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1 Introduction

In queueing theory it is often wanted to express expectations of time-stationary pro-
cesses in terms of expectations of customer-stationary sequences. It turns out that the
underlying theory for many problems of this type concerns the relationship between two
probability measures, the distribution P of a stationary (marked) point process and the
Palm distribution Po (intuitively arising from P by conditioning on the occurrence of
a point (with some mark) in the origin). See e.g. Franken et al. (1982) and Baccelli
8z Brémaud (1987). As an example we mention Little's law (cf. page 41 of the second
reference), linking quantities as the mean number of customers in a queueing system and
the mean waiting time. The first mean is considered under P and the second under Po.
For this reason it is important to obtain a good understanding of the relationship between
P and Po.

In this paper we will try to bridge the gap between P and Po. We will confine
ourselves to unmarked point processes, although in the final section a generalization to
marked point processes is briefly indicated.

The approach in this paper could be called the Radon-Nákodym approach. Several prob-
ability measures are considered which are equivalent to Pa (in the sense of mutual dom-
ination), having simple relations with P. The resulting R,adon-Nikodym derivatives are
used to express Po-expectations in terms of P-expectations (and vice versa).

Some of the results in this paper are also obtained elsewhere by more conventional
methods. Usually, however, our approach is faster and more natural, adding some special
elements.

The formal definition of the Palm distribution (see (1.3) below) is one possibility to go
from P to Po. With the classical inversion formula (see (1.5) below) we can go the other
way. We will, however, consider probability measures which are intermediate between !'
and Po, having simple relations with both.

Examples of such intermediate probability measures are considered in Section 2. They
are equivalent to Po or to P with simple Radon-Nikodym derivatives. The advantages
of using these measures as a bridge is illustrated. As a result of this approach some cross
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ergodic theorems are proved in Section 3. No ergodicity conditions are assumed here.

As a corollary a conditional version of the well-known inversion formula (1.5) is derived.

Starting from P, some strong or pointwise approximations of Pa are considered in Section

4. For these approximations to hold necessary and sufficient conditions are formulated.
For this purpose a notion weaker than ergodicity of the point process is introduced. Some

other intermediate probability measures, all equivalent to Po, are considered. The well-

known (and intuitively clear) uniform approximation of Po by conditional probability

measures Pl,,,, usually referred to as local characterization of the Palm distribution (cf.,

e.g., Franken et al. (1982; Th. 1.3.7)), is also considered. We derive a very simple

expression for the total variation distance of Po and Pl,,,. Conditions are given such that

the rate of the resulting uniform convergence is of order 1 ~n. In Section 5 a generalization

to marked point processes is briefly indicated.

At the end of this section we formalize some of the notions mentioned above and give

some other definitions and notations.

A point process on R is a random element ~ in the class M of all integer-valued measures
cp on the Q-field Bor R of Borel sets on R for which

cp(B) c oo for all bounded B E Bor R.

Let ~1~1 be the o-field generated by the sets [~p(B) - k] :- {cp E M: ~p(B) - k}, k E No

and B E Bor R. See Matthes, Kerstan 8e Mecke ( 1978), Kallenberg ( 1983~86) or Daley

8t Vere-Jones ( 1988) for more information. Set

M~ :- {~p E M: cp(-oo, 0) - ~p(0, oo) - oo; cp{x} G 1 for all x E R},

M~ :- M~ n ~i.

We will always assume that ~(or rather its distribution P) is stationary (i.e., ~(t f.) -d

~ for all t E R). We also assume that ~~ 0 wpl, that ~ is simple and that the intensity

.~ is finite; or, equivalently,
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P(M~) - 1 and a:- E~(0,1] G oo.

The atoms of cp E M~ are denoted by X;(cp), i E Z, with the convention that

...X-1(~P) G Xo(~P) C 0 G Xl(~P) G Xz(~P) G... .

We interpret X;(cp) as the time of the ith arrival (or poínt) and a;(cp) :- X;}1(cp) -X;(cp)

as the ith interarrival time ( or interval length). We have ~(B) :- ~{i E Z: X; E B}

and [a; E B] :- [a;(cp) E B] :- {cp E M~ : a;(cp) E B}, B E Bor R.

For t E R the time shift T~ : M--~ M is defined by T~~p :- ~p(t ~.), cp E M. By

stationarity it is obvious that these mappings are measure preserving under P. The

atoms of Ticp are X;(cp) - t, i E Z. For n E Z the point shift 9„ : M~ -~ M~ is defined

by B„cp :- cp(X„(cp) -F .), ~p E M~. Note that Bn(el~) - e„tl~.

A random sequence (~;) :- (~;);E~ with ~; : M~ -~ R is generated by the point shift Bl

if ~„(61yo) -~„}lcp for all cp E M~ and n E Z. See also Nieuwenhuis (1989; p. 600).

Examples of such sequences are (a;) and ( lA o B;), A E~í~. The general form is

(f o B;), f: M~ -~ M~ measurable.

The distribution P„ of Bn~ plays an important role in this paper. It arises from P by

shifting the origin to the nth arrival.

P„ :- PB;,', n E Z. (1.2)

We now consider the Palm distribution Po of ~. An intuitive definition of PQ was

stated before. The formal definition of the Palm distribution Po is

Po(A) :- ~E I~(~, lA(6;~) I, A E~1~.
;-i

Set Mo :- {cp E M~ : cp{0} - 1} and Mo :- Mo fl ~t. It is obvious that Po is a

probability measure on (M~, ~l~) with Po(Mo) - 1. Note also that Po[ao - 0] - 0 by
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(1.3), since ~ has no multiple points wpl. According to Franken et al. (1982; Th. 1.2.7)

Po has the following important property:

Po - poB;, l for all n E Z. (1.4 )

Consequently, any sequence (~; ) generated by 61 is Po-stationary, i.e., (~1i ...,~„) and

(~kfl, ...,~kt„) have the same distribution under Pa, all n E N and k E Z. Particularly,

(a;) is Po-stationary.

Definition (1.3) allows us to express Po in terms of P. The following inversion formula

expresses P in terms of Po (cf. Franken et al. (1982; p. 27)).

P(A) -,~ f~ Pa[X,(cp) 1 u; cp(u ~.) E A]du, A E N(. (1.5)0

Substituting A - M yields

For cp E M we define

N(t, ~P) :- Nt(~P) :- `~(0, t] if t 1 0
(1.7)

-cp(t, 0] if t C 0.

We will sometimes write N(t) instead of Nt.

The total variation distance d between two probability measures Q1 and Qz on a

common probability space, both dominated by a o-finite measure lc and having densities

hl and h2 respectively, is defined by

d(Q~,Qz) :- I I hi - hs~dl~. (1.8)

It is well-known that
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d(Q~,Qz) - 2suP ~Q~(A) -Qz(A)I - 2(Q~(h~ ? hz] -Qz[h~ ? hz~).
A

(1.9)

Expectations with respect to the probability measures P, Pn and Po, all considered

on (M~, ~t~), are denoted by E, En and Eo, respectively. In particular the distinction

between Po and Po and between Eo and Eo should be noted. Expectation with respect

to an universal probability space (St,,F, P) is denoted by E.

Let Q~ and Qz be probability measures on a common probability space. We say that Q1 is

dominated by Qz ( notation Q1 GG Qz) if the Qz-null-sets are also Q1-null-sets. A Radon-

Nikodym derivative of Ql with respect to Qz will be denoted by dQ . The supplement Qz-

almost surely will usually be suppressed. Ql and Qz are equivalent ( notation Q1 ~ Qz)

if they dominate each other; they are singular (notation Q11Qz) if an event A exists

such that Ql(A) - 0 and Qz(A) - 1.

Independence is denoted by II and Lebesgue measure on R by Leb. Random variable is

abbreviated to rv and almost surely to as.

2 Intermediate probability measures

Although P and Po are mutually singular, shifts of P are equivalent to Po and have

simple Radon-Nikodym derivatives. We collect formulas and conclusions that follow

from this observation.

In (1.2) the probability measures Pn, n E Z, were introduced. They can be considered

as intermediate between P and Po since they have simple relations with both. Pn is

related to P in a simple way because of its definition. The relationship to Po follows

from the following theorem (see Nieuwenhuis (1989; Th. 2.1)).

Theorem 2.1. Get n E Z. Then

(i) Pn ~ Po,

(ii) Pn(~) :- ~CY-n(4~), ~p E Mo, defines a Radon-Nikodym derivative ojP„ with respect

to Po.
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Since P„ and Po apparently have the same null-sets, it is clear that convergence wpl
(just as convergence in probability) holds equivalently under both probability measures.
This observation leads immediately to some cross ergodic theorems. See Section 3. In
Nieuwenhuis (1989) Theorem 2.1 was applied to prove (under some mixing condition)

the equivalence of a special type of functional central limit theorems under P and Po.

The relation in (ii) can serve as a tool for transforming formulas involving P into formulas

involving Po and vice versa. We will give here some examples.

Suppose that f: Mo -; R is Po-integrable. Since

Eof -~ En I a~f~ and a-„ o On - ao,
` n

we have

Eof-~E~á foB„), nEZ.
` o

This relation expresses Po-expectations in terms of P-expectations and may be an alter-

native to (1.3). For a P-integrable function g : M~ ~ R with Eg - Eg o 9o it follows

immediately from Theorem 2.1(ii) that

E9 - ~Eo(aog). (2.2)

This relation is the counterpart of (2.1). If Eg - F,g o Bo it is just a reformulation of

(1.5), since by (1.5) and Fubini's theorem

EgoBo - ~ f~Eo(11~o~u19oBooT„)du0

-~Eo `J do g o 60 o T„du) - ~Eo(nog).0

(In the last equality it was used that Bo(T„~p) - cp for all ~p E Mo and u E ( 0, ao(~)).)



The formulation in (2.2) is of special interest when g is a function of some sequence
generated by B1.

To illustrate the simplicity of this Radon-Nikodym approach we will derive some short
results here. The well-known relation (1.6) can be obtained by (2.1) by choosing n- 0
and f- c~o. Other formulas on (a;) can be obtained by making simple choices for f, g

and n, or (probably even faster) by applying Theorem 2.1 directly.

E1 - ~,~o
Eak - ~~(~oak) - Eoao ~- covPo(ao,ak)~Eoa-o, k E Z, (2.4)

(cf. Cox 8a Lewis (1966; (4.28)) and McFadden (1962; (3.12)),

Eak - 1 , ECYk - E~-k~ Eakan - Ea-kan-ki k,n E Z.
~o

Let n E No. If the Po-distribution of (~o, ..., o„) is dominated by Lebesgue measure

with density f,,, then the P-distribution of (ao, ..., a„) is also dominated by Lebesgue

measure, with density gn defined by

9n(~o, . . . , x„) - ~xofn(~o, . . . , x„), ~o, . . . , x„ E (0, oo) (2.5)

This relation holds since for yo, ..., y„ E (0, oo), A:- [ao C yo, ..., an C yn], and

B:- X; 0(0, y;] we have

P(A) - Po(A) - ~~(aolit ) - ~ fB ~ofn(xo, . . . , xn)d~„ . . . dzo.

In Cox 8t Lewis (1966; p. 61) Relation (2.5) is proved by heuristic arguments.

Since X~(T„cp) - c~o(cp) - u for all cp E Mo and u E(O,~o(~p)), we have by (1.5) and

(2.1) that

E ~1[aoEa]E(9(Xl)~ao)~ - E (1IaoEB](g(Xl))
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- aEc [f~0 9(X~ o T„)1[troeBl o T„du,
0

- i1E~ [J ~og(s)d31~aoEBj~
0

1 ao
- E [1[aoEel-f 9(s)ds]~o 0

for all B E Bor R} and g: R} -~ R such that E~g(Xl)~ G oo. Consequently,

the conditional P-distribution of Xl given ao is U(0, a!o). (2.6)

This well-know result will be applied next. By (2.6), Fubini's theorem and Theorem 2.1

we obtain

s

P(Xl G~] - EP[Xl C x~ao] - E[~o ~ 1(o.ao)(s)ds]

- Jox E (ao 1[ao~a)) ds -~ fx Po[a!o ~ s]ds.

It follows immediately that

PX, K Leb and
d Leb(s)

-~Po(ao ~ s] Leb ae.

Relation (2.7) can also be derived from (1.2.21) in Franken et al. (1982).

Tbe following result will be applied in Section 4. By (2.7) and Fubini's theorem we

have

P[Xl ~ t] - ~
J

~ Po[ao ) s]ds - .~Eo ~(cYO - t)ll~o~tl] , t E [0, oo).

By Theorem 2.1 we obtain for t E(0, oo):

P[Xl ~ t] - P[ao 1 t] -~tPo[ao 1 t], (2.8)

P[Xl C t] - P(ao C t] ~- ~tPo[~o 1 t]. (2.9)



9

We will prove another corollary of Theorem 2.1 which will be useful in Section 3. Let

Z be the invariant Q-field under the point shift Bl, i.e.,

Z :- {A E .M~ : 9;'A - A}.

Note that P(A) - P~ ( A) for all A E Z. Hence,

P IZ ~ Polz'

(2.10)

(2.11)

In Baccelli 8c Brémaud (1987; p. 28) Relation (2.11) is proved directly from the definition

of Po. We need, however, expressions for the Radon-Nikodym derivatives. For A E Z

we have

~Po(A) - ~ El (~111A) - ~ E ~cYO la-'Al - .1 E L1AE `ao IZJJ '

P(A) - Pi(A) - aEo(a-lla) - ~Eo(aola) - ~Eo[laEo(ao~Z))-

Hence,

dP ~T -~Eo(ao ~Z) and dPo ~z - i E( 1 IZ) . (2.12)dPo ~Z dP I Z ~ ~o

Another probability measure on (M~, ~1~1~) which is in some sense intermediate be-

tween P and Po is the measure P' defined by

P'(A) :- ~E (áolA) , A E ~1~.

Note that P' is indeed a probability measure (see (2.4)), that P'1Po, and that

P' ti P with P- .~ao.

(2.13)

(2.14)



10

By (2.13) and Theorem 2.1 we obtain for A E N1"o and n E Z that

P'(B;,IA) - ~E ~~ lA(an-)~ - aEo ~~ lA(Bn )~
0 0

- Eo(la(Bn~)) - Po(A).

Consequently,

P'8;,1 - Po, n E Z. (2.15)

This relation implies that random sequences on M~ generated by 81 are not only Po-

stationary but also P'-stationary. If ~ is a renewal process, then the sequence (a;) is both

iid under Po and under P' (note that the P'- and the P'Bó1-distribution of (al, ... , a„)

are the same).

The following diagram comprises some of the above results.

P ~ P'

po ,~, po

The Radon-Nikodym derivative of P with respect to P' is not affected by applying Bo

(cf. Theorem 2.1 and (2.14)). By (2.15) and the above diagram it is obvious that the

position of P' as intermediate probability measure between P and Po is similar to the

position of Po. Relations (2.1) and (2.2) can also be derived with P'. In Nieuwenhuis

(1989; Th. 7.4) the measure P' has been used to prove that a functional central limit

theorem holds equivalently under P and Po.

In Section 4 some other intermediate probability measures will be considered.

3 Cross ergodic theorems

Birkhoff's ergodic theorem holds for stationary sequences. Although sequences (~;) (gen-

erated by Bl) and (~(i -1, i~) are usually not stationary under P and Po respectively, we
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can derive strong laws also under these probability measures. In literature these so-called
cross ergodic theorems are usually formulated under ergodicity conditions, see Franken

et al. (1982; Th. 1.3.12), Baccelli 8z Brémaud (1987; p. 29~30), Rolski (1981; ~ 3.3).

By applying Theorem 2.1 we can give simple proofs for more general results without

assuming ergodicity.

We need some preliminaries first. Set

Z':-{AE~1~l~:Ti'A-A forall tER}

and recall t,hc definit,ion of Z in (2.10). For A E Z' we have ~p E A iíf Ticp E A for all

t E R. Consequently, y~ E A iff Blcp E A. So, A - BilA and Z' C Z.

A stationary point process ~(or its distribution P) with P(M~) - 1 is called ergodic if

P(A) E {0, 1} for all A E Z' or, equivalently, if E( f ~Z') - Ef P-as for all f: M~ ~ R

wit.h Is ~ f ~ c oo. Y" is ~allcd r.rgodir. if Po(A) E {0, 1} for all A E Z or, equivalently, if

Eo(g~Z) - Eog Po-as for all g : Mo -. R with Eo~g~ G oo.

Recall the definition of Nt in (1.7). Let g : M~ ~ R be P-integrable. By ergodic

type theorems we have

P ~~ N~ --~ E(N,~Z')~ - 1,

f ~~

P Lt Jo g o T,ds --~ E(gIZ~)] - 1~

and, if (~;) is Po-stationary ( in particular if (~;) is generated by Bl) and Eo~~o~ G oo,

1 n l
Po -~~; - . Eo(~o~Z) J - 1.

n ~-1

Set U:- Eo(ao~Z) and V' :- E(N1~Z'). In the proof of the next theorem it will be used

repeatedly that any Z- (or Z'-) measurable function h: M~ --~ R satisfies h o B; - h for

alliEZ.
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Theorem 3.1.

(a) If (~;) is generated 6y Bl and Eo~~o~ C oo, then (3.4) holds as well with P instead
of Po.

(b) Relations (3.2) and (3.3) hold as well with Po instead of P.

Proof. Since Po ~ Po, Relation ( 3.4) holds with Po as well. Part ( a) follows immediately.
For (b), consider

P' ~iN` ~ ~~~ - P~t`~(X~(so),X~(~) f t] ---~ v'(~)~

- P Li~v(~, X~ (~) } t] --~ v'(~v),

- P~(o, X~(~) ~- t] . X~(~) } t-., v~(~) -1.Xl(~)-f-t t ]

Since P~ ~ Po, the first part of (b) follows. For ~p E M~ we have

1 ~ i 1 r e~-xo(~v)
t Jo g(T~(Bo~P))ds - t Jxo(w) g(Ta~P)ds.

By this observation it is obvious that (3.3) is also valid with Po and thus with Po. O

Remarks. It is easy to prove that the events in (3.2)-(3.4) are elements of T. This

observation, combined with (2.11), leads to another proof of Theorem 3.1 (see Baccelli

óz Brémaud (1987; p. 29~30) for the ergodic case).

Application of Theorem 3.1(a) with 1'; - g o B; for Po- integrable functions g : Mo -~ R

yields:

1 n o B~ Eo(9~I) Po- and P-as.
n ~g 't-i

See also Franken et al. (1982; (1.3.18)) for the ergodic case.
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By conditioning on I we obtain

Eo [aollu-ol~ - Eo ~Ullu-ol~ - 0.

Since Po[cxo - 0] - 0, we have (apply Theorem 2.1)

U 7 0 Po- and P-as.

Application of Theorem 3.1(a) with ~; - a; yields

1-PLnXn~UJ -PLN~XN`~UJ -PLtN`~ UJ~

(The last equality holds since

Nt(~)X"'~~1(~) ~ N~(~c) ~ N~(~v)X"`c~~t~(~n)

for all cp E M~ with Nt(~p) ~ 0. Use (3.5).). By ( 3.5), (2.12), ( 3.2) and Theorem 2.1(i)

we have

F`aol~~ - Eo(aolT) -
E(N1~Z~) Po- and P-as.

Note the resemblance between (3.7) and Relations (1.6) and (2.4).

A similar almost surc limit result for

e
I(t) :- 1 f g o T,dst o

can be derived directly from (a) and the first part of (b). I(t) can be decomposed as

follows:

( ) rx, e o
Ntt N(t) ~ Jx,-, g o T,ds -}- t Ix 9 o T,ds - t fxo g o T,ds. (3.8)

i-1 N(i)
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Note that the sequences ~ fX ~~ g o T,ds) and ( fX ~-1 ~g o T, ~ds) are both generated by Bl.
By Theorem 3.1(a), the first part of (b) and ( 3.7) we have

1 i
g o T,ds

t XN(~)

Po- and P-as, and

G N(t) f 1 1 rxNc~)tl
t N(t) f 1 Jx ~9 o T,~ds ~ 0 as t ~ oo,

N(f)

1(t) ---, Eo(áolZ) Eo (f a0 g o T,ds~Z) Po- and P-as. (3.9)

Cornhining thc limit, results in (3.9) and the second part of 'f'heorern 3.1(b) yields

E(9~Z~) - Eo(a ~Z) Eo `JOao y o T,ds~Z) Po- and P-as. (3.10)
0

This relation is a conditional version of the inversion formula (1.5) (replace lA in (1.5)

by g and apply Fubini's theorem). Conditional versions of (2.1) and (2.2) can be derived

from (3.10). For f : Mo -~ R with Eo~f ~ G oo we have

1 ao
Eo(f ~Z) - Eo ~- f f o 90 o T,ds~Z~ Po, P-as.

`ao 0

By (3.10) and (3.7) we obtain (take g- f o 9o~cxo)

Eo(f ~Z) - E(Ni ~Z,) E~áo f o 9o~Z'~ Po, P -as. (3.11)

If g : M~ --~ R is such that E~g~ G oo and E(g~Z') - E(g o 9o~Z') P-as, then (3.10)

implies

Eo ao Z
E(9~Z') - E~(gÍÍ)) Po- and P-as. (3.12)

By Relation (3.11) it can easily be proved that P-ergodicity implies Po-ergodicity,

since
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Eo(f ~Z) -~E(áf o 80) - Eof Po- and P-as
0

for any Po-integrable f: Mo --~ R, provided that P is ergodic. Since P ~z ~ Po~i (see
(2.11)) and Z' C Z, this implication may also be reversed.

With this uncommon proof we have established the following well-known result ( cf. e.g.
Franken et al. (1982; Th. 1.3.9) or Baccelli 8z Brémaud (1987; p. 28~29)):

P is crgodic iff Po is crgodic. (3.13)

The choice g- l~ao in (3.9) yields

1 ~L 1
t Jo a o T ds -; ,~ Po- and P-as,

o ~ (3.14)

provided that Eo(ao~Z) - l~a Po-as. This condition is weaker than ergodicity of 4i; see
also Section 4.

4 Approximations of Po

In this section we will consider several expressions tending in some sense to Po as n-~ oo.

For this purpose a notion is introduced which is weaker than ergodicity of 4'. Several new

inl,cnncclial,c~ probability mcasures arc dcfincd, all cyuivalent to Po. Thc corresponding

Radon-Nikodym derivatives are used to approximate Po starting from P.

The following theorem is a generalization of Franken et al. (1982; (1.3.20)). See also

Matthes, Kerstan 8t Mecke (1978; Th. 9.4.5) and Miyazawa (1977; Th. 3.2').

Theorem 4.1. The following statements are equàvalent:
(i) Po(ao(cG) E B and Bncp E A] -~ Po[oáo E B]Po(A) for all B E BorR} and A E J4lo,
(ii) P[ao(cp) E B and gncp E AJ --r P[ao E B]Po(A) for all B E BorR} and A E J1ilo.

Proof. Assume (i). For all B E BorR} and A E J1~to we have (cf. Theorem 2.1)
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P[ao E B] n[4ncp E A] - aEo ~LYOI[aoEB]1[B„~E.t;~

-~ J ~ Po[ap ~ x ] n(aa E B] n[6nip E A]dx
0r

-~ ~ J Po[o!o ~ x and ao E B]dxPo(A) as n~ o0
0

because of (i) and dominated convergence. This limit is equal to

~Eo [aollaoEB]] Po(A) - P[~o E B]Po(A),

which proves (ii). The implication (ii) ~(i) can be proved the same way. ~

Hypothesis (i) is weaker than the mixing (ergodic-sense) property for Po (cf. e.g. Franken

et al. (1982; p. 37)); hypothesis (ii) could equivalently be formulated as (cf. Nieuwenhuis

(1989; Section 5))

Pn - P[Bncp E .] ~ Po pointwise, independently of o(ao). (4.1)

Next we c.onsider strong approximation of Po. For n E N the empirical distribution

Pn is defined by

n

Pn(A, y~) :- 1~ l,r(B;cp), A E A't~ and y~ E M~.
n t-r

Since the sequence ( lA o B;) is generated by Br, we obtain by (3.4) and Theorem 3.1(a)

that

Pn(A) -~ Ea(la~Z) Po- and P-as. (4.3)

Note that for each cp E M~ Pn(., ep) is a probability measure on (M~, ~1~1~) and that

Pn(A) is a Po-unbiased estimator of Po(A). The next statement follows imrnediatcly

from (3.13) and (4.3). It characterizes strong approximation of Po by Pn under P.

~
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~ is ergodic iff Pn(A) -~ Po(A) P-as for a11A E ~1~t~. (4.4)

Starti~g with (4.3) under P we obtain:

EPn(A) - n~ P;(A) -. E[Eo(la~Z)] -: Qo(A) , A E ~t~. (4.5)
.- i

Qo is a probability measure on (M~,~1~1~) having Qo(Mo) - 1, since Eo(1,yo~Z) - 1

Po- and P-as (cf. Th. 2.1(i)).

Lemma 4.2. Qo and Po are equivalent. The Radon-Nikodym derivative of Qo with

respect to Po is:

dQa
dPo - ~Eo(cxo~Z).

Proof. By Theorem 2.1 we have:

Qo(A) - ~Eo[~oEo(lAlz)J - aEo[Ea(~oIZ)Eo(lAlz)]

- ~~[Eo(IAEo(aO~Z)~Z)J - J1Fi"[lAEo(aO~Z)J.

In the second equa(ity we conditioned on Z. Since Po[Eo(ao~Z) - 0] - 0 by (3.5), the

conclusions of the lemma follow immediately. p

By (4.6) we obtain

Qo - Pe iff Lo(ao~Z) -~ Po-as.

If ~ is ergodic, then Eo(ao~Z) - Eoao -,1-' Po-as. R,elation (4.5) could then be taken

as a definition of Po. If, however, ~ is not ergodic, then it is possible that Qo ~ Pa.



18

Example 4.3. Set y~k :- ~(- fl kZ), k E {1, 2}. Let ~o be a random element in Mo

such that P[~o - yo~] - p and P[~o - cp2] - 1- p, p E(0, 1). Then E(cr;(~o)) - 2- p

for all i E Z and (a;(~o)) is stationary. According to Franken et al. (1982; Th. 1.3.4)

there exists exactly one distribution P of a stationary point process ~ such that its Palm

distribution Po equals the distribution of ~o. For Bl :- [cr;(cp) - 1 for all i E Z] and

B2 :- [a;(cp) - 2 for all i E Z] it can easily be proved that Po(Bl) - p, Po(BZ) - 1- p,

that Bl, B2 E Z, and that Eo(ao~Z) - 1B, -} 218z Po-as. Consequently, ~ is not ergodic

and Qo ~ Po.

Definition 4.4. A stationary point process ~ with P[~ E M~] - 1 and ~ E(0, oo) is

called pseudo-ergodic if Eo(~oIZ) -~-r po-~

An ergodic point process is pseudo-ergodic. A pseudo-ergodic point process need not be

ergodic.

Example 4.5. Let cpl be as in Example 4.3, A1 :- [a~; - 1 for all i E Z], and A2 :-

[~; E{1~2, 3~2} for all i E Z]. Consider the following experiment. A fair coin is tossed.

If head appears, then cpl is taken as outcome of ~o. If, however, tail appears, then we

let for each i E Z the coin decide whether a; equals 1~2 or 3~2, and take the resulting

~p E AZf1Mo as outcome for ~o. Note that (a;(~o)) is stationary and that E(a;(~o)) - 1.

Let ~(with distribution P) be the stationary point process for which the corresponding

Po equals the distribution of ~o. Then ~ is not ergodic, since Po(A1) - Po(AZ) - 2 and

A1i AZ E Z. Since Po[F,o(ao~Z) - 1] - 1, ~ is pseudo-ergodic.

Since EP„ GC Po with Radon-Nikodym derivative J~n-' ~; 1 a-; (see Theorem 2.1), we

obtain by (4.6) that d(EP,,, Qo) -.~Eo~n-1 ~; 1 a-; - Eo(ao~Z)~ (recall the definition of

d in (1.8)). We want to prove that this last expression tends to 0 as n~ oo.

A sequcnce (Y„)„EN of integrable rv's is uniformly integrable if
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lim sup E~Yn~l[I ~I~al - 0~
a~~ nEN

or, equivalently,

s~~PnEN ~I}n~ -~1 G~ and for every E 1 0 there exists ó~ 0 (4,g)

such that for all events A with P(A) G b we have:

SllpnEN EIYnIlA C E'

If (Yn)nEN is uniformly integrable, then so is (n-1 ~; 1 Y)nEN as is obvious by (4.9). A
random sequence with identically distributed elements is uniformly integrable.

Consequently, (n-1 ~i 1 o-;)nEN is uniformly Po-integrable. Since n-1 ~~ 1 cY-; -~

Eo(ao~Z) Po-as, we obtain that d(EPn, Qo) ~ 0 as n-. oo (cf. e.g. Th. T26 in
Brémaud (1981)). We conclude that the convergence in (4.5) is uniform in A:

n

sup ~ 1 ~ P;(A) - Qo(A)~ -~ 0.
AE~1~ n ;-~ (4.10)

The consequences oí this observation for the Palm distribution are explained in the next
theorem.

Theorem 4.6. For stationary point processes with P(M~) - 1 and ~ E(0, oo) the

following statements are equivalent:

(i) n~; 1 P;(A) -~ Po(A) for all A E ~1~,

(ii) supnE.N~ ~,'-, ~~ t P;(A) - Po(A)~ ~ 0,

(iii) ~ is pseudo-ergodic,

(iv) Po~n ~; i a~ -i á) - 1,

(v) P(iNt ~ .~~ - 1,

(vi) Po - P on Z.



20

Proof. Relations (4.5), (4.10), (4.7), and (2.12) imply (i) G~ (ii), (i) ~ (iii), and

(iii) ~(vi). The equivalence of (iii) and (iv) is an immediate consequence of Birkhoff's
ergodic theorem. The implication (iv) ~(v) is a corollary of Theorem 3.1(a) and

observations as in (3.6), with U replaced by .~-r. Theorem 3.1(b) and

PoltN`-~a 1 GPolX NX~--~aJ-PoLrzX"~~Jn

yield the implication (v) ~ (iv). p

The rna.in conc,lusion of Theorem 4.6 is that it ís not always correct to define Po as the
limit of n-' ~" ~ P;, attractivc as it may be. 1t is, however, possible to obtain Po(A) as

another limit without any restraint, uniformly in A E~1~. Note that

Po(A) - Eo[Fo(1nIZ)~ - ~-'E[cYO'Eo(1nIZ))

-~-' E[E(~o' II)Eo(IA~Z)1- a-' E[Eo(lAE(ao' IZ)Iz)1. (4.11)

Since the sequence (~-' lA(B;.)E(~ó' ~Z))~E~ is generated by 91i we obtain by Theorem

3.1(a) that

~E(~o~z)Pn(A) -~ ~Eo(laE(~oII)IZ) P-as.

So (cf. (4.11)),

Qn(A) :- ~E[E(~olz)Pn(A)1--' Po(A), A E ~~.

(4.12)

(4.13)

By Relation (2.4) Q„ is a probability measure. By Theorem 2.1, (3.7), ( 1.4) and the

observation preceeding Theorem 3.1 we have

Q(A) - E
~ P(A) - 1~ E a-,

1 l
n o Eo(ao~Z) n J n;-i o[Eo(~o~Z) AJ ~
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Hence, Qn ~ Po and

dQn 1 n ~-;
--~ 1 Po-as.dPo - n ~-i Eo(~o~Z) (4.14)

For B E BorR} we have for k E Z

a- r cx l

Po Eo(ao~Z) E B]
- Po L E,o(áolZ) E BJ .

So, the random sequence (a-;~Eo(ao~Z)) is identically Po-distributed and hence

(re-~ ~Jn i a-;~Iso(ao~Z))nEN ~s uniformly Po-integrable (cf. the arguments preceeding

(4.10)). By (4.14) it is obvious that the convergence in (4.13) is uniform in A E~i~.

Note that Qn - n-~ ~; 1 P; - EPn iff ~ is pseudo- ergodic.

According to (4.4) the sequence (Pn), considered as a sequence of estimators of Po, is

strongly P-consistent iff ~ is ergodic. By Theorem 4.6 it is asymptotically P-unbiased

iíT ~ is pseudo-crgodic:. It is an easy exercise t,o provc Lhat E(Pn(A) - Po(il ))2, the rnean

squared error under P, tends to 0 iff ~ is ergodic.

In the next theorem we examine for sequences (~;) generated by D~ the asymptotic
P-unbiasedness of the estimator n-1 ~;1~; of Eo~o.

Theorem 4.7. Suppose that (~;) is generated by DI and that Eo~ó V Eo~o C oo. Then

n

n~ E~; --r ~Eo(aoEo(~o~Z)] as n -~ oo.
~-i

If ~ is pseudo-ergodic, then n-1 ~; 1 ~; is asymptotically P-unbiased for Eo~o.

Proof. By Theorem 2.1 we have

(4.15)

1 ~ E~~ - ~Eo I 1 ~ ~0~; 1 . (4.16)
n ;-i L n ~-i
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Since

Eo ~oo~n ~ 1(laoE„~~a] ~ Fi~ICY0Snl1[a~~a] ~ G Ia0Snl1[fn~a]

C lEo laol[aó~al~ Eo~o)~ lEo l~ol[fo~a]~ Eoao)z

and since this upper bound tends to zero, it is obvious that (ao~n)nEN and
i n t

(n- ~i-] a0si)nEN are uniformly Po-integrable (see (4.8) and the arguments following
(4.9)). Note also that by (3.4)

1 n
n ~ ~o~~ ~ aoEo(~o~Z) Po-as.

~- i

By (4.16) and Rrcmaud (1981; T26) Relation (4.15) follows immediatcly. The limit in

(4.15) is equal to

~Eo[Eo(cYO~Z)Eo(~o~~Z)] - Eo~o,

provided that ~ is pseudo-ergodic, p

Corollary 4.8. Suppose that Eoaó G oo. The estincator n-' ~~~~; of Eoao - J~-1 is
asyrreplolically !'-unbiased i,(j ~ is pseudo-ergodic.

Proof. The if-part is a consequence of Theorem 4.7. If n-' ~; ~ a; is asymptotically
P-unbiased, then we obtain by (4.15) that Eo[aoEo(oro~Z)] -(Eoao)2. Consequently,

VarpoEo(cro~Z) - 0 and Eo(ao~Z) - 1~.1 Po-as. p

The point process in Example 4.3 satisfies a-' - Eo(1B, -}-218,) - 2-p and (cf. (4.15))

1 n Eo(Eo(~o~Z))Z 4- 3p-~ E~; -~
ni-i 2-p - 2-p.
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This limit is indeed not equal to .~-1 - 2- p.

It is ~~.cll known that Po can also be approximated by the probability measures

P~,,,, n E N, defined by

P~,n(~4) -- P[Bi~P E AI X~ (~P) C 1], A E ~t~.
n (4.17)

Franken et al. (1982; Th. 1.3.7) prove that d(Po, Pl,,,) ~ 0 as n -~ oo. We will, however,

express d(Pa, Pl,,,) in terms of F, the distribution function of Xl under P.

Theorem 4.9. Let ~ be a stationary point process with P(M~) - 1 and ~ E (0, oo).

Then

(i) Pl,,, ~ Po and ddPo - F( ~n)(;, n ~-1) -~ ~n,

(]1) SllpAEM~ ~P[814~ E A~XI(~P) C n ] - Po(A)~ - yEo~~n - 1~ - 1- F1F-~~1-f ~.

Proof. By (1.5) we obtain

1 ao(~0)
P[ei~P E A;Xi(~P) 5-] - a 1(B~wEA;ao(w)-u5r}dudPo(~G)n Mo I

- ~~ [lle~wEA](n I` ao)J - .~F~[lq(n I` cr-i)].

Hence P~,,,(A) -~Eo[lA(n n a-~)]~F(n), which proves ( i). By (1.8) it is obvious that

d(Pl,,,, Po) - Eo~v„ - 1 ~. We will express this Po-expectation in terms of F.

First wc note that (cf. Theorem 2.1)

P[ao C ~] - ~Eo[oollao~x]] C .~xPo[ao C ~], ~ E [~, ~),

and (cf. (2.9))

F(1)- P[ao C 1] f~-~Po[ao G 1] G~ (4.18)
n n n n n- n~
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Set h(n) :- F(l~n)~~. By ( 4.18), Theorem 2.1 and (2.9) we obtain

Eo~R,. - 1~ - h(n)Eo~n n cro - h(n)~

- `Eo(h(n) - ~o)llao~h~"~l } Eo(~o - h(n))1[h(n)~tro5~1

- 2-
2F(h(n)) ~ ah(n) - a~n ~ l~n - h(n)

~h(n) ~h(n) h(n)

- 2 - 2F(h(n)) - 2 - 2F(F(l~n)~~)
J~h(n) - F(l~n) '

fEo(n - h(n))]lao~~l) ~h(n)

2Pa[ao C h(n)J -~~~Po[ao G n] ~ 1,h(nj(n)

-~~(n) P[~o C h(n)] f .~h(n) P[~o ~ n]

The convergence to 0 follows immediately since F(x) -~x f o(x) as x-~ 0, cf. e.g.
Franken et al. (1982; Th. 1.2.12). p

Because of ( ii ) it is possiblc to determine in many situations the rate at which Pl,,, tends
to Po. If ~ is a Noisson process, then it is an easy exercise to prove that d(Pl,,,, Po) -
2F(n) -}- o(F(n)) - Z~~n f o(n) as n -~ oo. This rate l~n is not universal; it turns
out that the renewal process with Po[ao C x~ - x~-n for 0 C x C 1, p E(0, 1), satisfies

d(Pt,,,, Po) - cn-~1-p~ ~ o(n-~1-p~) as n - . oo. (Here c E(0, oo) is some constant, not
depending on n.) We can, however, give conditions such that the rate l~n is satisfied.

Set G(x) :- Po[a!o G x], x E [0, oo).

Corollary 4.10. Suppose that G is differentiable on (O,E) for some E 1 0 with bounded

derivative g :- G'. Then

suP IP[B~w E f1IXi(w) C 1]- Po(A)I - O( 1 ) as n~ oo.
AEA'1~ n n

Proof. Because of the continuity of G it is obvious (see (2.7)) that F is differentiable on
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(O,s) with F' -.~(1 - C). By the mean value theorem we have for n sufficiently large:

F(F(,~)~a) - F(0) t F(n)(1- G(nn))

for some rt„ E (0, F(l~n)~~). Since F(0) - 0 and F(l~n) C.1~n, see ( 4.18), we obtain
by Theorem 4.9:

Go~an - 1 ~ - 2G(rl„) C 2C(1 ).
n

Anothcr application of Lhe mean value theorem yields for n sufíiciently large:

Eo~~„ - 1~ c 2G(b„) C 2C
n

for some b„ E(0, n). Here c:- sup{g(x) : z E(O,E)}, not depending on n. O

Remark. The condition in Corollary 4.10 may equivalently be replaced by

F is twice differentiable on (0, e) íor some e ~ 0 (4.19)

with bounded second derivative F".

5 Generalization to marked point processes

The results of Sections 1 to 4 can be generalized to marked point processes. We briefly

consider this extension.

Let K be a complete and separable metric space. A marked point process on R with
mark space K is a random element ~ in the class of all integer-valued measures cp on the

v-field Bor R x Bor lí such that:

cp(A x K) G oo for all bounded A E Bor R.
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Let Mh be this class and endow it with the ~-field J1~íK generated by the sets

[cp(AxL)-k]:-{cpEMK:y~(AxL)-k}, kENo, LE BorlíandAE BorR.

Here are some further notations and definitions. For cp E MK and L E Bor K we
define ~pL E Mh- and cpL E M by cpL(B) :- ~p(Bfl (R x L)) and ~pL(A) :- ~p(A x L), B E
Bor R x Bor K and A E Bor R. Note that ~pL(R x L`) - 0 and cph - cp. Furthermore,

set

Nli :- {~p E Mx : y~L(-oo, 0) - cpL(0, oo) - oo; cpK({s}) C 1 for all s E R},

Mi:-{y~EMi : ~pL({0})-1},
~1~1i :- ML fl A'tx and ~íL :- M~ fl ~íx,

L E Bor lí . Let Tt : Mh- -~ MK, t E R, be the time shifts determined by Tccp(A x L) -

cp((t f A) x L). We will assume that ~ ( or its distribution P) is stationary with respect

to these time shifts ( cf. Section 1). We also assume that .~ :- E~((0, 1] x K) C oo, so

that ~(L) :- E~((0, 1] x L) C oo for all L E Bor K. We will confine our attention to

L with P(M~) - 1.

The atoms of cp E Mh are denoted by (X;(cp), k;(~p)), i E Z, enumerated such that

(X;(y~))~E~ rcprescnts cph- as indicated in Scction L For ~p E M~ wc writ,c X; (cp) :-

X;(y~L), the `ith L-point of y~', and kL(cp) :- k;(cpL)), the `mark of the ith L-point of

yo'. Note that T~cp -: cp(t f.) can be represented by {(X;(~p) - t, k;(ep))}. Some other

notations:

ai .- X;ti - Xi,

G L L
~i '- Xiti - Xi ~

Bn,L . ML -~ ML with Bn,L~ .- ~(Xn (~) ~ ')i

Pn~L :- Pen,L~

Z' .- {AE~IK:Tt ~A-AforalltER},

Z'L :- {A E~1L : Tt 'A - A for all t E R},

ZL :- {A E ~NÍ : B;~A - A},
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where i, n E Z and L E Bor K. P,,,L is obtained from P by shifting the origin to the
nth L-point. Note that Zi C Z', Z~ C ZL and Z' n Mi - Z~.

The Palm distribution PL of P with respect to L is defined by:

1 ~((o~11XL) l
Pi(fl )-- ~(L) E ~ lA(9;,L~) I , A E,MK,

which intuitively arises from P by shifting the origin to an arbitrary L-point. Now P~ is a

probability measure on (MK, ~1~1K ) with P~(M~o,) - 1 and having the following properties
(cf. (1.4) and (1.5)):

(i) P~o,9n,L - PL for all n E Z,

(11) P(A) -~(L) fó Pi]Xi(~P) ~ u; ~P(u f") E A]du, A E~1K,

see e.g. Franken et al. (1982).

We now generalize the results of Sections 1 to 4. Our emphasis is on condition-

ing on I,-points in the origin with L E Bor lti such that P(M~)- 1. Ilence,

we must replace M, Nt, M~, ~1~t~, Mo, .Mo, ,~, a;,X;, Po, P,,, P', 8,,, Z, Z', U, V', N(t) by

M 1Vt M~' ~1~1~ Mo ~1~to .~(L) aL XL Po P P' B Z Z' U V' N (t) res ec-Ke K, L, L, L, Le r i, ,, L, n,L, L, n,L, L, L, Le L, L h

tively. (The definitions of PL, UL and Vi are clear by (2.13) and the definitions following

(3.4); NL(t, cp) :- y~L(0, t] if t? 0 and NL(t, ~p) :- -~pL(t, 0] if t G 0, see (1.7).) We must

replace `~ pseudo-ergodic' by `~ pseudo-L-ergodic'.

With these modifications all results remain true. In fact only some of the proofs need an

argument. Since P(ML )- 1 and Z' n Mi - Zi, it is obvious that ergodicity of ~ can

(indeed) equivalently be defined with Zi instead of Z' and that E(g~Z') - E(g~Z~) P-as

for all P-integrable functions g : ML --~ R. With this in mind the generalized results of

Section 3 follow immediately.

Examples of sequences (~;) generated by B1,L (see Section 1) are given by
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~;'(~P),

~L~(~i (~~ ~ tl , Xi~(~) ~ t2Jf

Y~L'(X~ 1 (~), X~(~)1,

kL(4~)-

llcrc G, U E Ror lí with P(M~ )- P(M~ )- I and t~ C tz. Thc third scyucnce is
intcresting. If N~,,(li,t2] :- N~,,(l2) - NL~(li), it can be defined as (Nl,~(X; „XL]). I;y
(the generalization of) Theorein 3.1 we obtain

INL'(~, Xn ]-' Ei(NL,(~, Xi]~Zt) as n --. oo PL- and P-as. (5.1)n

Since

N~(t)NL'(~~XN~(t)] ~ 1NL(~ t] ~ Nc,~(~,XNL(t)fr]Nc,(t)f 1
t N~(t) - t Ni(t) f 1 t '

it follows from (5.l ) and Theorem 3.1(b) that

~ NL'(t) ~ E(NL(1)~Zi)E~(NL,(0, Xi ]~Ti) as t-a oo Pi- and P-as. (5.2)

Set Mi~, :- ML nMi,, ~I~1LL, :-Mi~,n~1K and Zi~, :- {A E ~1~ii~, : T~ 'A - A for
all t E R}. Note that Z~,~, C Zt, Zi,L~ - Z' n MLL, and P(M~~,) - 1. By arguments
as in the proof of the first part of Theorem 3.1(b) we have

~N~,(t) -' E(N~,(1)~Z'i,~,) P~- and P-as.

Combining (5.2) and (5.3) yields

Ei(N~~(~,Xi ]IZL) - E(NL (1)~Zi,t~) Po- and P-as,
E(Nc.(1)IIi) L
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which is a generalization of Relation (3.4.2) in Baccelli 8c Brémaud (1987).

Parts of this paper are also valid for special classes of non-stationary point processes.
We are preparing a publication on these matters.
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