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Abs[ract

We consider the single equation errors-in-variables model and
assume that a researcher is willing to specify an upper bound on the
variance covariance matrix of ineasurement errors in the endogenous and
exogenous variables. The measurement errora may show any pattern of cor-
relations. It is shown tha[ as a result the set of ML estimates is boun-
ded by an ellipsoid. When, in addition, the variance covariance matrix
of the errors is constrained to be diagonal, the set of ML estimates is
shown to be bounded by [he convex hull of 2R points (R being the number
of error-ridden exogenous variables), lying on the surface of the ellip-
soid. The results are applied to an empirical example and extensions to
a simultaneous equa[ions system are briefly discussed.
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1. Introduction

Over the last decade the problem of ineasurement errors in the
independent variables of a regression equation has attracted renewed
interest among econometricians. In the fifties and sixties, the problem
was considered to be more or less hopeless due to its inherent under-
identification (e.g., Theil [20]). Apart from instrumental variables,
the most frequently cited textbook solution was Wald's method of grou-
ping (Wald [22]). Recent insight into the properties of the method of
grouping can be interpreted as making this method worthleas
(Pakes [18]). Since about 1970, new approachea to the problem have been
explored, basically along three lines, viz. embedding the error-ridden
equation into a set of mutiple equations (e.g., Zellner [23], Goldberger
[8]), into a set of simultaneous equations (e.g., Hsiao [10J, Geraci
[7]), and using the dynamics of the equation, if present (e.g., Maravall
and Aígner [16]). In view of the underidentification of the basic model,
it is clear that all these methods invoke additional information of some
kind. If thís information takes the form of exact or stochastic knowled-
ge of certain parameters in the model, the construction of conaistent
estimators is fairly stralghtEorward (e.g. Fuller [6], Kapteyn and
Wansbeek [11]). For an overview of the state of the art, see Aigner et
al. [1].

An approach somewhat orthogonal to the ones described above has
been to take the model as it is and to use prior ideas about the size of
the measurement errors to diagnose how serious the problem is. Examples
are Blomqvist [3], Hodges and Moore [9] and Davies and Hutton [5].
Leamer [14] starte Erom the opposite direction by asking how serious the
measurement error problem has to be in order to render the data useless
for inference, that is to say, when measurement error is large enough to
make it impossible to put bounds on regreasion parameters. In an empiri-
cal example, he shows that even very small measurement errors in some
explanatory variables would open up the possíbilíty of perfectly colli-
near explanatory varíables and hence make the data useless for statiati-
cal inference (at least without additional prior information).

The most systematic analysis of the information loss caused by
measurement error is due to Klepper and Leamer [12]. They etart out by
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invoking a minimal amount of prior information and then ask the question
under what conditiona it is still possible to make some inferences re-
garding the vector of unknown regreaeion parameters S. In the special
case where the measurement errora are assumed uncorrelated and the k-F1
estimates of g, obtained by regressing each of the 1rF1 variablea invol-
ved (i.e. the one dependent variable and the k independent variables) on
the remaining k variables, are all in the same orthant, one can bound
the ML estimates of g. In that case, the coavex hull of the lcfl regres-
sions contains all possible ML estimatea and any point in the hull ia a
possible MI,-estimate. If the kfi regressions are not all in the same
orthant then the set of ML estimates is unbounded.

In that case Klepper and Leamer [12] introduce extra prior in-
formation which allowa them to bound the aet of maximum likelihood esti-
mates. The prior information comes in two forma. Firstly, a researcher
is supposed to be able to apecify a maximum value of R2 if all exogenous
variables were measured accurately. It is ahown that if thía maximum is
low enough, one can again bound the set of ML estimates by a convex
hull. Secondly, if the R2 bound does not help in bounding the estimates,
a researcher is asaumed to be able to give upper and lower bounds for
the measurement error variances. If the upper bound is tight enough, so
that the true explanatory variablea cannot be perfectly collinear, the
aet of maximum likelihood eatimates is ahown to be bounded by an ellip-
soid. In the derivation of the ellipsoid, based on a result in Leamer
[13], it is asaumed that all exogenoua variables are measured with er-
ror. Obvioualy, this is reatrictive.

Bekker, Kapteyn, Wanabeek [2] have generalized Klepper and
Leamer's result to the case where the variance covariance matrix of the
measurement errore may be singular, but they still assumed, as did
Klepper and Leamer, that the endogenous variable ia measured without
error or that the measurement error in the endogenous variablea ia un-
correlated with the errors in the exogenous variables. In this paper we
relax this assumption, which turna out to be a non-trivial exercise. Not
only are there many cases where a non-zero correlation between errors in
the endogenous variable and 1n the explanatory variables is likely (for
instance when all variablea in an equation are deflated by the same im-
perfect price index), but the importance of the generalization also lies
in the possibility to extend the analysis to more complicated models
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than just the linear regression model. Section 2 presents this result.
Although Klepper and L,eamer [12] assume throughout their paper

that all measurement errors are uncorrelated, they do not exploit that
information in the derívation of the ellipsoid. For any point in the
ellipsoid we can find an St (the variance covariance matrix of the errora
in the explanatory variables) that yields this point as an ML eatimate,
but such an R need not be diagonal. In Section 3 we ~,nveetigate the con-
sequences of the extra requirement that S2 is diagonal. In that case the
ML estimates are bounded by a polyhedron, which need not be co~ea. Of
course, the polyhedron lies within the ellipsoid. The convex hull of the
polyhedron is determined by 2R vertex points that all lie on the ellip-
soid, where R is the number of nonzero measurement error variancee. The-
se points can be computed easily and then used to find, for all elemente
of g, intervals that bound the ML estimatea. Generally, these intervala
are tighter than the ones obtained from the ellipooid.

In Section 4, an empirical example illustrates how the various
types of prior restrictions affect the bounds on the ML eatimates. Sec-
tion 5 concludes by briefly discusaing extensiona to simultaneoua equa-
tions models. All proofs are collected in two appendicea.
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2. The Model and the Ellipsoid

Throughout we deal with the following model:

(2.1) n~- BOf e

( 2. 2) Y s n-t~ u

(2.3) X-~-~-V ;

(2.1) is the classical línear model, which relates the n-vector of de-
pendent variables n to the nxk-matrix of explanatory variables ~ and the
n-vector of disturbances e. We assume that the distribution of e is in-
dependent of n and satisfies Ee ~ 0, Eee' - a~I. The k-vector of para-
meters SO and o~ are unknown and have to be estímated.

Both n and 5 are unobservable. Instead, y and X are observed and
u and V therefore are the errors of ineasurement i n y and X. We ass~e
that u and V are uncorrelated with ~, n and e and that Eu s 0, EV - 0.
Moreover, letting ui be the i-th element of u and vi the i-th row of V,
we assume that

u (ui~vi) a ~ - 11 ~12E i
vi ~21 0

for all i and that (ui,vi) is atochastically independent of
(uj,vj) for i ~ j.

Let ~ be known and define s and Q2 by

(2.4) 6 - (A-S2)-1(Ab-~21)

(2.s) a2 - n y'y - ~11 - s'(A-n)s ,

-~where A- n X'X, b-(X'X)-1X'y. Under a variety of assumptione, (g,o2)
wíll be a conaistent estimate of (gO,aÓ). Of course, if ~~ 0, (B,a2)
reduces to the OLS-estimate (b,s2), where s2 - n y'y - b'Ab.
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Although ~ will usually be unknown, it seems reasonable to assu-
me that a researcher wíll be able to epecify bounds for m, I.e.,

(2.6) 0 ~ m ~ ~~ -

~where ~ is specified by the researcher.l) This bound on ~ will be uaed
to derive bounds on the estimates g defined by (2.4). We assume that~
~ is symmetric and that

~ ,
(2.7) 0~ m~ ~ B- 1 Y Y Y X

- n

thereby guaranteeing the existence of the eatimate S and also the posi-
tiveness of the eatimate a2 for any choice of ~ satisfying (2.6)2). The
latter can be shown easily by writing the positive definite matrix
(B-~)-1 as

0 0
(2.8) (B-~)-1 3 1 } á2(S1)(-l~s~)'

0 (A-R)-

so that

(2.9) a2 ~ {ei(B-~)-lel}-1 ~ 0~

where e is the first unit vector. Furthermore, if we denote the eatima-
te (g,o`) by (b~,s~2) if ~-~~, it is readily establíahed that, as a
conaequence of the boundedness of ~, also a2 is bounded:

2
(2.10) s2 ~ a2 ~ s~ ~ 0 .

1) The notation C~ D means that D-C is a positive semidefinite matrix;
C~ D means D-C ~s positíve definite.
2) Note that ~'~ has to be atríctly leae than B. Among other thinge,thia excludes the possibility that the true explanatory variables in ?are perfectly collinear. If ~ could have less than full column rank, nobounds for B exist.

X'y X'X
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We may now ask the question whether we can alao delimit the set of esti-
mates S given that ~ satisfies (2.6). The answer to that question is
contained in proposition 1:

Define

(2.11) F~ - (A-SZ~)-1 - Á 1.

Then we have

Proposition 1: The set of solutions S satisfying ( 2.4), with ~ satis-
fying (2.6), is given by:

2
(2.12) (B-}(btb~))'F~-(R-}(~b~)) ~ }(s2-s~ )

(2.13) F~F~-(6-}(btb~)) ~ S - }(bfb~) .

where F~ is an arbitrary g-inverae of F.~
This bound ís minimal, i.e., for any s satisfying ( 2.12) and ( 2.13) the-
re exists a~ such that ( 2.4) and ( 2.6) hold true. -

Proof: See Appendix A.

Equation (2.12) describes a cylinder and (2.13) presents a pro-~jection of the cylinder onto the epace spanned by F. Thus (2.12) and~(2.13) describe an ellipsoid ín the space apanned by F. It is rather
easy to show (see Appendix A) that

~2
(2.14) s2-s ~ ~t- ~ ~t ~t ~t- ,t(b -b)' F (b -b) f ~11-~12~ ~21~

The non-negative definiteness of ~~ implies that

(2.15) ~11 , ~12 ~~- ~Z1,

If (2.15) holds as an equality, i.e.
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(2.16) ~11 - ~12 n~- ~21,

then (2.12) and (2.14) imply that both b and b~ lie on the surface of
the ellipsoid and the centre of the ellipsoid is located at the midpoint
of the segment joining b and b~. See Figure 1.

Figure 1: The ellipsoid when (2.16) holds

If (2.16) holds, the measurement error ui in y is linearly de-
pendent upon the meaeurement errors vi in the exogenous variables, in
the aense that the mean square of their difference ia zero. To see this,~- ~rdefine a~ S2 ~21, so that (2.16) ia equivalent to

(2.17) (-1, a') ~~ m 0.

This implies, in conjunction with (2.6):

(2.1s) o t (-1, a') ~ (al) ~ (-1, a') ~~ (~1) - o,

so that (-1, a') ~- 0, which is equivalent to E(ui-a'vi)2 - 0. That ie,
the measurement error in y i s a fixed linear combination of the measure-
ment errors in X with probability one. One particular case in which this
holds is where ~21 - 0 and ~11 ~ 0, i .e. no measurement errors in y.
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~ ~If we let ~11 íncrease, keepíng all other elements2of ~ con-
~

stant, so that (2.15) becomes a strict inequality, s2 - s increases
according to (2.14). As b, b~ and F~ do not depend on ~11, this means
that the ellipsoid expands. In that case b and b~ are no longer on the

surface of the ellipsoid, but the midpoint of the líne joining b and b~

is still the center of the ellipsoid. See Figure 2. The intuitíve expla-
nation

Figure 2: The ellipsoid when (2.15) is a strict inequality

~t
for this is that if ~11 increases, we do not only allow more measurement
error in y(which is indistinguishable from errors in the equation any-
way) but also more covariance between the errors in y and X. Thus, the
bound on ~ becomes less tight and the ellipsoid expands.

If the number of regressors exceeds two, it will be hard in
practice to represent the ellipsoíd given by (2.12) and (2.13) in a
transparant way. For that reason it is useful to derive bounds for li-
near functions of g. Let ~y be a known vector, then bounda for ~'~ are
implied by the following proposition.

Proposition 2: The maximum and minimum of y~'S, with ~, fixed and B satis-
fying (2.12) and (2.13), are given by

2
(2.19) ~Y' B ~ ~ V~' (bfb~) f } ~ (s2-s~ ).y~'F~y~.

Proof: See Appendix A.
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3. Uncorrelated measurement errors

In this section we assinne that, in addition to the bounds on ~
as given in (2.6), a researcher ia alao willing to sesume that ~~ and
~ are diagonal. That i s, measurement errors in different variables are
uncorrelated.

The first thing to notice is that in this case the measurement
error in the regressand is completely indistinguishable from the error
in the equation. Therefore it is of no conaequence for the aet of eati-
matea B. Since ~ ia diagonal, ~21 - 0 and the estimator g is simply gi-
ven by

(3.1) 6 ~ (A-St)-lAb,

where St is diagonal and bounded by

(3.2) 0 ~ S2 ~ R~ ~ A.

Clearly, the set of estimates is unchanged i f we chooae ~11 ~~11 ~ 0'~Consequently the ellipsoid (2.12)-(2.13), only depends on S~ . We will
refer to (2.12)-(2.13), with ~21, ~ 0 and ~11 ~ 0, as "the ellipaoid~spawned by S2 ". This ellipaoid is still a bound for the set of eatima-
tora s, but it is no lonqer a minimal bound if it and S2~ are cestricted
to be diagonal.

In order to derive a more satisfactory bound we define the fol-
lowing points

(3.3) Só - (A-S2ó)-lAb,

~ a ~ ~where Sta a n A a AS2 a Afl A, with p s diag(6) and ó a vector with ones
and zeros as elements. If St~ has R non-zero diagonal elements then there
are 2R different matrices Sta, which all satisfy (3.2). Clearly the 2i

~solutions Bó are bounded by the ellipaoid epawned by n. We ahall refer
to the 6d as "generated by 52~."
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Proposition 3: All ga lie on the surface of the ellivsoid s ~- - pawned by S2

Proof: See Appendix B.

Having established that all Sa lie on the surface of the ellip-
soid spawned by 52~, we next show that S liea in the convex hull of the
2R points gd that are generated by f2~.

~Proposition 4: If Sà and SZ are diagonal and satiafy (3.2), then the set
of estimates g satisfying ( 3.1) is contained in the convex hull of the
2R op ints ga generated by S2~

Proof: See Appendix B.

Thus, the diagonality of S2 further reduces the region where S
may lie when measurement error is present. In practical applications,
the most obvious use of this result i s to compute all 2R points g anddto derive the interval in which each coefficient lies. These i ntervals
will in general be smaller than the ones obtained from Propositíon 2 by
choosing for ~, the k unit vectors successively. Proposition 4 is similar
to a result given by Chamberlain and Leamer [4] (employing a result by
Leamer and Chamberlain [15]) that bounds the posterior mean by 2k re-
gressions if the príor covariance matrix is diagonal. In terms of the
present framework, their proof assinnes that 52 is non-aingular ( so R~k,
among other things).

An example shows that the convex polyhedron need not be a mini-
mal bound for S. Consider the case of two regressore, where all varia-
bles (including the regressand) are subject to measurement error and~the 3X3 matrix ~ is diagonal. If ~ is not restricted to be diagonal,
the set of estimates g is bounded by the ellipsoid spawned by ~~ given
in Proposition 1. Aa has been observed in Section 2, the ellipsoid spaw-~ned by 52 is the same ellipsoid with a smaller radíus. If 0 is restric-
ted to be diagonal all 4 vertex points (R ~ 2) lie on the eurface of
this latter ellipsoid.

Let a and c be the vertex points ( besidea b and b~`);

(3.4) a - (A-S~a )-lAb
1
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(3.5) c - (A-n~ )-lAb,
2

where dl -(1,0)', d2 -(0,1)'. Aasume without loss of generality that b
~ 0. Let us follow the path from b to a. Note that

(3.6) B- b~ Allwlgl f AZlw2g2,

where wl and wZ are the diagonal elementa of n, All and A21 are the
first and second colimmn of Á1, reapectively, and gl and g2 are the
two el~ments of S. Going from b to a, we aet w2 ~ 0 and let wl go from
O~to wl. So S- b~ Allwlsl. As bl ~ 0, wlsl ~ 0 and has as ita maximum
wlal' As (A 1)11 ~ 0 the line has a poaitive angle with el. Analogously,
the line from b to c has a positive angle with e2. A posaible case is
given in Figure 3, with a~ 0, and c~ 0. Going from a to b~ we have

~ -1 ~ ~S-~' s(A-~d )2 w2S2. As a2 ~ 0, w262 ~ 0 with maximwn w2b2. As
(A-~d )22 ~ 0, ~he line has a positive angle with e2. Analogously, the
line ~rom c to b~ has a positive angle with el. So if ~ is reatricted to
be diagonal we end up with the shaded area in Figure 3(the outer ellip-
soid gives the bound for the estimatea if ~ is not reatricted to be dia-
gonal).

0 e2

Figure 3. The convex hull when St is diagonal and the vertices are in the
same orthant
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Now assume cl ~ 0. The line from a to b~ has sgain a positive
angle with e2, but the líne from c to b~ has a negative angle with el.
This Ls so since ~i - c~(A-S2ó )11w1S1, and cl ~ 0, so wi~l ~ 0. See
Figure 4. 2

Figure 4. The convex hull when St is diagonal and the vertices are not in
the same orthant

Now all S's are within the shaded area, which is clearly not convex. The
wasp~waist is on e2: in (3.6), choose wl and w2 such that gl - 0, then
we can next vary wl at will without affecting s, as gl ~ 0.
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4. An Empirical Example

In Van de Stadt, Kapteyn, Van de Geer [21] (SKG from now on) a
model of preference formation is constructed and estimated. The central
relationship of the model is the following one:

(4.1) ui ~ B~ f Slui(-1) t S2fs1(-1) t S3fsi f s4yi f gsyi t gófsi f ei

The index i refera to the i-th household in the sample; ui ie a meaeure
of the household's present wants (exp(ui) is the income the houaehold
head would consider just about "sufficient to make ends meet"); ui(-1)
is the same measure observed one year ago for the same houaehold; fsi is
the log of the present number of household membera ("log-family size")
whereas fsi(-1) is log-family size one year ago; yi is the preaent after
tax household log-income. The starred variables are sample means of log-
incomes and log-family sizes in the "social group" to which houaehold i
belongs. A social group is a set of households with identical characte-
ristics (the age of the household head is in the same age bracket, the
household heads have a similar education and they live in a town of si-
mílar size); Fi is a random disturbance term. See SKG for further de-
tails.

Thus relation (4.1) explains the level of a household's present
financíal wants by its family size, both present and lagged one period,
its present log-income (habit formation), by present log-income and log-
family size in the household's social group (preference interdependen-
ce), and by the level of financial wants one year ago (habit formation).

Since ei is allowed to show negative serial correlation,
ui(-1) may correlate negatively with ei. This is equivalent to allowing

a measurement error in ~` aui(-1). 1 The variables yi and fai are proxies
for reference group effects and may therefore be expected to suffer from
measurement error; fsi and fsi(-1) are crude proxiee of the effects of

1) As a matter of fact, E. hae the form ui- Blul(-1) f vi, where ui and ui(-
1) are uncorrelated with éach other or with vi; vi may be serially correlated.
If we write ui(t) s r~i (t) f ui(t), t~ 0,-1, then we can rewrite ( 4.1) as n
s~p f B1 ni(-1) f SZfsi(-1) f S3fs1 t 64yi f RSy~ f S6fs~ t v, where ni(-1)is assumed uncorrelated with vi. If we replace ni(-1) by uj(-1~, as in (4.1),we obtain a model in which the covariance of ui(-1) with E1 equals - sl au .
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family composition on financial wants, which can therefore also be ex-
pected to suffer from measurement error. Finally, yi may be subject to
measurement error as well.

Table 1. Sample means and covariances of the observed variables.

Varíable Mean Covariance with

ui ui(-1) fsi(-1) fsi yi yi fsi

ui 10.11 .1260

uí(-1) 10.07 .1123 .1348
fsí(-i) 1.01 .0876 .0922 .2706
fsi 1.00 .0887 .0889 .2559 .2751

Yí 10.31 .1238 .1212 .0881 .0924 .1783
~

Yi 10.30 .0606 .0593 .0523 .0533 .0782 .0828
~

fsi 1.00 .0434 .0443 .0873 .0880 .0515 .0535 .0972

Table 2. Specification of ~~.

Variable ui ui(-1) fsi(-1) fsi yi yi fsi X error

ui .0154 35
ui(-1) .0165 35
fsi(-1) .0061 .0061 15
fsí .0061 .0061 15
yi .0040 15
~

Yí .0130 .O100 40
~

fsi .0100 .0150 40



15

The sample means, standard deviations and correlations of all
variables involved are given in Table 1. Our specification of ~~ is gi-
ven in Table 2. The column headed "X error" indicatea the standard de-
viation of the measurement errors (the square root of the diagonal of~
b) as a percentage of the sample standard deviation of the correspon-

~ding observed variables. The specification of ~ represents the prior
ideas of the authors of SKG. The upper bounds on the measurement errors~ ~in the proxies yi and fsi are chosen relatively high and so are the
bounds on the sub ective measures ~~ j ui and ui(-1). Since the proxies yi
and fsi are constructed in a similar way, as sample means per aocial
group, a subetantial correlation in measurement error seems likely. The
bounds on the "objective" variables fsi, fsi(-1) and yi are considerably
tighter. The reason for the perfect correlation between the measurement
errors in fsi and fsi(-1) is that most of it represents the crudity of
the specification of family composition effects on subjective wante by
means of log-family size. Thís crudity wíll be more or less the same in
both periods. Secondly, there is some ambiguity in the definition of a
household. Not only persons living with a family, but also others aup-
ported by the family for at least 50X are counted as members. The latter
criterion is rather loose, but it seems likely that if a respondent ap-
plies the criterion incorrectly in one year, then he will make the same

~mistake the next year. For the rest, the elements in ~ are set equal to
zero. Given the analysis in the preceding sec[ione, it ahould be clear
that without further restrictions, the corresponding elements of ~ can
still be non-zero.

We present extreme values for the elements of s(uaing Propoai-
tion 2 witlt y, equal to the succesaive unit vectors, or by using Proposi-
tion 4) for four cases.

~
(i) ~ is as given in Table 2.

~ ~
(íi) ~11 ~ 0. For the rest ~ is as given in Table 2. The intervals

for s should be tighter than in the previous case.
(iii) The off-díagonal elements in Table 2 are set equal to zero. Howe-

ver, ~ can, of course, still be non-diagonal.
~(iv) As Case (iíi), with ~11 z 0~ The intervals for S should be tighter

than in the previous case.



16

(v) As Case (iii), but diagonality is imposed on ~. Again, this ahould
narrow the intervals relative to the previous case.

In Table 3 the values of b and b~ are presented, along with the extreme
values of S for the five cases considered.

For all specifications of ~~, B-à~ is positive definite. As a re-
sult, s~2 is always positive, as it ahould be. The various columns in
Table 3 are pretty much according to expectation. The intervals for gi
are a great deal wíder in Case (i) than in Case (ii). In Case (ii) we
see that S5 and S6 can switch signs depending on the choice of m. In
Case (i) the interval for g2 becomes so wide that this parameter may
reverse signs as well. Similarly, Case (iii) gives rise to wider inte~
vals than Case (iv). Comparing (iii) and (iv) to (i) and (11) makes it~clear that, in this example, the díagonal 4 generates wider intervals.
Now, g3 may reverse signs as well. Finally, ímposing diagonality on ~
narrows the interval dramatically. No parameter eatimate reverses signs.

The example illustrates two pointa. First, it is important to uae
prior information economically. If one "knows" that ~ is diagonal, this
knowledge should be used. Otherwise the computed intervals may be much
wider than the intervals that correspond to one's prior knowledge. Se-
condly, allowing for measurement error in the endogenous variable (and
correlation between this error and the errors in the exogenoue varia-
bles) has a non-trivial influence on the intervals for the si.
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Table 3. F.xtreme values of gl)

~ - 0 non-diagonal 4

sl

diagonal ~
b b~ (1) (ii) bk (iii) (iv) (v)
.509

(.026)
.77z .912 .790 .781 .926 .801 .796

.369 .491 .364 .489 .490

-.013 .029 -.005 .264 .115 -.005S2 (.032) --079 -.121 -.087 --129 -~406 -.257 -.136
.066 .123 .104 .428 .285 .15383 (.031) -095 ,038 .057 .149 -~213 - .070 .061
-298 .418 .331

S4 (.031) -149 ,029 .117 .135 .427 .334 .321
.006 .100 .122

.071 .270 .175 .073 -441 .278 .133S5 (.029) -047 -~152 -.057 --297 -.133 .037
-.031 .124 .056 .251 .122 -.020R6 (.025) --025 -~180 -.112 -0.48 -~330 -.201 -.075

~2s .0021 .0175 .0019 .0173
s2 .0242

1) Standard errors in parentheses. Each cell in the columna (i)-(v) con-tains the extreme values for the elements of S.
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5. Conclusion

As illustrated in Section 4, it is very simple to apply Proposi-
tions 2 and 4 to empirical problems, and the analysis could easily be
incorporated in regression packages. Since the propoaitions cover a wide
range of cases, the researcher has considerable freedom to express his
prior ideas about n as precisely or as vaguely as he wants. The result
of the analysis will then summarize auccinctly the sensítivity of esti-
mation outcomes for assumptions about the quality of the data used.

It appears that the framework developed in this paper will allow
for extensions to more complicated models. Consider for example the j-th
structural equation in a linear simultaneous equations system:

(S.1) y~ ~ Y~aC f n~y0 t e~,

where Y~ and ?3 are matrices of endogenoua and exogenous variables res-
pectively, included as explanatory variables in this equation; yj is the
vector of endogenous variables to be explained by this equation and ej
is a vector of errors. Let H be the matrix of all exogenous variables in
the system. Then 2-SLS amounts to GLS applied to

(5.2) ~~y~ ~-jYja~ f n~~~y~ f ~je~.

If ~ is measured wíth error, this model becomea similar to (2.1)-(2.3).
Since ~ occurs on both sides of the equation, the measurement errors
in the left and right hand side variables will in general be correlated.
For the special case where y~ a 0, it is easy to show that Proposition 1
can be applied directly to derive an ellipsoid for a consistent estimate
of a~, defined analogous to g (cf. (2.4)). (Bekker, Kapteyn and
Wansbeek [2] have derived the same ellipeoid without reference to Propo-
sition 1, assuming that all exogenous variables are measured with er-
ror.) Proposition 1 ie not applicable when yC ~ 0. For that more ge-
neral case further research is needed.
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Appendix A: Proofs of propositions 1 and 2 and of (2 14)

We first establish two lemmas and a corollary.

Lemma 1 Let C- rCll C12 be a symmetric matrix and let C22 be aL 21 22
generalized inverse of C22, then C~ 0 if and only if

(A.1) (1) C22 ~ 0

(ii) C22 C22 C21 -
(iii) C12 C22 C21 C

C21

C11

Proof: If C ~ then,
(i) trivial.
(ii) Let A' 3(0, I- C C ), then A' C A a 0, so22 22

C A~ 0, or (I - C22 C22) C21 ~ 0,
(iii) Let B' 3(I, - C12 22),

then B' C B z C11 - C12 C22 C21 ~ 0'
if (i), (ii) and (iii) hold true, then

~-C a I C12 C22 C11 - C12 C22 C21 0 I
C~ 0.

0 I 0 C22 C22 C21 I .Q E.D.

A similar result has been mentioned by Ouellette [17J. We aleo
note that, according to lemma 2.2.4 in Rao and Mitra [19), (ii) and
(iii) are invariant under the choice of g-inverse.

Corollary. I.et C be a symmetric matrix, with C a generalized ínverae of
C, then the following three statements are equivalent:

r
(A.2) x C ~ 0

(A.3) xx' c C
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(A.4) (i) C ~ 0
(11) CC x a x
(iii) x' C x c 1

Proof: Apply Lemma 1 twice,

Lemma 2. Let C and C~` be positive definite symmetric matrices, c2 and
c~2 positive scalars and let Y and Y~ be vectors, then -

~ ~ ~t ~t ~t 2 ~ ~ ,t
(A.5) Y~C Y t c2 Y' C c Y C Y f c Y C

C Y C C~t Y,~ C,~

if and only if

(A.6) (i) C 1- C~-1 ~ 0

(ii) (~ 1- C~-1)(~ 1- C~-1)- (Y~ - Y) ~ Y~ - Y

(iíi) (Y~ - Y)' (C 1- C~-1)-
(Y~ - Y) c c~2 - c2.

~
Proof: Premultiply (A.5) by A a~0 -1 and postmultiply by A'.
This implies that (A.5) is equiva ent to

(A.7) Ic2 0 J c~(Y~ -Y)' C~(Y~ - Y) t c~2 (Y~ - Y)' C
LO C C~(Y~ - Y) C~

Since the matrices on both sides of the inequality eign are positive
definite, (A.7) is equivalent to

(A.8)
c~-2 - c~-2 (Y~ - Y), ` c-2 0

-c~-2 (Y~ - Y) C~-1 } c~-2 (Y~ - Y)(Y~ - Y)' 0 C 1
.

or

-2
(A.9) c~-2 I-~

II-~
I' c c

0~-
Y- Y Y- Y 0 C 1- C 1 ]

Finally, using the collory, we find (A.9) to be equivalent to
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(A.10) (i) C 1 - C~-1 ) 0

(ii) (C 1 - C~-1) (~ 1 - C~-1)-
(Y~ - Y) m (Y~ - Y)

(iii) c~-2 (Y~ - Y)' ( C 1- C~-1)- (Y~ - Y) } c~-2 c2 c 1.

Proof of Proposition 1: There holds:
.Q E.D.

rS' ( A-S2 )~ta B' (A-S2 ) b' Abfe b' A
(A.11) (B-~) ~ L (A-S2)B 2 (A-S2)~ c Ab 2 A]~ B.

Since A ~ 0, A-S2 ~ 0, a2 ~ 0, s2 ~ 0, we can apply Lemma 2 to show that
(A.11) is equivalent to

(A.12) (i) (A-S2)-1 - A 1 ~ 0

(11) {(A-S2)-1 - Á 1}{(A-St)-1-A 1}- (s-b) - B -b
(iii) (S-b)' {(A-S2)-1 - A 1}- ( g-b) c s2 - a2.

The corollary implies that (A.12) is equivalent to

2 2
(A.13) s- a Bi - b'1 ~ 0.

B - b (A-S2)- - A
~

Similarly we find that ( B-4 ) c(B-~) ie equivalent to

2 ~2 , ~'
(A.14) o~ s ,~ S1 - b 1 ~ 0.

S-b (A-R )- - (A-St)-

Adding (A.13) and (A.14) yíelds:

2 ~2 , , ~
(A.15) s- s ~ 2S - b~ - b ~ 0~

26 - b - b F

Application of Lemma 1 yields (2.12) and (2.13).
The second part of the proof is constructive. For each B~ b,

satisfying (A.15) we construct a a2 and f'2 that satiafy (A.13) and
(A.14). Define

~
(A.16) o-~} {s2 t s 2-(g-b)' F~-(S-b) t(g-b~) F~-(s-b~)t.
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Since b satisfies (2.12) and (2.13) we have

(A.17) } ~- ~ ~ s2-s2 2~-b'-b~ -1
2s-b-b~ F F (b- i

}{(b-b~)' F~-(b-b~) -(s2-s~2)} t s2 - a2 c s2 - a2.

Furthermore,

(A.18) ~ s2 - s~2 26~ -b' - b~~ - 1 a- s2 - à2
2B b b~ F~ F~-(b-b~)

which implies

(A.19) s2-à2 ~ s2-s~2 28,-b'-b~r - s2-à2 2 -2
s-b 2B-b-b F s-b

Using the corollary, we find for ~~ b that

(A.20) - s2-s~2 28~-b'-b~~ ~ (s2-Q2)-1 s2-à2 s2-à2 ~ ~
2B-b-b~ (A-ft~)-1-Á 1 ( 6-b ( B-b11
s2-à S~-b

If we now choose 52 such that

(A.21) (A-R)-1 3 Á 1 ~ ( s2-o2)-1 ( S-b)(B-b)',

then, clearly, both (A.13) and (A.14) are satisfied. .Q E.D.

Proof of (2.14): Let x be a scalar and let

B-b (s2-à2)-1(B-b)(B-b)

-1
F (b-b ) b )

,t ~t- ,t

~ s - a .

~ 2 ~ -
~ - ~11 - x ~12

~ ~
-~21 ~
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It follows from Lemma 1 that ~~ 0 if and only if

(A.22) x2 c ~11 - ~12 ~~- ~21~

On the other hand ~6 ~ 0 if and only if B- m c B. Partitioning of the
matrices B-~~ and B just as in (A.11) and application of Lemma 2 shows
that B-~ c B if and only if

(A.23) x2 c s2 - s~2 -(b-b~)' F~-(b-b~).

Clearly (A.22) is equivalent to (A.23) and thus

(2.14) s2 - s~2 -(b-b~)' F~-(b-b~) t~~ - m~ n~- 4~ .E.D.11 12 1~'

Proof of Proposition 2: Given that F~ is symmetric and positive semi-
definite, the corollary implies that (2.12) and (2.13) are equivalent to

(A.24) (B-}(b~-b~)) (B-lt(bfb~)' c } (s2-s~2) F~.

This implies

(A.25) (V~'B - }~y'(b-Fb~))2 c } (s2-s~2) V~~ F~ V~.

for any given vector ,y. This makes it clear that (2.19) gives the extre-
me values of y~' s . ,Q E.D.

Appendix B: Proofs of Proposition 3 and 4

Proof of proposition 3:
Clearly S2~ - SZ~ S2~- S2~ and S2~ - S2~ St~- Sl~.

d d d d d
If we define

Fd - (A-ita)-1 - A 1,

then
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(B.1) ~r ~t ~r- ~r
Fd (A-S2 ) SZ AFd ~

-(A-S2a)-1 S2a Á 1(A-S2~) Sl~- AA 1 fla (A-S2a)-1 s

~~ Fd ,

So (A-S2~) S2~- A is a g-inverse of Fa for every 6; in particular it is a
~g-inverse of F . As

(B.2) Fd - F~ (A-St~) S2~- f2d (A-Std)-1.

it follows that

(B.3) Fa F~- Fa a Fa

for any g-inverse F~-. As 28d-b-b~ ~(2Fd - F~)Ab, and using (2.14)~ ~with ~11 - 0 and ~21 a 0, it follows that (2.12) becomes an equality if
we substitute Sd for s. .Q E.D.

Lemma 3. Let A be a positive-definite matrix, k a vector and u a
scalar, 0 C u t 1. Then -

(B.4) (A-EUkk' )-1 ~ ~Á 1 f (1-a) (Afkk' )-1,

where

(B.5) 1 ~ a ~ 1 - u

1 f u k'Á lk

Proof: Straightforward

~ 0.

Without loss of generality, we asaume [hat the first R diagonal~ ~ ~ ~elements of S2 , wl, m2,.,,,wR, are non-zero (R C k) and the remaining
k-C elements are zero. Let us index the 2R vectora d by a subscript j,
with j31,,,,~2R, A typical
dj in such a way that,

element of d isj
for j C 2m and 0

with e~l the ( mfl)-th unit vector. In Fig.
and R,-3

dij 1,...k. We order the
c m t k-1, d m a dj-e~l,

5 we give anézample for 1~4
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dl d2 63

~0 1 0 1 0

0 1 1 0 0

IO 0 0 0 0

d4 d5 ó6 d~ á8

Figure 5. The ordering of d; for 1~4, R~3.

R ~ ~Define K~ - A- E dij wi eie'i (this would be denoted as A-na in sec-
is 1 ~

tion 3, with 63d~). Then we have that K m~ K~ f m~l e~l e~l.
j-~2

Lemma 4. Let ui, i-1,...,2m, be scalars satisfying ui~ 0, E ui ~ 1, then
- i

there exist scalars aj, j-1,...,2m, satisfying ~j ~ 0, E a~ a 1, such
~

that

2m -1 2m
(B.6) { E ui Ki} a E a(K )-1, for all 0 c m c R

i~l j-1 ~ ~

Proof: The proof is by induction. Assume (B.6) holds for m c R-1 then we
show that it also holds for mtl.

2mt1 2m 2m 2m
(B.7) E uiKiz E uiKit E u mK m~ E (u fu m)Kif

i~l 1-1 i~l it2 it2 1-1 i it2

2m ~ ~
.

{i~luif2m}wmtlemtlemfl~

Lemma 3 implies

2mt1
(8.8) { F.

i-1

m
uiKi}-1 - a{ L(uifu m)Ki}-1 t

i-1 if2



26

2m ~ -1

(1-a){iEl(uifuit2m)(Ki~mflemtlemfl)} s

- a{ Em(u fL )K }-1 t(1-a){ Em(u tU )K }-1.
i~ 1 i if2m 1 i~ 1 i it2m it2m

with 0 c a t 1. Assuming that the proposition holds for m, (B.8) implies
that it holde also for mfl. Furthermore, (B.6) holds if ma0.

.Q E.D.

Proof of Proposition 4: Consider K- A- St Given that 0 t S2 c S2~ and~
that 52 and S2 are diagonal we can write K as

2R
(B.9) K 3 E u K,

j-1 J j

where Lj ~ 0, E uj - 1
~

Accordíng to (3.1) and Lemma 4 we have,

(B.10)
1 -1 2R -1 2R 1 2R

Bs(A-52)- Ab~K Ab-{ E u K} Ab~ E a K Ab~ E a s ,
j~l ~ ~ j`1 ~ ~ j-1 ~ ój

with 7~~ ~ p, E a~ s 1~ .Q E.D.
~
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