
′
(m̂S′

) followed rule (i). However, gS
′
((mj, m̂−j)

S′
) =

gS
′
(m̂S′

) because the alternative implemented under rule (ii) does not depend

on the second and last components of j’s message.

On the other hand, if the selected senate is S ′ ∈ Nn̄\Nn̄(j), then gS
′
((mj, m̂−j)

S′
) =

gS
′
(m̂S′

). Since preferences over lotteries are monotone, player j will be better-off

after the deviation to mj, a contradiction. But {â2
i1
, â2

i3
} ∈ P1(j, θ) for all j 6= i3

such that â2
i1
6= â2

i3
contradicts E satisfying top-coincidence condition.

• Suppose there exists j3 6= i3 such that j3 ∈ J3 but J2 = {i1}. This case can be argued

like the previous case.

Therefore, m̂ is such that (θ̂i, â
2
i , ẑi) = (θ̂, â, ẑ) for all i ∈ N . Then i1 = 1.

• Suppose either ẑ > 0 or â /∈ F (θ̂). Consider any j ∈ N and let S(j) be any set in

Nn̄(j) such that 1 ∈ S(j). If S(j) is selected as the senate, then rule (iii) will be

used and hence, the alternative announced by player 1 in the second component of her

message, â1
1, will be implemented. As before, we can show that for any j ∈ N , â1

1 is a

most-preferred alternative in state θ, which contradicts E satisfying DTA-N .

• Suppose ẑ = 0 and â ∈ F (θ̂). Then because of rule (i), for any S ∈ Nn̄, the alternative

â is implemented when S is the selected senate. If â ∈ F (θ̂), then we are done. If

â /∈ F (θ̂), then there exists a player i and a′ such that â �θ̂i a′ but a′ �θi â. Thanks to

rule (ii), player i has an incentive to deviate to (θ̂, â1
i , a
′, 0).
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