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BASICS OF INVENTORY MANAGEMENT: INTRODOCTION

In the winter of 1989 the idea emerged to document the knowledge
about inventory management models, that had been developed over
almost 10 years of research and 5 years of practical applications
in a number of consultancy projects. The main motivation to
document the methodology underlying a number of well-proven
algorithms was that most existing literature did not cover the
practical applications encountered. Investigations revealed that
most well-known algorithms were based on the assumptions of
stable demand during lead times and large batch sizes. Both
assumptions do not apply to the JIT environment characterized by
short lead times and high order frequencies.

My starting point was the application of renewal theory to
production-inventory models. Zt turned out that the same
formalism was applicable to the classical inventory models, like
periodic review and reorder point models. The attention of the
analysis was focused on service levels and average inventories.
The reason for this was that in many cases the problem was to
find a relation between customer service requirements and holdíng
costs for different planning scenarios. The algorithms developed
turned out to be robust and fast.

The conviction grew that the methodology extended to most
practically relevant service measures and to all classical
inventory models. To be able to prove this sponsors were needed
to provide the time and money to do the required research. The
Catholic University Brabant and the Centre for Quantitative
Methods accepted the research proposal. The result of the
research is the series Basics of inventory Manaqement.

From the outset the objective was to develop a unified framework
for all classical inventory models. Zt was important to relax a
number of assumptions made in most literature. To the knowledge
of the author for the first time arbitrary compound renewal
demand processes are considered, thereby relaxing the assumption
of Poisson customer arrival processes. This is very important in
view of market concentrations (hyper markets, power retailers,



etc.). The outcome of the research should be a comprehensive set
of algorithms, which can be used in practical situations, e.g.
in inventory management modules of MRP and DRP packages.

In the course of the research the so-called PDF-method was
developed, that provided a means to approximately solve all
relevant mathematical equations derived in the analysis. The
results of the approximation schemes were promising, yet under
some conditions the performance was not adequate. Coincidentally,
it turned out that the performance of the PDF-method deteriorated
as the order batch size increased. In the area of large batch
sizes other approximation schemes had already been developed, so
that together with the PDF-method these algorithms covered the
whole range of models.

Though starting from the idea to provide practically useful
material to OR-practitioners, it soon turned out that the
analysis required was quite detailed and mathematically intri-
cate. Nonetheless I felt it necessary to document the derivations
as well, since the analysis extends to other models than
discussed in this series. The consequence of this choice is that
the first 6 parts (c.q chapters) of this series are entirely
mathematical. Yet the reader will find as a result of the
analysis simple-to-use approximation schemes. To illustrate the
applicability of the analysis, part VII is devoted to numerical
analysis, part VIII compares the different inventory management
models and part IX provides a number of practical cases.

Part I provides the background material from renewal theory and
the PDF-method. Part II discusses the (R,S)-model, part III the
(b,Q)-model and part IV the cost-optimal (s,S)-model. Based on
the analysis in part II-IV we analyze in part V and VI the
(R,b,Q)- and the (R,s,S)-model, respectively. A provisional list
of references is given below.
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BASICS OF INVENTORY MANAGEMENT: PART V - 1-

THE (R,b,O)-MODEL

The (R,b,Q)-strategy applies to situations where decisions are
made periodically, once a week, say and order procurement costs
are too high to allow for an (R,S)-strategy. The (R,b,Q)-policy is
applied implicitly in many MRP-packages, where fixed lot sizes are
used and a time phased order point determines the order (or
explosion) moments.

The (R,b,Q)-strategy is described as follows:

Stock is reviewed every R`" time unit. If at a review moment the

inventory position is below b, then an integral multiple of Q is

ordered, such that the inventory position is raised ,to a value

between b and btQ.

The analysis of the (R,b,Q)-model is quite similar to the analysis
of the (b,Q)-model. This chapter is organized as follows. In
section 6.1. we d'escribe the model in more detail. In section 6.2.
expressions for the PZ-measure and the fill rate are derived. In
section 6.3. we discuss the mean physical stock and the mean
backlog.

6.1. Model descrit~tion

We consider two instances of the (R,b,Q)-model. First we describe
the discrete time situation, where dep~etion of stock is registe-
red at equidistant points in time and secondly, we describe the
situation, where depletion of stock ís registered after each
customer arrival. The latter system is a so-called real time
inventory management system, the former system operates in a
batch-mode.

I: The discrete time situation

We agree upon a time unit, a day, say, at the end of which we
collect data about stock depletion during the time unit, as well
as arrivals of replenishments during that time unit. Next we
decide about the review period, i. e. how may time units elapse
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between decision epochs, at which we may order an amount at the
supplier. Let R be the review period duration, R is an integral
number of time units. Then decisions about when and how much to
order are governed by the (R,b,Q)-policy.

Due to the fact that during a time unit replenishments may arrive,
while stock is also depleted, we must agree upon the way we define
disservice and shortages. Indeed, it differs if the replenishment
arrives at the beginning of the time unit or at the end of it. We
assume the following pessimistic way of processing the data about
replenishments and stock depletions.

We assume that a replenishment arrives at the end of a time unit.

As in chapter 3 we describe the demand process by {D,}, with

Do :- demand during time unit n.

{Do} is a sequence of i.i.d. random variables. Furthermore we have
a sequence of lead times {Lk}, which are identically distributed
and are such that orders cannot overtake. Each lead time is an
integral number of time units.

II: The comAOUnd renewal situation

In this case we assume that customers arriye according to a
compound rer:ewal demand process. The sequence of interarrival
times {Ao} form a renewal process. The same holds for the demands
per customer {Do}. The lead times {Lr} are identically distributed
and orders cannot overtake. In this case we do not encounter
problems concerning the processing of inventory transactions,
since each transaction is processed individually.

6.2. The aervice measurea

We want to determine the reorder level b, such that for a given
value of Q a target service level is achieved. As before we
restrict ourselves to the P2-measure and the PI-measure. '
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P,-measure

We derive an expression for the PZ-measure for any demand process.
Consider an order cycle, i.e. the time between two consecutíve
order moments. We define the random variables v„ DR and UR,;, i-0,1
as:

o~ .- the point in time at which the inventory position drops
below b for the first time after time 0.

DR .- demand during (O,R].

UR,o .- the undershoot of b at time 0.

UR,, .- the undershoot of b at time ol .

Then

(R~
DR - L Dn

n~l

D(0,~~] - btQ-URO-(b-UR~)

- Q-UR,o}Ue.i

(6.1)

(6.2)

Note that we implicitly assume that only one batch of size Q is
ordered. Therefore we must assume that

Q ~~ E [DR] .

It turns out that the results derived even hold for Q~ E[DR], yet
from a mathematical point of view the above assumption is neces-
sary.

When we compare the evolution of the inventory position for the
(R,b,Q)-model with that for the (b,Q)-model we see that DR in the
(R,b,Q)-model plays the role of the demand per customer in the
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(b,Q)-model. Then we apply the approximation for the undershoot in
the (b, Q) -model to UR.;,

:

P{UR~sx} - E D ~ (1-FD~(y))dy
R

(6.3)

Next we consider the replenishment cycle (I,o, o,tL,] , where

Lo :- lead time of order initiated at time 0.

L, :- lead time of order initiated at time o,.

As for the (b,Q)-model we can derive the following expression for
the PZ-measure:

P (b Q) - 1-
{E[ (1~, o.t]}URi-b)'] -E[ (I~o,1,~tURO-(b,Q) )'] }~~ (6.4)2 ,

Ë D(0, Q,

Since (6.4) is identical to (4.4) we can apply all the results in
section (4.1) in order to obtain an expression for PZ(b,Q), which
is based on the PDF-method. Without going into further detail we
claim that

P2 (b. Q) - Y (b. Q) . ( 6. 5)

where y is the gamma distribution with its first two moments E[XY]
and E [XY] given by

E[X]- E[D(O,Lo] fURO] t 2Q (6.6)
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E[~l - E[ (D(O,Zb] tUx.o)Z] } Q E[D(O,Lb] tUR.o]

Q3
t 3

(6.7)

Equations (6.6) and (6.7) are the equivalent of (4.7) and (4.8),
respectively. From (6.1) and (6.3) we derive that

E[UR.o] - E[DR]2E(D]

E[I12 ] - E [DR]
R.o 3E DR]

(6.8)

(6.9)

Now we distinguish between the discrete time case and the compound
renewal case.

Case I: Discrete time case

We assume that DR is gamma distributed. This yields

E[DR] - R E[D]

E[D2R] - R v2 (D) t RZ EZ [D]

E(DR] - (1}Cp~) (1}2CD~)E3[DRj,

(6.10)

(6.11)

(6.12)

with CpRthe coefficíent of variatíon of DR, which can be derived
from (6.10) and (6.11).

The first two moments of D(O,Lo] are given by equations (3.5) and
(3.6), which are repeated below.
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E[D(O,Lo] ] - E[L]E[D] (6.13)

E[Dz(O,Lo]] - E[L]oz(D) t E[Lz]Ez[D] (6.14)

Case II: Compound renewal case

We again assume that DR is gamma distributed, such that (6.12)
holds. As in section 3.2.2. we make the following assumption about
review moments and replenishment moments.

From the point of view of the arrival process, the review moments
and replenishment moments are arbitrary points in time.

Then we can apply (3.43) and (3.44) to yield

E[DRl - E A] E[Dl

E [DR] -
z a

Ez[A] } E A (CA}CD) } 116A EZ [D]

E[D(O,Lo]l - E[A]
E[DJ

E[Dz(O,L l] - E[Lz] t E[L] (cztcz) t (1-c~)
o Ez [A] E A " D 16

(6.15)

(G.16)

(6.17)

(6.18)

For both cases we have the required expressions to calculate E[XY]
and E[XY] and it is routine to apply the PDF-method.
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P, -measure

The P,-measure yields more complicated mathematics than the PZ-
measure as the reader must have noticed in the preceding chapters.
We need to have a close look at the demand process and the
evolution of the net stock in time. We ímmediately must distin-
guish between the different demand processes described in section
6.1. We first consider the discrete time model.

Case I: The discrete time model

To obtain results for the P,-measure in this case we proceed
similar to the analysis preceding equation (3.19) for the mean
physical stock. In chapter 2 we defined the function T}(x,t) by

T}(x,t) .- the expected time the net stock is positive during
(O,t], given the net stock at time 0 is xa0.

Then equation (2.51) tells us that

:
E[T' (x, t) ]- M(x) -~ M(x-y) dFD~oa~ (y) (6.19)

The net stock at the beginning of replenishment cycle (Lo, o,fL,]

equals btQ-Uo.R-D(O,Lo] . Conditioning on the net stock at time Lo we

find

EIT'(b,Q)] -
6~Q
~ M(btQ-y) dF~o1~Dro,z,~ (y)

b,Q

~ M(btQ-y) dFU,~,nco.o,,c,~ (Y)

Since
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UoR f D(0, ottLl] - QtUi~ t D(Qi, QitL~]

we find

6.Q

E[T' (b, 4) ] - ~ M(b}Q-Y) ~u.~tao,r.„~ (y)
b

- ~ M( b-y) ~~~~~nco„o,.t,~ (Y)

(6.20)

Let us take a close look at the time interval (a,-R„ ol]. At some
time Q~tTU-R in (oi-Ri, a,] the inventory position drops below by an
amount U„ say. Then it is clear that

R
Ul~ - U~ t ~ Dn

n~Tp.l

(6.21)

The undershoot U~ is the undershoot in the continuous review (b,Q)-
model with demand per customer D,,. Hence

~
P{U~Sx} - E D ~ (1-Fo(Y))dy

Furthermore it can be shown that

P{T~-t} - R t-1,...,R ,

(6.22)

(6.23)

which is intuitively appealing. Equation (6.23) tells us that the
level b is undershot at any time in (o,-R,vl] with equal probabi-
lity.

Define the random variable W by



Then (6.20) can be rewritten as

b~Q b~Q-y

E[T' (b, Q) ]-~ ~ M(.btQ-y-z) dFU(z) dFw.oro~l (y)

6 6-y

- ~ r M(b-y-z) dF~(z) dFw,o~o~o~ (y)

Now we apply the identity

s
~ M(x-y) dF~(Y) - E[D]

with U distributed according to (6.22) to obtain

E[T'(b,Q) ] -
b.Q

~ (b}Q-Y) ~waoro~l(Y)E[D]
b

- ~ (b-y)
dFw.o~o.t.,~ (y)E [D]

- Q 1 I ~ (Y-b) dF , (Y)E[ D] - E[D] w oco,za]

b~Q

(Y- (btQ) ) dFw.nco.r.,l (Y)

By definition we have that

Pl(b,Q) - E[T'(b,Q)]
E Q~

(6.24)

Thus we find the following expression for P,(b,Q),



- 10 -

m
P, (b, Q) - 1- Q ~(y-b) dFw.ao,4~ (y)

~

b~Q
(y- (b}Q) ) dFw,oro~ (Y)

We can alternatively write ( 6.25) as

P (b,Q) -
1-E[(WtD(O,ho]-b)~] - 1`s'[(WtD(O,Iy]-(bt4))~l

i

(6.25)

Note the remarkable resemblance of the above equation with
equation (6.4) for the PZ-measure. Therefore we can proceed along
the same lines as in the derivation of the first two moments of
the gamma fit of P2(b,Q).

So let Xy be the random variable associated with P,(b,Q). Then we
have

E[X ] - E[D(O,I,o] tWJ f 2Q

E[X,~.] - E[ (D(O,LoI tW)Z] } Q E[D(O,Lo] }W] t~
3

(6.26)

(6.27)

It remains to find an expression for the first two moments of W.
Recall that

R
W - ~ Dn

n~T~l

Since {D„} independent of T„ this yields
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E[Wj - (R-E[TU] ) E[D]

E[WZ] - (R-E[T~] ) Q'(D) t (RZ-2RE[T~] tE[T2~] )E~[Dl

(6.28)

(6.29)

The problem of finding E[W] and E[WZ] has been reduced to finding
E[TU] and E[TU] . These follow from (6.23) .

ELT~] - (Rtl)
2

(6.30)

E[TZ~] - 6R(2Rt1) (6.31)

Equations (6.26)-(6.31) enable us to compute E[Xy] and E[Xy].
Fitting a gamm~ distributed y(.) to P,(b,Q) we find

P, (b, Q) - Y (btQ) bz-Q

and the service level equation

P, (b' , Q) - a

can be approximately solved by

b' - y"' (a) -Q

This concludes the analysis of the discrete time model.
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Case II: The compound renewal demand model

As in the discrete time case we start with an approximation for
E[T}(x,t)] derived in chapter 2. Equation (2.53) states that in
the compound renewal case

E[T' (x, t) ] - (E[Á] -E[A] ) (1-FD~o,rl (x) )
:

} E[Al (M(x) - ~ M(x-y) dFDro~l (y) )

The net stock at the beginning of replenishment cycle (Lo, a1tL1]

equals again btQ-Uo,R-D(O,Lo] and therefore we find

E[T~ (b.4) ] - (E[A] -E[A] ) (Fnro,c,l.u., (btQ)

- F~oo.al~u,(b.Q)

t E [AJ
b.Q

~ M(b}Q-y) dFo~o.4l.uo, (Y)

b~Q

~ M(btQ-y) dFDCO.o,.t,~.u„(y)

Since

P{D(0, Q~tL~] }Uo~sx} - P{D(Ql, QIfL-1] tU~~~x-Q} xzQ

and D(Q„ v,tL~] tU~,R is identically distributed to D(0, Lo] fUo,R, we

find
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E(T'(b,Q) ) - (E[Á] -E[~1] ) (FDro~~.~l(btQ) -Fp(o.r,).u„(b) )

b~Q

} E(A] ~ M(b}Q-y) ~01o.~1~U„ (y)

b

- ~ M(b-y) ~D(o~l-~o~ (y)

(6.32)

As in the discrete time case we express the periodic review
undershoot Uo,R in terms of the customer undershoot of level b, Uo.
Towards this end we define

T~ .- the time at which the level b is undershoot by the
demand of a customer, o~-RsTUSv~.

We conjecture the following for Q sufficiently large.

P{T~~t} - R O~tsR

T„ and Uo are independent .

(6.33)

It can be shown that this conjecture holds asymptotically for Q~oo
and compound Poisson demand. For arbitrary arrival processes the
conjecture was verified empirically by c~mputer simulation. Defíne
N(t) by

N(t) .- the number of customers arriving in (O,t], given that at
time t a customer arrived.

Then we have the following relation between Uo,R and Uo,

N(R-T„)

Uo R - Uo } ~ D~
n-1

(6.34)

Define the random variable W as
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N(R-T,J

W : - ~ Dn
n~l

Then it follows that

D(O,Lo] t Uo~ - Uo f W t D(O,I,o]

Convolving M(.) with Uo in (6.32) yields

E[T'(b,Q) l - (E[Á] -E[A] ) (Fn(o.41.~a~(btQ) -FDro~.u,~(b) )

b.Q

} E[A] r (b}Q-Y) ~w.nro,t,1 (Y)ó E[D]

b

( b-y) ~w.n(o.~l (Y) ,- ~ E D

which can be rewritten into

E[T' (~b, Q) ] - (c2 1) EIA) (F (b Q) - F (b) )Dro.~ol.u„ } Dro~41t~.~

} E[A] Q - (y-b) dF
r.p(o.t,~(y)E D ~ E D

(y- (btQ) ) dFw.ao„~~ (Y)
b Q

~
(6.35)

Dividing ( 6.35) by E[v~] we find
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P (b,Q) -
(cÁ-1) E[D] (F (bfQ) - Fo (b))i 2 Q oro.~,l.u~ ro.41.u,~

t 1- 1
Q

~
~ (Y-b) c1Fw,o~o~i (Y) - ~ (y- (btQ) ) dFW.oco,c,~ (Y)

Q

(6.36)

Equation ( 6.36) is well suited for application of the PDF-method.
Applying by now standard arguments we find

E(X ]

} E[WtD(O,Lo] ] }

E[Y] - 2 r (xtQ) (1-P~ (x,4) ) dx
-JQ

- J (1-P~ (x, Q) ) d~c
-Q

- (c~-1)
E[D]2

- - (c~-1)
(Qt2E[D(O,Lo] tUo~] )2

Q
2

t E[ (WtD(O,Lo] )Z ] t Q E[WtD(o,Lo] ]

QZt -
3

(6.37)

(6.38)

The only information still lacking are the first two moments of W.
It has been conjectured that TU is homogeneously distributed on
(O,R). Therefore

R
E[N(R-T~) ] - R~ E[N,~ ( t) ] dt (6.39)
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R

E(NZ (R-T~) ] - R~ E[NÁ( t) ] dt ,

where NA(.) is the renewal process associated with {Ao}.

(6.40)

Application of renewal theoretic results reveals that ( cf. (2.26)
and ( 2 . 2 7 ) )

lim ~ E[N( t) ] dt - x2 } E [AZ] -1 x
f 2E A 2E A

(6.41)
x-m

t E2IA2] - E[A3l 1- 0
4E3 [A] 6E2 [A] J

lim ~ E[NZ ( t) l dt - 1 3E~A] } f E3[(A] - 2E3A 1 xZ

r." lll J

t 3E2[AZ] - 2E[A3] - 3E[AZ] t 1 x
( 2E4 [A] 3E3 [A] 2EZ [A]

} E[A4] - ELAZ] E[A3] t E`~ [AZ] - E[A3] - 3E2 [AZ]

6E3 [A] Ea (A] ES [A] 2E2 [A] 4E3 [A]

Assuming R~~ E[A] we find

(6.42)

i - 0

~ E[N( t) ] dt - R~ t( E[AZ] -1) R t E2 [Al - E[A3l (6.43)
2E A 2E[A 4E3 [A] 6E2 [A]
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~ E[NZ ( t) ] dt -
I 3ER[A] ` f E3[ Al - 2E[A] , RZ

} r 3EZ (A2] - 2E[A3] - 3E[AZ] t 1 1 R
I 2E' [A] 3E3 [A] 2EZ [A] I

t E[A'] - E[AZ] E[A;] t Ea [AZ] - E[A3] - 3E2 [AZ] 1- 0
6E3 [A] E4 [A] ES [AJ 2E2 [A] 4E3 [A] I

and assuming gamma distributed interarrival times,

E[N(R-TU) l- 2ERA] t (c~ 1) ~
1R (112A)

E[Al

(6.44)

(6.45)

ELNZ(R-T~)] - RZ } (c~-2)E A] } 6 (c,~,-2) (cÁ-1) - 12R(1-CÁ)E[A]
3E~ [A] (6.46)

Once we know E[N(R-T~)] and E[NZ(R)], it is an easy matter to
calculate E[W] and E[WZ] from

E[W] - E[N(R-Tu)]E[D] (6.47)

E(W2] - E[N(R-T~) ] 02 (D) t E[NZ (R-TU) ] EZ [D] (6.48)

Note that the assumption of R~~E[A] is not unrealistic. Indeed, if
we use a periodic review policy it does not make sense to have a
review frequency higher than the arrival frequency. In that case
reviews triggered by customer arrivals are more economic. In that
case we use the standard (b,Q)-model.

This concludes the analysis of the service measures PZ and P~. For
both measures we have derived approximations based on the PDF-
method. It remains to validate the approximations. Results of the
validation are given in chapter 8.
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method. It remains to validate the approximations. Results of the
validation are given in chapter 8.

6.3. Phyaical atock and backloa

As has been shown in the preceding chapters the mean physical
stock depends on the way the inventory transactions are processed.
The discrete time model assumes batch processing of the inventory
transactions. This implies that the administrative stock is
constant during the day, say and updated daily. This also implies
an overestimation of the actual stock. The smaller the time
between inventory updates, thè smaller the bias of the estimation.
This situation is modelled in the discrete time model. Hence the
discrete time model yields an overestimate of the physical stock.

The compound renewal case describes on line processing of inven-
tory transactions. In that case the administrative stock equals
the actual stock. Hence the mean physical stock is properly
estimated by the continuous monitoring model.

As with the P,-measure we must distinguish between the discrete
time model and the compound renewal model. For both models we
derive approximate expressions based on renewal-theoretic results.

Case I: The discrete time model

For the discrete time model we can exploit results from chapter 2,
which have already been used in chapter 3 for the (R,S)-model.
More specifically, the starting point for our analysis is the
function K(x,t) defined as

H(x,t) .- the expected surface between the net stock and the
zero level during (O,t), given that at time 0 the
net stock equals xa0.

Note that t should be a multiple of the time unit.

The function H(x,t) has been studied in chapter 2 and equation
(2.56) with E[AJ identical to one time unit tells us that
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x : :-y
R(x, t) - ~ (x-y) dM(Y) - ~ ~ (x-y-z) dM(z) dForo~~ (y) (6.49)

Then by conditioning on the net stock at time Lo we find that

m b~Q

E[X' (b, 4) ]- E[Q~]
~~

K(btQ-y, t) dFDro~~,ut (Y) ~co,~.~-~i ( t)

Substitution of (6.49) in ( 6.50) and some algebra yields

E[X' (b, Q) ]- E[o,] ~ ~ (btQ-y-z) dM(z) dFDro~~.u„(Y)
biQ b~Q-y

b~Q b~Q-y

- ~ ~ (btQ-y-z) dM(z) ~oro.o,z,1.~e~(y)

(6.50)

As in the analysis preceding equation (6.25) we note that

Uo~ - Uo } LJ

with W defined below (6.23) and

D(0, U~tLi] t Uo.~ - Q } D(O~, QitL~] t U~,R

Substituting these results into the above approximation for
E[Xt(b,Q)] yields
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6.Q
E[X' (b, Q) ] ~ 1 ~ (btQ-y) Z

~.w.nro.~,l (y)- E Q~ 2E [D

b

- ~ (b-y) 2 dFw,Dro~] (y)
2E D

Using E(o,] - Q~E[D] we find after some algebra

E(X'(b,Q) ] - bt.Q-E[WtD(O,Lo] ]

} Q ~ 1 (Y2b) Z ~w.nco.4,1 (y)

(y- (btQ) )
Z~w.vro.t,l (Y)- 6~Q 2

(6.51)

Equation (6.51) is by now standard for further evaluation. Before
doing so we relate E[X}(b,Q)] to E[B(b,Q)], the average backlog.
This relation has already been derived in chapter 3. We repeat the
arguments here for the reader's convenience.

Assume the stock keeping facility pays the supplier.~l per pur-
chased product per time unit this product is on order with the
supplier. Then per order on average ~ E[L].Q is paid, assuming Q
is large compared to the under.shoot of the reorder level b. Since
on average every Q~E[D] time units a batch of Q products is
ordered at the supplier, the average payment per unit time equals

E[L] .Q ~ (Q~E[D] ) - E[D]E[L] .

On the other hand, the supplier receives on average s E[0] per
time unit, where

E[O] .- the average amount on order.
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Therefore

E[O] - E[D] E[L] .

The basic equation determining the inventory position tells us
that

E[Y] - E[X'(b,Q)] t E[O] - E[B(b,Q)]

and thus

E[B(b,Q)] - E[X'(b,Q)] } E[D]E[L] - E[Y]

We need an expression for E[Y]. From the analysis in Hadley and
Whitin [1963] it can be derived that

the inventory position at review moments is homogeneously distri-

buted between b and btQ.

Consider an arbitrary review cycle (O,R). At time 0 the inventory
position equals x. Then it follows from the expression for the
complementary holding cost given by (2.67) that the average
inventory position during a review cycle with initial inventory
position x equals x-~(R-1)E[D]. Conditioning on the homogeneously
distributed initial inventory position yields

E[Y] - bt 2 Q - 2 (R-1)E[D]

This finally yields

E(B(b,Q)J - E[X'(b,Q)] t E[D]E[L] - b-~Q t 2 ( R-1)E[D] (6.52)

Let us now reconsider ( 6.51). We know that
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E[D(O,Lo] ] - E[L]E(D]

E[Wj - ~ (R-1)E[D]

and thereby

E[X'(b,Q) ] - bf Q- 2R(-1)E[D] - E[L]E[D]

1 ~ ( b)Z ~ (Y-(b}Q))Z
} Q ( Y2 ~w.oco,r.e~ (Y) - r 2 ~w.nco.c„1 (

-G bdQ

Then it follows from ( 6.52) and (6.53) that

E[B(b.Q)] - Q
~ -6

(y2b)ZdFw,oco~1(Y)

~
(y- (b}Q) ) Z~ . (y)2 w n~o,t,,~

b Q

For the case of b~-Q we directly obtai~i

E[B(b,Q) ]- E[WfD(O,Lo] ]- b- Q bs-Q

(6.54)

(6.55)

E[B(-Q,Q) ] - Q f E[WtD(O,Lo] ] (6.56)

Define y(.) by
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E[B(x-Q,Q)]y(x) - 1- E B(-Q,Q)] xz0 (6.57)

Then y(.) is a probability distribution function. Let Xy be the
random variable which has a gamma distribution y(.) with the same
first two moments as y(.). Then

QZ

E[X ] - 6
Q } E[W}D(O,Lo]]2

EIX,~] - j Q2 t E[W}D30~Lo] ] QZ t E[ (W}D(O,LbI )Zl Q

} E[ WtD(O,Lo] l ~ } EI (WtD(O,LoI )2]

t E[(WtD3 ,Lo])3] l
~( Q t E[WtD(O,Lo]] y

(6.58)

(6.59)

Once we determined y(.) from (6.58) and (6.59) we can approximate
E[B (b, Q) ] and E[X} (b, Q) ] by

E[B(b,Q) ] - ~ Q t ELWtD(O,Lo] ] ) (1-y(btQ) ~ bz-Q

- b- Q t E[WtD(O,La] ] b~-Q

E[X' (b,Q) ]- btQ - I Q t E[WtD(O,Lo] )~ ry(btQ) bz-Q
1 2

0 bc-Q

Case II: The compound renewal model

(6.60)

(6.61)

As in the case of an arrival process with constant interarrival
times our starting point for our analysis is an expression for the
function H(x,t). For the present case of a compound renewal
arrival process an approximation for H(x,t) is given by (cf. 2)

l "l



- 24 -

H(x, t) - (E[Á] -E[A] ) x
x

- r (x-y) dFDCO~~ (Y)

: : ~-y
t E[A] ~(x-y) dM(Y) -~ r(x-y-) dM(z) dFoto.~~ (Y)

(6.62)

We condition on the net stock at the start of the replenishment
cycle (Lo, v~tLl] , leading to an expression for E[X} (b, Q) ],

E[X' (b, Q) l -
m b,Q

1 ~~ H(btQ-y, t) ~Uo~~D(O,Cb] (Y) dF ,L,-~e ( t)
E[vt]

(6.63)

We substitute (6.62) into (6.63) and after application of some
probabilistic arguments we obtain

E[X'(b,Q)] 1
b,Q

(EIAI -EIA] ) ~ (btQ-y)dFu,.vro,r.,~(3')E[o~]

b.Q

~

(btQ-y) dFu,,.nro,o,.t,~ (Y)

b,Q b,Q-y

t E[à] ~ ~ (b-Q-Y-) dM(z) dFuo~rnro,ti,l (Y)

b,Q b,Q-yj 1 (bfQ-y-z) dM( z) dFu,,,nro,o,,L,~ (Y) 1 I
Applying the by now standard arguments concerning D(O,v~tL,] and Uo,R
we find after some algebra
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E[X'(b,Q) ] - (c21) EQ] ~ b~ (btQ-Y)dFI ~o~,oco.~ (y)

b

- r (b-y) ~ue,~nro,c,~ (Y)

b,Q
~ E[D] (btQ-Y)

Q ~ 2 E[Dl dFW'o~o~4i ( y)

b

- ( (b-y)
ZdFw,oco.4,] (Y)tl 2E[D]

(6.64)

where W is defined in section 2, when deriving an expression for
the P,-measure.

The second term on the right hand side of (6.64) is identical to
the expression for E[x'(b,Q)] for the discrete time case given
above by equation (6.51). Hence we apply the same transformation
rules. The first term on the right hand side of (6.64) can also be
rewritten by writing the integral from 0 to btQ as the difference
between the integral from 0 to ~ and the integral from btQ to ~.
This yields

Í
E[X'(b,Q) ] -

(c21) E[D] - (c21) E~] { ( (y-b)dF~l,o~o,~i(y)

- r (Y- (b, Q) ) dF~„~o~o~ (y)
b~Q

t bt Q - E[WtD(O,Lo] ]

(6.65)

}1 ~ (y-b)Z (Y-(b}4))ZQ 2 dFw'o~o.y~l (y) - r 2 dFw'o~o~-o1(y)
bJ,Q
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Instead of fitting distribution to Uo.RtD(O,Lo] and WtD(O,Lo]
explicitly calculating the integrals, we apply the PDF-method to
the mean backlog. This can be done since we have an explicit
relation between the mean physical stock and the mean backlog.

ELX' (b, Q) l - E[Y(b, Q) ]- E[D] E[L] } E[B(b~ 4) ]E A]
(6.66)

Equation ( 6.66) has been derived in exactly the same way as its
equivalent in the discrete time model.

To obtain an expression for E[Y(b,Q)] we consider an arbitrary
review cycle (O,R). We assume that review moments are arbitrary
moments in time from the point of view of the arrival process. We
further assume that at time 0 the inventory position equals x. To
calculate the average inventory position in (O,R), we divide the
expected area between the x-level and the inventory position by R
and subtract this from x. In chapter 2 we have already analyzed
this expected area and found that this is approximately equal to
~RZE[D]~E[A]. Hence the average inventory position in (O,R) equals
x-~R~E[A]E[D]. Now it follows from the analysis in Hadley and
Whitin that the inventory position at the beginning of an ar-
bitrary review cycle is homogeneously distributed on (b,btQ). This
yields

E[Y(b, 4) ]- b} 2Q - 2E A] E[D]

and so

E[~(b.Q) ) - bt~- 2E A]
E[D] - E[Dl É[Ál

} E[B(b,Q)]

(6.67)

We reconsider (6.65). It follows from (6.45) and (6.47) that
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E[~ -( 2ERA } (C21) } ( 12R)
E[A] 1 E[Dl

From (6.17) we know that

E[D(O,Lo] ] - E[L]
E A

E[Dl

Then (6.65) becomes

E[X`(b,Q) ] - bf Q- E[L] ELDI - R E[D] - ( 1-C~) E[Al E[D]
2 E[A] 2E A] 12 R

(CÁ-1) E[D] ~ (y-b) dF ( )- 2 Q ~ U.'D~o~1 y

(y- (btQ) ) dF~o.~o~0.4,~ (y)
b~Q

~ ~,- x
} Q ~ ( 2b) dFW,D~o~o~ (y) -

biQ

} (6.68)

(y- (btQ) ) ZdFN,o~o~i (y)2

Comparison of (6.67) and (6.68) sugges~ that
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4 2 a

E[B(b,4) ] -
(112,,) ER ] E[D] - (c21) E~] ~

(y-b)dFu,,.DCO.4~(Y)

~

} 1
Q

- r (y- (btQ) ) dFue,'nro.r,i (y)
y~lQ

{i ~

(y2b) z ~w'Dro.~,~ (y) - ( (Y- ( 2}Q) ) z
~wDro,L,~ (Y)

efQ

This, however, is inconsistent with lim E[B(b,Q)]~0. This incon-
sistency is caused by the approximations for E[W] and H(x,t). On
the other hand, assuming that R~~ E[A] we may assume that

(1-CÁ) E[A] negligable.
12 R

Therefore we suggest to approximate the mean backlog by

~ z
E[B (b, Q) l - Q ~ (Y2b) ~w.Dro1,1(Y) -

2 ~

~

b~Q

(Y- (btQ) ) z2 dFw.DCO1,1 (Y)

m

- ( c,,-1) E[Dl ~ (}.-b) dF (Y) - r (Y- (b}Q) ) dF ( )2 Q U,'D(O,LeI J Uo,.D(o.Lo~ Y
b'Q (6.69)

It follows from ( 6.69) (as well as from (6.68)), that

E[B(b,Q) ]- E[WtD(O,I.o] ]- Q - b-
(C2 1)

E[D] bs-Q (6.70)

An expression for E[B(b,Q)] for ba-Q is derived from application
of the PDF-method.
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Let y(-) be the pdf defined by

y(x) - 1- E[B(x-Q, 4) l , xz0
E[B(-Q,Q) ]

Let XY be the random variable Xy with pdf y(.). Then the first two
moments of XY are given by

E [.Y ] { Qz } E[W}D(O,Lo] ] t E[ (W}D(O,Lo] )Z]
6 2 ~ 2

{
- (c2 1) E[Dl

I Q t E[WtD(O,Lo] l

Q t E[WtD(O,Lo] ] - (c21) E[D] ~
2

~}~

Q3 } E[W}D(o,Lo] ] QZ t
EL (WtD(O,La] )2] Q

E [~] - 12 3

E[ (W}D30,Lo] )3] - (C21) E[D] I Q2 t ELWtD(o,Lo] ]Q
l (6.72)

t E[ (WtD(O,Lo] )Z]
J ~I Q

2
t E[W}D(O,LoI ] - (c21) E[D] }

Fitting the gamma distribution y(.) to E[Xy] and E[XY] we have the
following approximation for E[B(b,Q)] for ba-Q,

E[B(b,Q)] - ( Q } E[WtD(O,Lall ) (1-y(btQ) ~ , bz-Q
2

(6.73)

Substituting this approximation into (6.67) yields
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EIX' (b,Q) ] - bt Q- 2ERA] E[Dl - EID] É~A]

t 1 Q t fiIW}D(0,~] ]) (1-y(btQ) ~, bz-Q

(6.74)

This completes the analyses of the (R,b,Q)-model. The analysis
turned out to be quite similar to that of the (b,Q)-model. Main
differences are caused by the undershoots of b during the review
period, which leads to the introduction of the random variable W.
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