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CHARACTERIZING DISTRIBUTIONS BY QUANTILE MEASURES

R.Th.A. Wagemakers~
J.J.A. Moors~

M.J.B.T. Janssens~

Abstract. Modelling an empirical distribution by means of a simple theore-
tical distribution is an interesting issue in applied statistics. A rea-
sonable first step in this modelling process is to demand that measures
for location, dispersion, skewness and kurtosis for the two distributions
coincide. Up to now, the four measures used hereby were based on moments.

In this paper measures are considered which are based on quan-
tiles. Of course the four values of these quantile measures do not unique-
ly determine the modelling distribution. They do, however, within specific
systems of distributions, like Pearson's or Johnson's.

This opens the possibility of modelling - within a specific system
- an empirical distribution by means of quantile measures. Since moment-
based measures are sensitive for outliers, this approach may lead to a
better fit.

~ Tilburg University, P.O. Box 90153, 5000 LE Tilburg, Netherlands.



2

1. A quantile measure for kurtosis

Consider a random variable x with mean u- E(x) and central moments

iui - E(x-u) , i - 2.3. ..

The (very familiar) moment-based measures for location, dispersion, skew-
ness and kurtosis now are

. the mean y,

. the variance u2
. the third standardized moment p - u ~u3~2

1 3 2
. the fourth standardized moment g- u ~yt22 4 2

They all exist provided E(x4) ~ m.
For the first three measures quantile-based alternatives are well-

known. Defining quartiles Qi by

P(x ~ Qi) s i~4 , P(x ) Qi) s 1- i~4

for i- 1,2,3, they are given by

. the median Q - Q2

. the half interquartile range R-(Q3-Q1)~2

. Bowley's skewness measure S - (Q3-2Q2}Q1),(Q3-Q1)

provided that Q3 ~ Q1. Moors (1986, 1988) presented a new interpretation
of kurtosis as well as a quantile-based alternative for g2. Define octiles
Ei by

P(x ~ Ei) s i~8 , P(x ) Ei) S 1- i~8

for i- 1,2,...,~. Then the quantile measure T for kurtosis reads

T - E6 - E2
( E.~-E5 ) t ( E,i-El )
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provided that E6 ~ E2. Note that T is much less sensitive for outliers
than g2; it can be calculated by graphical means. Furthermore, T exists
even for distributions without finite moments; e.g. T- 2 for the Cauchy
distribution.

The quartet (Q,R,S,T) can be seen as an alternative to
(i~,uz,p1,182). Like pl and ~2, S en T remain unchanged under linear trans-
formations: these four quantities are location-scale-invariant. This is
the main reason why in the sequel attention is focussed on the pair (S,T).

2. The Pearson system of distributions

The Pearson system of distributions is based on the following differential
equation:

d loA f(x) x
dx - BO y Blx ; B2x2

Solutions f are densities within the Pearson system. These solutions
depend on the zeros of the denominator or - more specifically - on the
quantity

K - Bi~(4BOB2)

For K( 0, 0( K( 1, K) 1 three main types of distributions arise; the
limiting cases K - 0, K- 1 or K~ m lead to transition types. Table 1
shows the details.
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Table 1. Outline of the Pearson system.

Name Type Density~ Range Para-
meters

K( 0 Beta 1 I xp-1(1-x)q-1 [0,1] p,q ) p

K- 0 Student VII (1.x2~n)-(ntl)~2 R n) 0

0~ K C 1 Arctan IV (1~x2)-mexp[v arctan x] R m) 1~2,
v E R

K- 1 Inverse gamma V x-(p~l)e-l~x R} p) 0

K) 1 Beta 2 VI xp-1~(x.l)p}q R} ) 0P.q

K-~ m Gamma III xp-le-x Ra p) 0

M up to normalizing constant.

The column 'Type' contains the Roman numbers originally used by Pearson to
indicate the different classes of distributions. (The missing type II
consists of the symmetrical Beta 1 distributions.) Location-scale para-
meters have been deleted from the densities, as well as normalizing con-
stants. See for details about all this Stuart 8~ Ord (198~), p. 210 ff.

Since the Arctan distributions are relatively unfamiliar, Figures
1 and 2 show some densities for type IV.
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Figure 1. Densities of Pearson type IV; v- 0.5.
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For our purposes, the main property of the Pearson system is that any
(location-scale-free) distribution has a unique pair of values for the
measures pl and s2. In other words, there is a one-one relation between
the distributions in Table 1 and points in the (~el,g2)-Plane. Figure 3
shows this relation; the (symmetric) half-plane with pl ( 0 is omitted.
Compare Stuart 8~ Ord (1987), p. 211.

Figure 3. The (gl,p2)-plane for the Pearson system.

Q,

0.5 1.0 1.5 1.6
~,-~

The main types appear to occupy separate parts of the plane. Transition
type III corresponds to the straight line 2g2 - 3g1 - 6; the set of type V
distributions is slightly curved. The Pearson system leaves unoccupied
the upper righthand corner above the line g- g - 1,2 1In summary: all distributions in the Pearson system can be charac-
terized by the quartet (ul,u2.~1,~2). Hence, the empirical counterpart2(x,s ,bl,b2) of this quartet corresponds with exactly one distribution
within the Pearson system. This distribution can be taken as a simple
model for the empirical distribution, based on moment measures. Note that
from the quartet the parameters of the corresponding Pearson distribution
can be found analytically.



3. Characterizing the Pearson system by quantile measures

In this section the behaviour is investigated of the pair (S,T) for dis-
tributions in the Pearson system. First of all, convergence of distribu-
tions implies convergence of the pair (S,T). In particular. the (S,T)-
values of a transition type arise as limits of the (S,T)-values of main
type distributions. This statement will be proved here for one limiting
case only: I ~ III.

Starting point is the following limiting property of the gamma
function I':

lim r n` - 1
n-~ npi'(n)

which can be proved by means of Stirling's formula. Let the distribution
of a random variable x be denoted by ~(x).

Lemma 1. If xn - Be(p,n),

~(nxn) -~ i(1.P)

holds for n ~ m.

Proof. Let qn be the density of nxn and p that of I'(l,p); then it is suf-
ficient to show that qn ~ p pointwise if n-~ m. Now xn has density

B(P.n)-lxn-1(1-xn)n-1

where B(p,n) - I'(p)I'(n)~['(p.n). For x- nxn it follows:

qn(Y) - nB(P.n) xn-1(1-xn)n-1 0 C xn C 1, with xn - Y~n .

- nB(P.n) (n)p-1(1-n)n-1 ~ 0 C y C n,

- p 1 yP-1(1-n)n-1
n B(p,n)

Now the limits
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lim(1-y~n)n - e-y , lim 1 - 1
n~ n~ nPB(P~n) rÍP)

ímply

lim qn(y) -
n~ r(P) YP-le-y - p(Y)

which proves the lemma. o

Theorem 1. Let (Sn,Tn) and (So,To) denote the quantile measures of skew-
ness and kurtosis for Be(p,n) and T"(l,p), respectively. Then

lim Sn - So , lim Tn - To
n-~ n~

Proof. Since S and T are invariant under linear transformations, they are
identical for xn and nxn. Now, the theorem is an immediate result of the
Lemma. o

So the conclusion is, that smooth transitions between the various types
exist in the ( S,T)-plane - just as in the (gl,p2)-plane.

Quantiles for the type I, III, V and VI can be found directly by
means of the statistical computer package SAS, while for VII Smirnov
(1961) was used. For type IV a special program was written which uses
numerical integration. This led to outcomes that differed slightly from
the values in Johnson et al (1963). Hence, another program was written,
which confirmed our previous results. Table 2 is a brief abstract from the
extensive results in Wagemakers (1991).
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Table 2. Octiles and (S,T}-values for the Pearson system.

III
III
II1
I11

(V
IV
IV
IV
N
IV
V
V
V
V
VI
VI
VI
VI
VI
VI

V11
VII
VII
VII

Pt P7
0.30 0.3
0.30 l.2
0.30 7.4

1 1
1 4
1 e

0.30
0.75

1
5

0.70 0.1
0.70 0.5
0.70 1.0

1 0.1
1 0.5
1 1.0

0.30
0.75

1
S

0.30 0.3
0.30 1.2
0.30 7.4

1 1
1 4
1 B

0.30
0.75

1
1.5

~1 7 1 4 e e 70.00 0.068 0.736 O.S00 0. 64 0.937 0.993 . t)~ 0.5790.001 0.008 0.030 0.079 0.188 0.317 O.SS7 0.641 1.3490.000 0.003 0.013 0.035 0.076 O.iS3 0.300 0.679 1.6810.175 0.750 0.375 0.500 0.875 0.750 0.875 0.000 1.0000.033 0.069 0.111 0.159 0.718 0.793 0.405 0.197 1.1900.017 0.035 0.057 0.083 0.116 0.159 0.779 0.730 1.]44
0.001 0.007 0.077 0.073 0.165 0.343 0.740
0.058 0.153 0.783 0.454 0.688 1.034 1.BS00.134 O.7BB 0.470 0.69J 0.981 1.386 ].079
7.617 3.369 4.020 4.671 5.390 8.774 7.699

-17.11 -7.0T0 -0.479 0.347 1.444 4.647 ]8.37-1.867 -0.014 0.869 7.150 6.070 14.67 84.46
0.777 1.798 7.761 5.544 17.76 36.17 707.1-7.065 -0.877 -0.787 0.174 0.553 1.193 7.807

-1.013 -0.737 0.707 0.630 1.175 7.117 1.776-0.749 0.316 0.775 1.313 7.100 3.668 7.s08
1.357 7.916 6.074 1J.67 38.94 144.9 1467
0.606 0.967 1.453 7.707 3.538 6.519 17.33
0.481 0.771 1.070 1.443 7.178 3.476 7.489
0,137 0.159 0.186 0.714 0.749 0.797 0.38]
0.007 0.073 0.308 1.000 3.744 13.79 143.10.001 O.OOB 0.031 0.086 0.207 0.465 1.7560.000 0.003 0.013 0.036 0.083 0.180 0.4780.143 0.333 0.600 1.000 1.667 3.000 T.pOp0.034 0.075 O.17S O.1B9 0.778 0.414 0.8870.017 0.037 0.063 0.091 0.130 O.1S9 0.797

0.606 ].004
0.317 1.347
0.767 1.308
0.304 1.743

0.769 6.630
0.701 6.817
0.749 6.687
0.081 1.001
0.763 7.077
0.387 7.0T]

0.849 10.11
O.S56 7.837
0.478 7.147
0.704 1.367

0.866 30.]7
0.660 7.370
0.830 7.076
O.S00 7.171
0.375 1.456
0.794 1.377

-1.486 -0.973 -0.439 0.000 0.439 0.973 1.486 0.000 1.136-9.777 -7.197 -0.733 0.000 0.733 ].197 9.777 0.000 3.886-7.414 -1.000 -0.414 0.000 0.114 1.000 7.414 0.000 7.000-1.134 -0.57T -0.758 0.000 0.758 0.577 1.134 0.000 1.517

PI
P7

I [fI IV V VI VII
P C m C P n
p o 4

There appears to be one-one relation between the (location-scale free)
Pearson distributions and pairs of (S,T}-values. So, just like the
(Sl,s2)-Plane, the (S,T)-plane is subdivided into separate sets correspon-
ding to the main types; the demarcation lines are given by the transition
types. See Figure 4; compare it to Figure 3. The half-plane with S~ 0 has
been omitted.
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Figure 4. The (S,T)-plane for the Pearson system.
0

Since within a given Pearson type the location-scale parameter is uniquely
determined by (Q,R), all distributions in the Pearson system can be cha-
racterized by the quartet (Q,R,S,T). Hence, the empirical counterpart
(q,r,s,t) of this quartet determines exactly one distribution within the
Pearson system. Again, this gives a simple model for the empirical distri-
bution, now based on quantile measures. However, the parameters of the
corresponding Pearson model have to be found numerically. This can be done
by trial-and-error, using the programs mentioned above. Another possibili-
ty is to develop a nomogram from which for given (S,T)-values the cor-
responding Pearson distribution can be read. In Figure 5 such a nomogram
is sketched; of course, to attain numerical accuracy, a much more detailed
nomogram is necessary.
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Figvre 5. Sketch of nomogram for the Pearson system.

- 1-- -'-
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In principle, there now are two ways to find a model within the Pearson
system for a given frequency dístribution. An interesting question is
which model fits best; this question is discussed in some more detail in
Section 6.
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4. The Johnson system

Another subdivision of the ( gl,g2)-plane was obtained by Johnson (1949).
His system of distributions consists of three different types of transfor-
mations of a standard normal variable z. Using

x - (z-Y)~b

for given constants Y and b, these transformations are

~ - 9~L(X) - exP(X)

x - ~B(x) - exp(x)~[1 t exp(x)]

y - 9~U(X) - [eXP(x) - exp(-x)]~2

Details of the resulting distributions are shown in Table 3.

Table 3. Outline of the Johnson system.

Name Type Density

Lognormal SL b 1 exp[-(b log y)2~2]
2n y

Bounded ran e SB b 1
g n y(1-y) eXp[-{~.s log(~)}2~2]

Ran e Para-
g meters

R} b E R}

~rER,
[o,l]

bER~`

Unbounded range SU b - 1 ., .- ~ ~ ~
R ~

lty2

~ER,

bER`

For the lognormal distributions the - location - parameter y has been
deleted.
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Like for the Pearson system, any distribution of the Johnson sys-
tem has a unique pair of values for the measures gl and ~2. Figure 6 shows
how the (pl,g2)-plane is split by the curve SL in separate parts SB and
SU. See for details Stuart 8~ Ord (1987), p. 234 ff. The half-plane with
~1 C 0 has been omitted.

Figure 6. The (~1,p2)-plane for the Johnson system.

1

21

3

~a all
distri~t

`b~s

S,

5~

0

S„

S

0.5 1.0 1 5
Q,~

1.B

The quartet (x,s2,bl,b2) of empirical measures determines a unique distri-
bution within the Johnson system, as was the case for the Pearson system.

5. Characterization of the Johnson system by quantile measures

The (S,T)-values of the transition type SL arise as limits of the (S,T)-
values of either SU or SB type distributions. E.g. for the latter type
this is implied by the following property: if xn ~ SB(n,ó), ~(xn) -~ SL(Sjfor n~ m. So, in the (S,T)-plane the set defined by SL is a smooth tran-
sition between the sets corresponding to SU and SB.

Since Johnson distributions are transformations of the standard
normal, octiles are easily calculated. Table 4 gives a brief summary of
the extensive tables in Wagemakers (1991).
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Table 4. Octiles and (S,T)-values for the Johnson system.

1`)pe
S~
Sy
S~
Si

Ss
SB
SB
Se
SD
SD
SH
Se
S~
S~
S~
S~
SO
S~
S~
S~

~ ~
0.30
0.75

1
S

0.30 0
0.30 0.30
0.30 1.70
0.30 7.30

1 0
1 1
I 5
1 7

0.30 0.00
0.30 0.37
0.30 0.30
0.30 0.60

1 0.0
1 -0.5
1 -1.0
1 -7.0

1 7 ~ 4 s e r0.077 0.106 0.346 I.000 7.893 9.4 7 46.J0.716 0.407 0.854 1.000 1.579 ].458 4.6380.317 0.509 0.777 1.000 1.375 1.963 3.159
0.795 O.B74 0.938 1.000 1.066 1.144 1.769
0.071 0.096 O.7S7 0.500 0.743 0.905 0.9790.008 0.037 0.113 0.769 0.516 0.T77 0.9160.000 0.007 0.006 0.018 0.050 0.148 0.4590.000 0.000 0.000 0.001 0.003 0.009 0.0410.740 0.338 0.471 O.SOO 0.679 0.663 0.7600.104 0.168 0.711 0.769 0.336 0.419 0.6380.007 0.003 0.006 0.007 0.009 0.013 0.0710.000 0.001 0.001 0.001 0.001 0.00] 0.003

-73.17 -4.883 -1.773 0.000 1.773 4.683 73.17-16.49 -3.096 -0.717 0.411 7.047 7.030 34.61-8.487 -1.599 -0.067 1.175 3.888 17.85 87.68-3.051 -O.7S1 1.087 3.677 10.66 34.99 171.0-1.471 -0.7]7 -0.374 0.000 0.374 0.777 1.471-0.697 -0.175 0.187 0.571 0.913 1.464 7.608-0.151 0.731 0.735 1.175 1.735 7.574 4.7380.956 1.719 7.593 3.677 6.037 7.718 11.65

0.809 4.666
0.477 1.778
0.376 1.510
0.067 1.744

0.000 O.S83
0.374 0.727
0.T60 J.840
0.808 4.b06
0.000 1.111
O.1S0 1.179
0.371 1.496
0.374 1.608
0.000 4.668
0.307 4.866
0.816 4.666
0.780 4.866
0.000 1.510
O.1S0 1.630
0.748 I.S10
0.313 1.610

Again, from the empirical measures (q,r,s,t) a model can be found within
the Johnson system. This may be done numerically or graphically, by means
of a nomogram. Figure 7 sketches such a nomogram.
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Figure ~. Sketch of nomogram for the Johnson system.
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Again, their are two ways to find a suitable model within the Johnson
system; an important question is whether the moment-based or the quantile-
based approach is better.

6. Discussion and further research

In this paper an alternative method was developed to find a suitable model
for an empirical frequency distribution within a given system of theoreti-
cal distributions. For this class of potential models both Pearson's and
Johnson's system of distributions was considered. Our method is based on
the four quantile measures
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(Q, R, S, T)

for location, disperson, skewness and kurtosis; all of them can be calcu-
lated from the seven octiles.

Attention was concentrated on the behaviour of S and T; our main
result is that both in Pearson's and in Johnson's system there is a one-
one correspondence between the (location-scale free) distributions and the
values of the pair (S,T).

An interesting next question is of course whether this quantile-
based method gives a better fit than the classical approach, which is
based on the moments

(K. 1~.2. Al. P2)

As a first step in answering this question, the limit distributions of the
empirical measures (s,t) and (bl,b2) are being investigated. For the
standard normal distribution we obtained the following results:

~(t-T) ~ N2 ( (p) , r~ . 839 3 . 153J J

~(b2-S2~ ~ N2 l lOJ ~ l0 o4J J

~
where ~ denotes convergence in distribution for n~ m. Note that for
N(0,1)

(s,T) - (o. 1.233) . (S1.A2) - (o. 3)

holds. To check the (co)variances a simulation study was made. From N(0,1)
200 random sample of size n were drawn and for all of them the statistics

(s, t) . (bl. b2)

were calculated. From the 200 replicated values the estimated variances
and the covariance of each pair was found. Tables 5 and 6 present the
results.
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Table 5. Simulated means snd (co)variance of (s,t);
200 replicated samples from N(0.1). --

Simulated value of
n fE(s) ~E(t-1.233) nV(s) nV(t) nCov(s,t)

50 -0.224 -0.149 1.887 3.940 0.256
loo 0.103 0.395 1.746 3.378 -0.034
200 -0.039 0.395 1.931 3.487 -0.026
2000 -0.048 0.654 1.524 3.815 -0.283

0 0 1.839 3.153 0

Table 6. Simulated means and (co)variance of (bl,b2);
200 replicated samples from N(0,1).

Simulated value of
n fE(bl) fE(b2-3) nV(bl) nV(b2) nCov(bl,b2)

50 -0.240 -0.893 5.068 15.099 -0.068
l00 0.095 -0.840 4.683 17.781 -0.035
200 -0.013 -0.461 5.453 21.181 1.185

2000 0.296 0.570 5.180 23.137 0.283

m 0 0 6 24 0

A full report, with much more general results, is in preparation.
The simulation results appear to be in agreement with the theore-

tical values in the last lines of the two tables. Note that (S,T) can be
estimated with a greater accuracy than (~1,s2), Of course, this does not
imply that the quantile-based appoach is to be preferred. To admit such a
conclusion, some measure of fit will have to be chosen and compared for
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both methods of modelling. We plan to make such a comparison in due cour-
se.

Apart from the Pearson and Johnson systems of distributions, other
systems may be taken as the class of potential models. Interesting candi-
dates are the Schmeiser-Deutsch (1978} system of distributions and Burr's
system, cf. Stuart ~ Ord (1987), p. 242. A final question is how to select
a suitable system to start with.

Acknowledgement
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are based on work by Victor Coenen.
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