

RESEARCH MEMORANDUM

ILBURG. UNIVERSITY
EPARTMENT OF ECONOMICS
2stbus 90153-5000 LE Tilburg etherlands

K.U.B. BIBLIOTHEEK TILBURG

$\frac{\text { FEW }}{228}$

Jackknifing estimated weighted least squares
Jack P.C. K1eijnen
Peter C.A. Karremans
Wim K. Oortwijn
Willem J.H. van Groenendaal

Department of Information Systems and Auditing
School of Business and Economics
Catholic University Tilburg
5000 LE Tilburg
Netherlands
June 1986.

Key Words and Phrases: Regression analysis; experimental design; variance heterogeneity; nonnormality; non-1inear estimators; confidence intervals; t statistic

JACKKNIFING ESTIMATED WEIGHTED LEAST SQUARES

Jack P.C. Kleijnen
Peter C.A. Karremans
Wim K. Oortwijn Willem J.H. Van Groenendaal
Department of Information Systems and Auditing School of Business and Economics
Catholic University Tilburg
5000 LE Tilburg
Netherl and s

Abstract

This paper investigates regression analysis of experimental designs with replications, assuming variance heterogeneity, possibly combined with nonnormality. These replications yield variance estimators which result in Estimated Weighted Least Squares (EWLS). Jackknifing yields confidence intervals for the nonlinear EWLS estimators. The validity of these confidence intervals are examined in a Monte Carlo experiment. Jackknifed EWLS estimators result in better confidence intervals than simple EWLS.

1. INTRODUCTION

Although jackknifing is an "old" idea, introduced by Quenouille in 1949, the technique could not become popular
until computers became widely available. And even nowadays jackknifing is not much applied. In this paper we apply jackknifing to the linear regression model with unequal er ror variances. If these variances were known, then Weighted Least Squares (WLS) would yield the Best (minimum variance) Linear Unbiased Estimator (BLUE). In practice these variances are unknown. However, we can easily estimate the error variances in experimental designs with replication (as is the case in simulation experiments in which we are particularly interested). These estimated variances result in the Estimated Weighted Least Squares (EWLS) estimator, say $\tilde{\beta}$. This nonlinear estimator is unbiased under mild conditions; see Schmidt (1976, p. 71). And although the EWLS estimator has smaller variance than the Ordinary Least Squares (OLS) estimator $\hat{\beta}$, the EWLS confidence intervals hold only for large samples, i.e., for more than 25 replications per combination; see Kleijnen et al. (1985). Therefore we shall investigate whether Jackknifed Estimated Weighted Least Squares (JEWLS) is a "jewel" indeed, i.e., yields valid confidence intervals.

2. DEFINITION OF JEWLS

Consider the 1 inear regression model

$$
\begin{equation*}
\underset{\sim}{X}=\underset{\sim}{X} \underset{\sim}{B}+\underset{\sim}{e} \tag{2.1}
\end{equation*}
$$

where the underscore \sim denotes matrices (including vectors), and $\underset{\sim}{y}=\left(y_{1}, \ldots, y_{N}\right)^{\prime}, \underset{\sim}{X}=\left(x_{i^{\prime} q}\right)$ with $i^{\prime}=1, \ldots, N$ and $q=$ $1, \ldots, Q, \underset{\sim}{\beta}=\left(\beta_{1}, \ldots, \beta_{Q}\right)^{\prime}$ and $\underset{\sim}{e}=\left(e_{1}, \ldots, e_{N}\right)^{\prime}$. In experimental designs with replication, each combination $i(i=1, \ldots, n)$ is replicated m_{i} times so that

$$
\begin{equation*}
N=\sum_{i=1}^{n} m_{i} . \tag{2.2}
\end{equation*}
$$

We assume that $m_{i} \geqslant 2$ so that we have unbiased estimators $\hat{\sigma}_{i}^{2}$ of the error variances σ_{i}^{2} :

$$
\begin{equation*}
\hat{\sigma}_{i}^{2}=\frac{\sum_{j=1}^{m_{i}}\left(y_{i j}-\bar{y}_{i}\right)^{2}}{m_{i}-1} \quad(i=1, \ldots, n) \tag{2.3}
\end{equation*}
$$

where we rearrange the N elements of the vector $\underset{\sim}{y}$ into a table with n rows and m_{i} elements in row i; if $m_{1}=m$ (see Table 1 later on) we rearrange y into an $n ~ m m a t r i x$ with elements $y_{i j}$; obviously $\bar{y}_{i}=\sum_{j} y_{i j} / m_{i}$. Consequently, the EWLS estimator is

$$
\begin{equation*}
\underset{\sim}{\tilde{\beta}}=\left({\underset{\sim}{X}}^{\prime}{\underset{\sim}{\Omega}}^{-1} \underset{\sim}{X}\right)^{-1}{\underset{\sim}{X}}^{X}{\underset{\sim}{\Omega}}^{-1} \mathrm{X} \tag{2.4}
\end{equation*}
$$

where $\underset{\sim}{\Omega}$ is a diagonal matrix with main-diagonal elements $\hat{\sigma}_{1}^{2}, \ldots, \sigma_{1}^{2}, \ldots, \sigma_{n}^{2}, \ldots, \sigma_{n}^{2}$ where $\hat{\sigma}_{1}^{2}$ occurs m_{1} times,..,σ_{n}^{2} occurs m_{n} times. Using simple (but tedious) linear algebra we can prove that eq. (2.4) reduces to

$$
\begin{equation*}
\underset{\sim}{\underset{B}{\sim}}=\left({\underset{\sim}{X}}_{\bar{X}}{\underset{\sim}{D}}^{-1} \underset{\sim}{\bar{X}}\right)^{-1} \underset{\sim}{\bar{X}},{\underset{\sim}{D}}^{-1} \overline{\mathcal{X}} \tag{2.5}
\end{equation*}
$$

where $\overline{\mathrm{Z}}=\left(\overline{\mathrm{y}}_{1}, \ldots, \overline{\mathrm{y}}_{1}, \ldots, \overline{\mathrm{y}}_{\mathrm{n}}\right)^{\prime}, \underset{\sim}{\mathrm{D}}$ is an $n \mathrm{x} n$ diagonal matrix with main diagonal elements $\hat{\sigma}_{1}^{2} / m_{1}, \ldots, \sigma_{n}^{2} / m_{n}$ and $\underset{\sim}{x}$ is obtained from $\underset{\sim}{X}$ by eliminating identical rows. The n different rows of $\underset{\sim}{\sim}$ are specified by the experimental design (for example, n equals 2^{k} in a full factorial design with k factors; the 2^{k} design yields an $n ~ X Q$ matrix of independent variables $\underset{\sim}{\bar{X}}$ with $Q \geqslant k+1 \geqslant n$). The asymptotic covariance matrix of $\underset{\sim}{\tilde{\beta}}$ (see Schmidt, 1976) is

$$
\begin{equation*}
\underset{\sim}{\Omega} \underset{\beta}{ }=\left(\underset{\sim}{\bar{X}},{\underset{\sim}{D}}^{-1} \underset{\sim}{\bar{X}}\right)^{-1} \tag{2.6}
\end{equation*}
$$

where $\underset{\sim}{D}$ is diagonal with elements σ_{1}^{2} / m_{1}. To obtain confidence intervals for β_{q} we might replace $\underset{\sim}{D}$ in eq. (2.6) by $\underset{\sim}{D}$ (also see eq. 4.5). However, for a small number of replications this heuristic does not yield valid confidence intervals; see Kleijnen et al. (1985). Therefore we investigate jackknifing.

In general, jackknifing means that an estimator of some parameter is recomputed after deleting one or more observations; next those observations are again added and a different group of observations (with group size $\geqslant 1$) is deleted, which results in a new value for the estimator, and so on; see Miller (1974), Weber and Welsch (1983).

We restrict our study to experimental designs with an equal number of replications: $m_{i}=m$. (If we permitted varying m_{i}, then it would be wise to replicate combinations with high variances more often; such an approach is investigated in Kleijnen and Van Groendendaal, 1986.) To apply jackknifing we delete replication j (where $j=1, \ldots, m$) of each combination $1(i=1, \ldots, n)$; see column j in Table 1 or element $(1-1) m+j$ of \mathcal{L}. Next we compute the variance estimator analogously to eq. (2.3):

$$
\begin{equation*}
\hat{\sigma}_{i(-j)}^{2}=\sum_{\substack{j^{\prime}=1 \\ j^{\prime} \neq j}}^{m}\left(y_{i j}-\bar{y}_{i(-j)}\right)^{2} /(m-2) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{y}_{i(-j)}=\sum_{j} y_{i j} /(m-1) \tag{2.8}
\end{equation*}
$$

These variance estimators yield m different $n x n$ diagonal matrices $\underset{\sim}{\hat{D}}$ with main - diagonal elements $\hat{\sigma}_{1(-j)}^{2} /(m-1)$,

Table 1: Experimental data

$\ldots, \hat{\sigma}_{n(-j)}^{2} /(\mathbb{m}-1)$ where $j=1, \ldots, m$. We also have m vectors with averaged responses $\bar{\chi}_{-j}=\left(\bar{y}_{i(-j)}\right)$. The $n \times Q$ matrix $\underset{\sim}{x}$ is not affected by this jackknifing. Hence eq. (2.5) becomes

Obviously these m estimators are dependent. Jackknifing proceeds as follows; see Miller (1974). The original estimator and the m jackknifed estimators are 1 inearly combined in the so-called pseudovalues

$$
\begin{equation*}
J_{j}=m \tilde{B}-(m-1) \tilde{B}_{-j} \quad(j=1, \ldots, m) \tag{2.10}
\end{equation*}
$$

where we supress the index q of the Q parameters β. Obviously, if the estimators $\hat{\beta}$ and \tilde{B}_{-j} are unbiased (as EWLS estimators are, under mild conditions), then the J_{j} remain unbiased. To derive a confidence interval we compute the traditional variance estimator of the pseudovalues:

$$
\begin{equation*}
\hat{\operatorname{var}}(J)=\frac{\sum_{j=1}^{m}\left(J_{j}-\bar{J}\right)^{2}}{m-1} \tag{2.11}
\end{equation*}
$$

with $\bar{J}=\sum_{j} J_{j} / m$, and use the Student approximation

$$
\begin{equation*}
t_{m-1} \approx \frac{\bar{J}-\beta}{\{\hat{\operatorname{var}}(J) / m\}^{\frac{3}{2}}} \tag{2.12}
\end{equation*}
$$

Whether it is correct to use this t approximation, we investigate in the following Monte Carlo experiment. (We shall also briefly discuss a JEWLS: variant with only two, instead of m pseudovalues; see the end of Section 4.)

3. MONTE CARLO INPUTS

We use the following $\overline{\mathrm{X}}$. Case 1 is a 2^{3} full factorial design with main effects only besides the grand mean,i.e., $\underset{\sim}{X}$ is an orthogonal 8×4 matrix with elements +1 and -1 . The values for the effects B are taken from a simulation study of the Rotterdam harbor (see K1eijnen et al., 1979): ${\underset{\sim}{\beta}}^{\prime}=(-$ $1.42,-0.769,13,4,-11.508)$. We quantify the degree of variance heterogeneity through

$$
\begin{equation*}
H=\frac{\max \sigma_{i}^{2}-\min \sigma_{1}^{2}}{\min \sigma_{i}^{2}} \tag{3.1}
\end{equation*}
$$

and fix H at $0,10.83$ and 1455 taken from $K 1$ eijnen et al. (1985). (If $H=0$ then we take $\sigma_{i}^{2}=1$; if $H=10.83$ then σ_{i}^{2} equals $1,2,4,5,6,7,9,11.83$ respectively; if $H=1455$ then σ_{i}^{2} equals 93, 228.38, 821.78, 2809.64, 2567.11, 177.78, 15129, 576 respectively.) An increasing H means decreasing relative effects $\beta /\left(\Sigma \sigma_{i}^{2} / n\right)$. The number of replications m
equals 4, 9 and 25 respectively. We study not only normally distributed errors terms but also asymmetric distributions. Erlang distributions have standardized skewness $\eta_{3}=\mu_{3} / \sigma^{3}$ equal to 2 (exponential distribution), 0.8944 (sum of 5 exponentials) and 0.6325 (sum of 10 exponentials); see Hastings and Peacock (1975). The lognormal distribution has a standardized skewness which varies with the variance; so if $H \neq 0$ then η_{3} varies with i where $i=1, \ldots, n$; in Table 2 we shall display the standardized skewness averaged over the n combinations of independent variables $\underset{\sim}{\mathrm{X}}$. We make all asymmetric distributions have the same means and variances as the corresponding normal distributions have.

Case 2 concerns a 2^{2} factorial design with $\underset{\sim}{\underset{\sim}{\prime}}=(1,1,1)$. If $H=0$ then $\sigma_{i}^{2}=1$; if $H=10.38$ then σ^{2} equals $1,4,8$, 11.38; if $H=1289$ then σ^{2} is $1,200,600,1290.15$.

We use a multiplicative random number generator with multiplier 13^{13} and modulus 2^{59}, developed by NAG (Numerical Algorithms Group) in the United Kingdom. We never reset the random number seed. Consequently all results are independent, except for results on the same 1 ine in Tables 2 and 3; Tables 2 and 3 use the same responses \mathbb{Z} (hence these two tables have identical EWLS estimates).

4. MONTE CARLO OUTPUTS

Each Monte Carlo observation requires $n \mathrm{x} m$ independent samples from the error distribution (again see Table 1). These nm observations yield one EWLS estimate $\underset{\sim}{\underset{\sim}{\sim}}$ (see eq. 2.5) and mestimates $\underset{\sim}{\tilde{\beta}}{ }_{j}$ (with $j=1, \ldots, m$; see eq. 2.9) resulting in one JEWLS estimate $\overline{\mathrm{J}}$ (see eq. 2.10). The nm responses $y_{i f}$ finally yield one set of Q confidence intervals for β_{q} (where $q=1, \ldots, Q$), using eq. (2.12).

Now we test if it is correct to base two-sided confidence intervals for the individual parameters β_{q} on the t statistic. Since we use only the talls of the t distribution, we estimate

$$
\begin{equation*}
P\left\{\frac{|\bar{J}-\beta|}{\{\hat{\operatorname{var}}(J) / m\}^{\frac{3}{2}}}>t_{m-1, \alpha / 2}\right\}=\alpha^{*} \tag{4.1}
\end{equation*}
$$

where we still suppress the index q and we estimate α * through (say) $\hat{\alpha}$, using Monte Carlo experimentation (see below). We formulate two related null-hypotheses:

$$
\begin{equation*}
H_{0}: E(\hat{\alpha})=\alpha \text { versus } H_{1}: E(\hat{\alpha}) \neq \alpha \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{0}^{\prime}: E(\hat{\alpha}) \leqslant \alpha \text { versus } H_{1}^{\prime}: E(\hat{\alpha})>\alpha \tag{4.3}
\end{equation*}
$$

where $\hat{\alpha}$ is an unbiased estimator of α * in eq. (4.1), and α is defined by

$$
\begin{equation*}
P\left\{\left|t_{m-1}\right|>t_{m-1}, \alpha / 2\right\}=\alpha \tag{4.4}
\end{equation*}
$$

Obviously H_{0} and H_{0}^{\prime} require a two-sided and a one-sided test respectively.

The test statistic for H_{0} and H_{0}^{\prime} is the binomial variable α based on 150 Monte Carlo observations "per situation", i.e., per combination of Case 1 or $2\left(2^{3}\right.$ or $2^{2} \mathrm{de}-$ sign) with a specific variance heterogeneity H, number of replications m, and distribution type; see Table 2.

We could approximate the binomial variable $\hat{\alpha}$ through the normal distribution $N(\hat{\alpha}, \hat{\alpha}(1-\hat{\alpha}) / 150)$. A problem arises if $\hat{\alpha}=0$ (which may occur especially if α in eq. 4.1 is small, say, 1%); if $\hat{\alpha}=0$ then $\hat{\operatorname{var}}(\hat{\alpha})=0$ and H_{0} of eq. (4.2) is
automatically rejected (not H_{0}^{\prime} of eq. 4.3). Therefore we use the normal approximation $N(\alpha, \alpha(1-\alpha) / 150)$ where α is specified by H_{0} (or H_{0}^{\prime}).

For α (the error rate used to derive a two-sided confidence interval per parameters β_{q}) we select the traditional values $1 \%, 5 \%$ and 10%. Because there are Q parameters β we apply the Bonferroni inequality, i.e., we test H_{0} and H_{0}^{\prime} with a type I error rate of $0.05 / Q$ so that the experimentwise error rate is 0.05 at most; see Miller (1981). So a "situation" yields significantly bad results if at least one of the Q parameters β_{q} results in tail behavior significant1y deviating from the t distribution.

To compute the JEWLS estimate we also have to compute the EWLS estimate (see eqs. 2.10 and 2.5). So without much extra effort we can test the tail behavior of EWLS; eq. (4.1) becomes

$$
\begin{equation*}
P\left\{\frac{|\tilde{B}-\beta|}{\{\hat{\operatorname{var}}(\tilde{\beta})\}^{\frac{3}{2}}}>t_{m-1, \alpha / 2}\right\}=\alpha \tag{4.5}
\end{equation*}
$$

where we suppress the index $q ; \widetilde{\beta}$ is the $q^{\text {th }}$ element of $\underset{\sim}{\tilde{\beta}}$ in eq. (2.5); $\hat{\operatorname{var}}(\tilde{\beta})$ follows from the asymptotic covariance matrix in eq. (2.6) where we replace $\underset{\sim}{D}$ by $\underset{\sim}{D}$.

The above reasoning yields Table 2 where an asterisk (*) means that we reject H_{0} or H_{0}^{\prime} (using an experimentwise error rate of 5%). We interpret Table 2 as follows. In case of normality, JEWLS gives excellent results if there are more than 4 replications $(m=9$ or 25$)$. The fact that in case 1 (2^{3} design) with $m=4 H_{0}^{\prime}$ is rejected more often than H_{0}, suggests that if the α error is not realized, then the actual error rate tends to be higher than the nominal α value.

Table 2 clearly shows that as the asymmetry increases, JEWLS yields poorer confidence intervals. JEWLS remains better than EWLS.

We also investigate a less computer-intensive JEWLS variant. Instead of deleting a single replication resulting in m pseudovalues (see eq. 2.10) we now delete half the replications (if m is odd we round $m / 2$ downwards) which results in only two pseudovalues (m $=2$ in eqs. 2.9 through 2.12). Consequently the confidence intervals for B_{q} are based on a single degree of freedom. So $t_{m-1 ; ~} \alpha / 2$ is high. It is possible that $\operatorname{var}(J)$ compensates; also see eq. (4.1). Actually our results (not displayed) show longer confidence intervals for B_{q} (when compared to JEWLS based on m pseudovalues). And these longer confidence intervals do not improve the validity of the t statistic; see Table 3.

5. CONCLUSIONS

JEWLS requires more computing than EWLS, but JEWLS yields better confidence intervals. More specifically, in case of normality EWLS yields valid confidence intervals only if the number of replications is "high" (also see Kleijnen et al., 1985); JEWLS requires fewer replications. In case of severe asymmetry, JEWLS performs better than EWLS, but not well enough.

REFERENCES

Hastings, N.A.J. \& Peacock, J.B., (1975). Statistical Distributions; A Handbook for Students and Practitioners. Butterworths \& Co., London.

Kleijnen, J.P.C., Van den Burg, A.J. \& Van der Ham, R.T., (1979). Generalization of simulation results: practicality of statistical methods. European Journal of Operational Research, 3, pp. 50-64.

Kleijnen, J.P.C., Cremers, P. \& van Belle, F., (1985). The power of weighted and ordinary least squares with estimated unequal variances in experimental design. Communications in Statistics, Simulation and Computation, B14, no. 1, pp. 85-102.

Kleifnen, J.P.C. \& Van Groenendaal, W., (1986). Regression analysis of factorial designs with sequential replication. Tilburg University.

Miller, R.G., (1974). The jackknife - a review. Biometrika, 61, pp. 1-15.

Miller, R.G., (1981). Simultaneous Statistical Inference. Revised second edition, Springer - Verlag, New York.

Schmidt, P., (1976). Econometrics. Marcel Dekker, Inc., New York.

Weber, N.C. \& Welsh, A.H., (1983). Jackknifing the general linear model. Australian Journal of Statistics, 25, no. 3, pp. 425-436.

Table 2: Testing the t-tall

$$
\frac{\alpha=10 \%}{\frac{\alpha=5 \%}{H_{0}} H_{0}^{\prime}} \frac{\alpha=1 \%}{H_{0} H_{0}^{\prime}} \frac{\alpha=1 \%}{H_{0} H_{0}^{\prime}} \frac{\alpha}{H_{0} H_{0}^{\prime}} \frac{\text { EWLS }}{H_{0} H_{0}^{\prime}} \frac{\text { JEWLS }}{H_{0} H_{0}^{\prime}}
$$

Table 2 (continued)

Table 2 (continued)
$\alpha=10 \% \quad \alpha=5 \% \quad \alpha=1 \%$
EWLS JEWLS EWLS JEWLS EWLS JEWLS
$H_{0} \quad H_{0}^{\prime} \quad H_{0} \quad H_{0}^{\prime}$

$m=9 \quad H=0$

$m=25 \quad H=0$
10
1289

Table 2 (continued)

$\mathrm{m}=25 \quad \mathrm{H}=0$												
10	*	*	*	*	*	*			*	*	*	*
1289		*			*	*	*	*	*	*	*	*

Table 2 (continued)

$\alpha=10 \%$	$\alpha=5 \%$	$\alpha=1 \%$
EWLS JEWLS	EWLS JEWLS	EWLS JEWLS
$\mathrm{H}_{0} \mathrm{H}_{0}^{\prime} \mathrm{H}_{0} \mathrm{H}_{0}^{\prime}$	$\mathrm{H}_{0} \mathrm{H}_{0}^{\prime} \mathrm{H}_{0} \mathrm{H}_{0}^{\prime}$	$\mathrm{H}_{0} \mathrm{H}_{0}^{\prime} \mathrm{H}_{0} \mathrm{H}_{0}^{\prime}$

	Case 1			Lognorma			1 (average			skewness: $\bar{\eta}$)			
$\mathrm{m}=4$	$\mathrm{H}=0 \quad(\bar{\eta}=0.6080)$												
	10 (1.4878)	*	*	*	*	*	*	*	*	*	*		
	1455 (30691.2)	*	*	*	*	*	*	*	*	*	*	*	*
$\mathrm{m}=9$	$\mathrm{H}=0 \quad(\bar{n}=0.6080)$												
	10 (1.4878)	*	*			*	*			*	*		
	1455 (30691.2)	*	*	*	*	*	*	*	*	*	*	*	*
$\mathrm{m}=25$	$\mathrm{H}=0 \quad(\bar{n}=0.6080)$												
	10 (1.4878)	*	*			*	*						
	1455 (30691.2)	*	*	*	*	*	*	*	*	*	*	*	*
$\mathrm{m}=4$	Case 2												
	$\mathrm{H}=0 \quad(\bar{\eta}=0.608)$					*							
	10 (1.5203)		*		*			*	*	*	*	*	*
	1289 (139.067)	*	*	*	*	*	*	*	*	*	*	*	*
$\mathrm{m}=9$	$\mathrm{H}=0 \quad(\bar{n}=0.608)$					*							
	10 (1.5203)	*	*	*	*	*	*	*	*				
	1289 (139.067)	*	*	*	*	*	*	*	*	*	*	*	*
$\mathrm{m}=25$	$\mathrm{H}=0 \quad(\bar{n}=0.608)$												
	10 (1.5203)	*	*			*	*						
	1289 (139.067)	*	*	*	*	*	*	*	*	*	*	*	*

Table 3: JEWLS with only two pseudovalues

$\frac{\alpha=10 \%}{\text { EWLS }}$	$\frac{\alpha=5 \%}{\text { JEWLS }}$	$\frac{\alpha=1 \%}{H_{0} H_{0}^{\prime}}$	$\frac{\alpha}{H_{0} H_{0}^{\prime}}$	$\frac{\text { EWLS }}{H_{0} H_{0}^{\prime}}$
	$\frac{\text { JEWLS }}{H_{0} H_{0}^{\prime}}$		$\frac{\text { EWLS }}{H_{0} H_{0}^{\prime}}$	$\frac{\text { JEWLS }}{H_{0} H_{0}^{\prime}}$

168 T.M. Doup, A.J.J. Talman A continuous deformation algorithm on the product space of unit simplices

169 P.A. Bekker
A note on the identification of restricted factor loading matrices
170 J.H.M. Donders, A.M. van Nunen Economische politiek in een twee-sectoren-model

171 L.H.M. Bosch, W.A.M. de Lange Shift work in health care

172 B.B. van der Genugten Asymptotic Normality of Least Squares Estimators in Autoregressive Linear Regression Models

173 R.J. de Groof
Geĭsoleerde versus gecoördineerde economische politiek in een tweeregiomodel

174 G. van der Laan, A.J.J. Talman
Adjustment processes for finding economic equilibria
175 B.R. Meijboom
Horizontal mixed decomposition
176 F. van der Ploeg, A.J. de Zeeuw Non-cooperative strategies for dynamic policy games and the problem of time inconsistency: a comment

```
177 B.R. Meijboom
    A two-level planning procedure with respect to make-or-buy deci-
    sions, including cost allocations
```

178 N.J. de Beer
Voorspelprestaties van het Centraal Planbureau in de periode 1953 t/m 1980

```
178a N.J. de Beer
    BIJLAGEN bij Voorspelprestaties van het Centraal Planbureau in de
    periode 1953 t/m 1980
```

179 R.J.M. Alessie, A. Kapteyn, W.H.J. de Freytas De invloed van demografische factoren en inkomen op consumptieve uftgaven

180 P. Kooreman, A. Kapteyn Estimation of a game theoretic model of household labor supply

181 A.J. de Zeeuw, A.C. Meijdam On Expectations, Information and Dynamic Game Equilibria

182 Cristina Pennavaja
Periodization approaches of capitalist development.
A critical survey
183 J.P.C. Kleijnen, G.L.J. Kloppenburg and F.L. Meeuwsen
Testing the mean of an asymmetric population: Johnson's modified T test revisited

184 M.O. Ni jkamp, A.M. van Nunen
Freia versus Vintaf, een analyse
185 A.H.M. Gerards Homonorphisms of graphs to odd cycles

186 P. Bekker, A. Kapteyn, T. Wansbeek Consistent sets of estimates for regressions with correlated or uncorrelated measurement errors in arbitrary subsets of all variables

187 P. Bekker, J. de Leeuw The rank of reduced dispersion matrices

188 A.J. de Zeeuw, F. van der Ploeg Consistency of conjectures and reactions: a critique

189 E.N. Kertzman Belastingstructur en privatisering

190 J.P.C. Kleijnen Simulation with too many factors: review of random and groupscreening designs

191 J.P.C. K1eijnen
A Scenario for Sequential Experimentation
192 A. Dortmans
De loonvergelijking
Afwenteling van collectieve lasten door loontrekkers?
193 R. Heuts, J. van Lieshout, K. Baken The quality of some approximation formulas in a continuous review inventory model

194 J.P.C. Kleijnen
Analyzing simulation experiments with common random numbers

195 P.M. Kort Optimal dynamic investment policy under financial restrictions and adjustment costs

196 A.H. van den Elzen, G. van der Laan, A.J.J. Talman Adjustment processes for finding equilibria on the simplotope
197 J.P.C. KleijnenVariance heterogeneity in experimental design
198 J.P.C. Kleijnen
Selecting random number seeds in practice
199 J.P.C. KleijnenRegression analysis of simulation experiments: functional softwarespecification
200 G. van der Laan and A.J.J. Talman
An algorithm for the linear complementarity problem with upper and lower bounds
201 P. Kooreman Alternative specification tests for Tobit and related models

202 J.H.F. Schilderinck
Interregional Structure of the European Community. Part III
203 Antoon van den Elzen and Dolf Talman
A new strategy-adjustment process for computing a Nash equilibrium in a noncooperative more-person game

204 Jan Vingerhoets
Fabrication of copper and copper semis in developing countries. A review of evidence and opportunities.

205 R. Heuts, J. v. Lieshout, K. Baken
An inventory model: what is the influence of the shape of the lead time demand distribution?

206 A. v. Soest, P. Kooreman
A Microeconometric Analysis of Vacation Behavior
207 F. Boekema, A. Nagelkerke
Labour Relations, Networks, Job-creation and Regional Development A view to the consequences of technological change

208 R. Alessie, A. Kapteyn
Habit Formation and Interdependent Preferences in the Almost Ideal Demand System

209 T. Wansbeek, A. Kapteyn Estimation of the error components model with incomplete panels

210 A.L. Hempenius
The relation between dividends and profits
211 J. Kriens, J.Th. van Lieshout
A generalisation and some properties of Markowitz' portfolio selection method

212 Jack P.C. Kleijnen and Charles R. Standridge Experimental design and regression analysis in simulation: an FMS case study

213 T.M. Doup, A.H. van den Elzen and A.J.J. Talman Simplicial algorithms for solving the non-linear complementarity problem on the simplotope

214 A.J.W. van de Gevel
The theory of wage differentials: a correction
215 J.P.C. Kleijnen, W. van Groenendaal
Regression analysis of factorial designs with sequential replication

```
216 T.E. Nijman and F.C. Palm
    Consistent estimation of rational expectations models
217 P.M. Kort
    The firm's investment policy under a concave adjustment cost func-
    tion
218 J.P.C. Kleijnen
    Decision Support Systems (DSS), en de kleren van de keizer ...
219 T.M. Doup and A.J.J. Talman
    A continuous deformation algorithm on the product space of unit
    simplices
220 T.M. Doup and A.J.J. Talman
    The 2-ray algorithm for solving equilibrium problems on the unit
    simplex
221 Th. van de Klundert, P. Peters
    Price Inertia in a Macroeconomic Model of Monopolistic Competition
222 Christian Mulder
    Testing Korteweg's rational expectations model for a small open
    economy
223 A.C. Meijdam, J.E.J. Plasmans
    Maximum Likelihood Estimation of Econometric Models with Rational
    Expectations of Current Endogenous Variables
224 Arie Kapteyn, Peter Kooreman, Arthur van Soest
    Non-convex budget sets, institutional constraints and imposition of
    concavity in a flexibele household labor supply model.
225 R.J. de Groof
    Internationale coördinatie van economische politiek in een twee-
    regio-twee-sectoren model.
226 Arthur van Soest, Peter Kooreman
        Comment on 'Microeconometric Demand Systems with Binding Non-Nega-
        tivity Constraints: The Dual Approach'
227 A.J.J. Talman and Y. Yamamoto
    A globally convergent simplicial algorithm for stationary point
    problems on polytopes
```


Bibliotheek K. U. Brabant

17000010597186

