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Abstract:

Correlated data are generated from ARMA time series models, varying the struc-
ture of the dependence among the observations, the kind of probability distri-
butions, and the noise process variance. The inverse Johnson Sy transformation
is used to generate non-Gaussian data.

Box-Jenkins parameter estimation is applied to (i) the original, non-Gaussian
data, (ii) the back-transformed (normalized) data, and then a comparison is
made between the quality of the parameter estimation results of these two
approaches. It appears that the Box-Jenkins parameter estimation procedure is
reasohably robust against non—normality of the Johnson SU type. The power of
two normality tests 1is examined for sample sizes of 50 and 200 correlated
observations.

Further, there seems to be no clear relation between the quality of the para-
meter estimates of the Johnson SU transformation and the quality of the struc-
tural parameter estimates in the ARMA model.

Keywords: Johnson Sy transforms, ARMA models, Monte Carlo experiments, tests

of normality.

1. INTRODUCTION

In time series analysis an ARMA (p,q) process (see [1]) is represented by a



stochastic difference equation of the type

P q (
T by X = L 6_¢€ s 0, =6, =1 1)
- = 0
P B R
For maximum likelihood estimation of the structural parameters in this equa-
tion it is usually assumed: €, € N(O, cz). Under this assumption the process
{xt} is also normally distributed: xt€: N(O,YO), where YO is a function of

2
¢1,...,¢p, 61,...,Bq, o - |

In practice (see e.g. [3], [5], [15]), however, process variables often de-
viate from normality. Empirical distributions usually are leptokurtic, which
means that they have heavier tails than normal. The kurtosis will be large in
those cases. In the present Monte Carlo study we examine to what extent the
parameter estimation procedure of Box-Jenkins is insensitive to nomnormality.
Therefore we compare the following approaches: 1) parameter estimation using
the original non-Gaussian data; 2) parameter estimation after transforming
non-Gaussian into nearly Gaussian data via Johnson SU transformations. For
testing normality of correlated data we will use two statistics: Lomnicki's

test statistic [14] and Cramdr-von Mises' test statistic (see e.g. [12]).
2. MONTE CARLO DESIGN
In this study we examined three different ARMA processes. The choice was

determined by what we observed in practice for some series. The models are in

operator form (where B is a backshift operator) :

1) (1 - 0.58 - 0.28%)(1 - 0.781%)x, = e,



2) ] + 0.78 + 0.4B2 + 0.258% + 0.128B%)x, = €,

3) x, = (1 - 0.4B)(1 - 0.98!%) e

To generate sequences which not satisfy the normality assumption, we proceed
as follows. We generate a sequence of 300 observations (the first 100 are
discarded to eliminate the effect of the starting values xo,...,x_P+1) from
each of the above schemes, where the noise process {et} is assumed N(o,qz),

To generate normal variables we used the method of Brent [2]. The starting
values xo,...,x_p+1 are in this case set to zero. We now have a sequence of Xy

values with xte N(O,YO), where Yo is calculated for the three schemes in

Table 1.

Table 1

Variances of {xt} processes for different schemes

Scheme YO
2
1 3.51268 * o
2
2 1.50579 * oE
2
3 2.0996 * os

In applying the Johnson S;; transformation (see [10]) we put a filter ¢ on a

non-normal process, from which a standard normal process originates:

{x}=e{y}, x € NO,D, vy €N,

where

ofy b =v+s sinh | {Gv,~0)/A) (2



and £, Y, A and § are the transformation parameters, which depend on the first
four moments of y.

The inverse transformation is:

Y = O-l {xt} = £ + X sinh {(xt - Y)/8}, (3
and 1f we apply o_l, the inverse Johnson Sy transformation, to a normal dis-
tributed process, we generate a non-normal process. In Appendix B another, nom
normal generation process is described, which seems, however, less appropriate
in this case. We have taken three points in the transformation parameter
space (E, Y, A, 6).

The choice of these points in Table 2 is based on real-life data transforma-—

tions by one of the authors [51.

Table 2

Selected transformation parameter values

parameter

combination g Y A )
1 -0,005 - —-0.3 0.03 1.08
2 -0.001 -0.07 0.03 145
3 0 -1 1 0.5

In the above way we have generated nonnormal sequences {yt} = o_l {xt}’ with

* ok k%
certain central moments Mps Mps Mys My these moments are functions of the

parameters; see Appendix A. From the first four moments we can calculate a

*.3/2

measure for skewness Bl = (u;/(uz) )2 and a measure of kurtosis 82 =

= :
(uZ/(uZ)z). Als Bl and 82 are dependent on the u:. and so on the transforma-



tion parameters and on Yo and cz, we have to select an appropriate oz. Table
3 must be read as follows: For the different values of oz in a row we can
calculate the Bz-values for each scheme, and they are in the range as given in

the table (the kurtosis of a normal distribution is 3).

Table 3

Choices for the noise variance 02
€

parameter
combination
1 2 3
By
low: 3.01-3.10 0.002 0.002 0.0005
medium:4.70-12.4 0.25 0.4 0025
high: 9.7-97 0.4 0.6 0.05

Summary:

- Generate for 3 different schemes and for 7 different variances oz, 300
normally distributed x,.

- Transform for 3 different schemes, 3 different transformation parameter

combinations and 3 different variances, non-normally distributed data Yeo

3. TESTING FOR NORMALITY

As detection of non-normality is a first important step in data analysis, we
now examine two test statistics for detecting non-normality of correlated
data. Those test statistics will be applied to the yt's for sample sizes of 50
and 200 observations.

Lomnicki [14] has proposed a test statistic which is based on the sample

skewness and kurtosis and tests for departures from normality in the case of

linear stochastic processes. He derived the asymptotic distribution of the



sample skewness and kurtosis. The knowledge of these distributions allows us
to test the departure from normality in the case of "large" samples, a problem

which cannot be treated with the aid of classical tests based on the assump-

tion that the sample values are independent. Let /bl = m3/(m2)3/2, b2
N
=m /(mz) - 3, where m_ = 1 Gy _§)r’ r = 2,3,4; and N the sample size. Lom-
4 2 o N P t

nicki has shown that, for large N, if {yt} is Gaussian and stationary, /bl and

b, are asymptotically normal, with: E(/bl) = E(hz) =0, var(/bl) =

2
B - .9 24 4
= I py(s), var(bz) s z py(s), where py(s) is the autocorrelation

s=— S=—©

coefficient of the process {yt} with lag s.
Since, in practice, py(s) is unknown, the variances of /bl and b2 are estima-

ted by replacing py(s) by py(s) (see e.g. [1]) and by replacing the infinite

}1/2, B, o= b2/{var(b2)}1/2, are

asymptotically distributed as standard normal variables.

sum by a finite sum. So, u, = (/bl)/{var(/bl)

The Cram2r-von Mises test statistic can also be used for testing normality

when the data are correlated and the sample size is '"large" (see e.g. Lawless

[121). One should be cautioned, however, that it is not known how large the

sample size should be to make the classical quantiles reasonable for correla- -

ted data.

The test statistic is defined as
2

N
W.= L
N 1=

1

(8((y gy=W)/0) = (4=0.5)/N] + 77 »

1

where N is the sample size, ® is the distribution function of a standard
normal variable, Yei) 1is the i-th ordered sample value, p is the sample mean,

and ; is the sample standard deviation. In Table 4 the percentage points are
listed for the w2 test statistic and they are multiplied by a function of N,
N

and so the percentage points are sufficiently accurate for virtually all N

(see e.g. Stephens [16]):



Table 4

Percentage points for the modified Wi test statistic

modified test statistic percentage points
(140,58 ywZ 0.75 0.90 0.95 0.975 0.99

0.091 0.104 0.126 0.148 0.178

4. THE JOHNSON Sy TRANSFORM

Through the Johnson Sy transformation we can transform the yt's to a standard
normal variable x; (see e.g. Hill [6]). First, however, we have to estimate
the transformation parameters £,Y,X,8. Johnson [10] has described the method
of moments: the first four sample moments of Ye will lead to the estimates
E,;,;,S using a numerical procedure (see [71, [8], [11]1). The method of
maximum likelihood is rather difficult to apply in this case.
We note that the fitted x is N(O,i) and the original x, 1s N(O,yo), so that
the transformation parameter estimates do not estimate the same parameters as
in Table 2, but resp. Y//;b’
(Y,E,1,8) 1s then (/¥ e Ex ke B 8).

£, Xs s/f{'o (see APPENDIX A). An estimate for

After the calculation of these parameters one can calculate the fitted X, as

¢{yt}, where & corresponds with the estimated parameters (Y,£,A,8). This is

done for sample sizes of 50 and 200 observations.
5. BOX-JENKINS STRUCTURAL PARAMETER ESTIMATES AND THE NUMBER OF REPLICATIONS

With the computer program of Jenkins and Partners [9] we are able to calculate
/
the approximate maximum likelihood estimates of the structural parameters of

the different models of equation (1) given the model structure and the sample

gsize of 50 resp. 200. We considered parameter estimates based on non-normal



yt's and these estimates were compared with estimates based on Johnson SU
transformed data (the non-normal data are then transformed to standard normal
data). We prefer that estimation procedure which leads to structural parameter
estimates closest to the real parameter values.

This approach will give us some insight into the robustness of the parameter
estimation procedure of Box and Jenkins. To get more reliable conclusions, we
repeated the experiment a number of times. This number of replications was set
to 10, because of the long computer time of the total experiment (approxivate—
1y 12.000 sec. for batch plus 12.000 sec. for terminal use on an ICL 2960

computer). The estimated variances are then a measure of reliability.

6. NUMERICAL RESULTS

a. power results when testing normality

To get an impression of the quality of the two test statistics, we investiga-
ted the B-error in relation to the kurtosis, where B-error = P{accept HOI Hl
is true}, and Ho-hypothesis: normality (kurtosis = 3), Hl-hypothesis: non—

normality (kurtosis # 3). The B-error will be estimated by the fraction of
; i n
acceptances of the Ho-hypothesis: B = 1 5 B
n 1=1 1
replications (10 in this case) and b1 = 1, when accepting HO and bi = 0 when

where n is the number of

rejecting Hy.
Obviously E is an unbiased estimator of g. The level of the tests will be
taken at 5%.
Table 5 shows the estimates of the B-errors for different cases listed for the
test statistics of Lomnicki and Cram2r-von Mises, resp. for sample sizes of N
= 50 and N = 200. For the noise variance we have three situations: L = low, M

= medium, H = high. In order to analyze the results they are put together in



Figures 1 and 2. When comparing the two figures, we notice that the estimates
of the B-errors are much lower for a sample size of 200 than one of 50, as we
expected. And for a sample size of 200 the estimated B-errors are acceptable
for both tests; however, for N = 50 even for high kurtosis values the

B-errors are high.

Table 5

Estimated B—errors for the test statistics of Lomnicki and Cram2r-von Mises

- w
é =
I, »n
g g =
=
— o =
Z = o
8 N, - .
H O
H O ~ ~ ~ —~
<3] w0 o o o o
x| O H wn o s} o
®| = (%) o~ ~N
OH|< o
a = = ] ] L} L}
3] 2| § z z = =z
) > 4 ~r ~ ~ ~
(@ @ (@ =
[l

1 1 L. ] 3.03 1.0 1.0 1.0 0.7

1 1 H | 96.7 0.2 0.1 0.1 0.0

1 ]2 || 3.01 1.0 1.0 1.0 0.7

1 ]2 [H ] 29,5 | 0.5 0.0 0.4 0.0

1 3 |L{ 310] 1.0 1.0 0.9 1.0

1|3 (M| 12.4 ] 0.8 0.0 0.5 0.0

1 3 |H | 41.1 0.3 0.0 0.1 0.0

2 41 L | 3.01 1.0 1.0 1.0 1.0

2 |1 ||n) 58] 0.9 0.4 0.8 0.1

2 11 B 973 ] 0.5 0.0 0.6 0.0

2 |2 |L| 3.01 1.0 1.0 1.0 1.0




contuation of Table 5

10

2 |2 M| 4.68 | 0.8 0.1 1.0 0.3
2 12 m | 6:25 | Oud 0.2 0.7 0.3
2 |3 |L | 3.04 1.0 1.0 1.0 0.9
2 3 |M | 5.88 ] 0.7 0.3 0.4 0.0
2 |3 |H.| 10.4 0.5 0.0 0.1 0.0
3 1 |L | 3.02 1.0 1.0 1.0 1.0
3 1 (M | 8.08 | 0.9 0.2 0.6 0.2
3 1 H 18.1 0.4 0.0 0.7 0.0
3 {12 L | 301 1.0 1.0 1.0 1.0
3 |12 |M | 5.86 | 0.6 0.1 0.8 0.3
3 2 |H || '9.3% 0.6 0.2 1.0 0.3
313 |L | 3.06 1.0 1.0 1.0 0.9
313 |M ]| 7.43 ) 0.8 0.1 0.3 0.0
3 |3 |H 15.8 0.5 0.0 0.1 0.0
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Figure 1
Estimated B-errors for the Lommnicki test statistic (0) and
the Cramdr—von Mises test statistic (%) for a sample size

of 50 observations for different kurtosis values
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Figure 2
Estimated B—errors for the Lommicki test statistic (0) and
the Cramer-von Mises test statistic (*) for a sample size

of 200 observations for different kurtosis values
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To investigate the difference in power of the two test statistics on normality

we also applied the conditional sign test [4]. The sample consists of differ—
ences between the estimated B-errors for the test statistic of Lomnicki and

Cram2r-von Mises. The observations will fall in one of the following classes:

of Lomnicki

™

+ : g of Cramér-von Mises <

= é of Cramer-von Mises > g of Lomnicki

!}
> )

o
™

of Cram@r-von Mises of Lomnicki

]
™

The corresponding true probabilities are p, q and 1-p-q resp. and we test the
hypothesis Hy : P = q against Hy = p # ¢ (two-sided test) with level o = 0.05.
For sample sizes 50 and 200 the null hypothesis is not rejected at the above
significance level.

The following alternative was also investigated: apply the conditional sign
test only to those cases where the kurtosis value is larger than 4.5. Again
the null hypothesis was not rejected for both the sample sizes at a signifi-
cance level of 5%.

To get some impression about the possible relation between the estimated
B—error and the kurtosis, we fitted a linear and an exponential regression
equation to the data, which where of the following type:

(a) Y, = agtax +e

£ (b) Yo = by *+ by exp{b,x } + ¢,

0 2E t

where y, 1s the estimated B-error and X the kurtosis. The complete results

will not be given here, but are available from the authors.

A summary of the results is given below:

a) Both equations lead to a significant negative relation between the kurtosis
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and the estimated B-error, for both tests and both sample sizes.
b) The exponential regression equation clearly has a better fit for both tests

and a sample size of 200 (in terms of a much lower residual variance).

These results agree with the expectation that a high kurtosis means a large

deviation from normality and so leads to a high power of the test statistics.

b. numerical problems when estimating the transformation parameters E5Y5A,8

Table 6 shows the number of times that the estimation procedure of the trans-
formation parameters was successful for specific "case". A case means a cer-
tain choice of scheme, parameter combination, size of variance and sample
size. The size of the variance is denoted by L = low, M = medium, H = high
(see Table 3). The number of successful estimations is at most 10, the number
of replications. It is striking that most numerical problems arise for series
with low variances and hence low kurtosis values (see Table 3). Fortunately,
those are the cases where the Johnson Sy transformations are not interesting
because the probability distributions are close to the normal distribution.
Further the number of successful parameter estimations is somewhat disappoint-
ing for parameter cbmbination 3, even for medium and large variances (and also
for the same type of kurtosis values). So it is interesting to look at the
position of the generated probability distributions in the (81,82)— plane
(see Figure 3). Johnson [10] has shown that the S;; system generates probabili-
ty distributions which are unbounded at both sides. In the (81,82)— plane the
Sy system is traced by the curve of the S; system, existing of probability
distributions which are bounded at one end. Probably, parameter combination 3

exists of probability distributions, where nearly all outliers lie at one
side. The other side of the S, curve exists of probability distributions,

which are bounded to both sides, and is called the SB system.
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Figure 3

The position of the generated probability distributions in the
(8],62) space
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Table 6

Number of successful parameter estimations for the Johnson Sy transforma-

tion

variance L M H L M H L M H

scheme 1 2 8 . . ’ d . $ B 9 sample size
3 10 8 3 9 8 4 7 3 200

scheme 2 . ¥ 16 e ? ¢ = o s - sample size
3 9 9 3 9 8 6 7 9 200

scheme 3 . ? ? . 4 " : ‘ ¢ o sample size
4 10 7 4 9 9 4 8 6 200
\_/\—_/
parameter parameter parameter

combination 1 combination 2 combination 3

There are some missing points in Figure 3 which could not be shown because of

their extreme values.

c. Box-Jenkins structural parameters estimates per_scheme

Tables 7, 8 and 9 display results for the Box-Jenkins structural parameter
estimates. Per case (certain combination of scheme, parameter combination,
variance and sample size) we have calculated some characteristic numbers.
These numbers are:

per parameter

(1) The average relative absolute error:

-

ak,y,i B ak,y,i

1 ak,y,i




17

ak,x,i 5 ak,x,i
1 Uy 1

where a refers to the parameter, y to the original non—normal data, x to
the transformed data, k to the numbering of the parameters, and n to the

number of replications.

also per parameter

(2) The differences:

When v > 0 this means that the Johnson S transformation has lead to an
improvement of the k-th structural parameter estimate, when v, < 0 the
opposite holds and when Vi = 0 it does not matter whether the SU transfor-

mation is applied or not.
(3) The number of successfully applied Johnson Sy transformations.

(4) The kurtosis values of the y, series.



Table 7

Some important figures concerning the improvement of the structural parameter estimates in using

the Johnson SU transformations

(scheme 1)
coefficient 1 = 0.5 coefficient 2 = 0.2 coefficient 3 = 0.7
=
5
[
@
@ | o
TR
o . . =]
O m | m 7 R%)
o N B -
=] = 1%2) 1%2) o H 175}
4 B S x| 0
ETLIERE N
: — — =
5 ﬁ % % x v r o v T T g 0 %
slalels]a | 51,y 1,x 1 2,y 2,x 2 3,y 3,x V3 m| =
1 1 L | & 0.172 | 0.216 |-0.044 |2.695| 2.80 -0.105 [ 0.281 | 0.267 0.014 3 3.03
1 1 L + 0.178 | 0.134 0.044 11.875] 1.535 0.340 10,131 | 0.133 |-0.002 3 3.03
il 1 M |+ 0.580 | 0.290 0.290 [4.195| 3.425 0:770 |0.313 ] 0309 0.004 6 20.1
1 1 M + 0.348 | 0.378 |-0.030 |1.530| 1.655| =-0.125 {0.130| 0.164 [-0.034 |10 20.1
1 1 H| + 0.598 | 0.626 |-0.028 |3.430 | 2.995 0.435 [0.186| 0.288 |-0.002 8 96.7
1 1 H + | 0.242|0.324 |-0.082 [1.725| 1.615 0.110 {0.186} 0.213 |-0.027 8 96.7

8l



continuation of Table 7

[ - T S 0.250| 0.296 [-0.046 [2.50 | 2.755| =0.255 |0.293 | 0.271 0.023 3.01
112 |5k + | 0.170| 0.134 | 0.036 |1.825| 1.530 0:295 |10:133 | 05133 | 0.0 3.01
L 2§ ™| 0.630 | 0.632 [-0.002 [3.055| 2.660 0.395 | 0.231 | 0.249 |-0.018 11.1
1. 2 M + | 0.242 | 0.246 [-0.004 [1.50 1.495 0.005 |0.116 | 0.079 | 0.037 11.1
L2 1R+ 0.292| 0.30 |-0.008 |3.210] 2.875 0.335 | 0,183 | 0.250 (-0.067 29.5
1 | 2] H + | 0.390| 0.234 | 0.156 |1.295| 0.865 0.430 |0,179 | 0.140 | 0.039 29.5
113 |5L |+ 0.290 | 0.196 | 0.094 |[0.350| 0.490| =-0.140 [0.316 | 0.313 | 0.003 3.10
L |3 4L + | 0.406 | 0.402 | 0.004 |1.695( 1.755| =-0.060 |0.093 | 0.093 | 0.0 3.10
I | 3 M| 0.250 | 0,258 |-0.008 |4.045 | 2.353 1.692 | 0.244 | 0.234 | 0.010 12.4
I |13 ] ™ + | 0.296 | 0.246 | 0.050 {1.035| 1.575| -0.540 [0.101 | 0.088 | 0.013 12.4
1 ‘3 : O 0.472 | 0.446 | 0.026 |1.895| 2.82 -0.925 | 0.270 | 0.283 |-0.013 41.1
1 13 | H + | 0.328 [ 0.384 [-0.056 |3.250 | 2.510 0.740 |0.340 | 0.163 | 0.177 41.1

61
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Table 8

Some important figures concerning the

the Johnson SU transformations

improvement of the structural parameter estimates in using

(scheme 2)
coefficient 1 = -0.7 |coefficient 2 = -0.4 coefficient 3 = —0.25| coefficient 4 = -0.12] ,
o | @A v

. \ o [ =

8 “ S8

o . . =N3>

o m | | @ S

N | N

-4 = = e =

M m v |wn OH|l w

= | O wn| =
8 & % % sy | Flax Y1 .y | ¥2,% Yo Ty.y | Taux Vg T4,y | Ta,x a4 E g3 &
@a |N > v |«n 29
2 1L ' |=* 0.061 |0.027 | 0.034 [0.923 |1.033 | -0.11 1.952 [2.420 |-0.47 7.467| 8.06 |-0.59 3 13201
2 L 4L + | 0.073 |0.057 | 0.016 |0.313 |0.323 | -0.010 |1.068 [0.960 | 0.1l 4,183| 4.21 |-0.03 3 13.01
2 T - O - 0.30 |0.343 |-0.043 |0.845 |[1.210 | -0.365 |2.732 |2.688 | 0.044 11411 11,63 |-0.22 7 | S5«81
2 1 | M + | 0,127 |0.104 | 0.023 [0.340 |0.335 0.005 |1.528 |1.420 | 0.108 5.13| 4.85 | 0.28 9 |5.81
2 I ' L#* 0.246 |0.266 |-0.020 [0.980 [1.035 | -0.055 (2.78 2,99 |-0.21 11.45| 12.96 |=1.51 10 |9.73
2 I | B + | 0.150 [0.106 | 0.044 |0.553 [0.373 0.180 [1.392 [1.188 | 0.204 3.88| 3.71 0:17 9 1973
2 12 § L 4+ 0.056 |0.016 | 0.040 [0.873 |1.070 | -0.197 |2.920 [3.48 [-0.56 9.48| 10.30 |-0.82 2 |3.01
2 12 | + | 0,073 |0.057 0.016 [0.300 |0.318 | -0.018 [1.056 [0.96 0.096 4,23| 4.23 | 0.0 3: 11301
2 12 1M |% 0.241 |0.270 |-0.029 |1.113 |1.103 0.010 [3.104 |3.30 0.196 12.85| 13.80 |[-0.95 9 [4.68
2 |2 | M + |0.097 |0.091 0.006 J0.395 |0.313 0.082 |1.080 |1.03 0.05 3.12| 3.54 |-0.42 9 [4.68
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continuation of Table 8

2 2 |’ (% 0.226 |0.307 |-0.081 [1.068 |1.073 | -0.005 [1.456 [1.64 [-0.18 6.21| 8.0 (-1.80 6.25
2 ]2 1N + | 0.113 |0.127 |-0.014 |0.505 |0.600 | —-0.095 [0.896 |1.45 |-0.554 3.97 | 4.93 [-0.96 6.25
2 |3 L |+ 0.201 (0.200 |-0.001 [0.753 |0.680 0.073 |2.384 [2.30 0.054 10.23| 9.96 | 0.27 3.04
2. |3 Nk + | 0.086 |0.106 |-0.020 [0.635 |0.653 | —0.018 |1.460 |1.30 0.16 2,58 | 2.03 | 0.55 3.04
2 |3 |[M J+ 0.340 |0.323 | 0.017 [0.885 |1.023 | -0.138 |1.908 |2.64 |(-0.73 13.18 | 12.66 | 0.52 5.88
2 13 M + | 0.281 |0.166 | 0.115 [1.090 [0.288 0.802 [1.408 [1.36 0.048 7:03 ] 422 | 2481 5.88
2 L3 4 H I¥ 0.431 [0.274 | 0.157 |1.560 {1.013 0.547 [4.688 |3.06 1.63 7.34) 7.27 § 0.07 10.4
2 13 I H + | 0.439 |0.147 | 0.292 (1.230 |0.395 0.835 |2.288 |0.90 1.38 5:73 | 3e«ll 2.62 10.4




Table 9

Some important figures concerning the improvement of the structural parameter

estimates in using the Johnson SU transformations

(scheme 3)

coefficient 1 = 0.40

coefficient 2 = 0.90

=)
=
. g ls 2
g I R g
(&) = €3] wmwwn
N N z
[+ = - =~ O
<3 <3} w0 " O w
& 2 = = DGE-‘ ;
g % E SR mg S
3 1 L + 0.165 |2.010 |{-0.045 |1.111 [{0.108 1,003 2 3,02
3 I, 1 L + 0.378 |0.373 0.005 |0.,013 |0.012 0.001 4 3.02
3 1 M + 0.705 [0.655 0.050 |0.089 |0.089 0.000 7 8.08
3 1 M + 0.540 [0.308 0.232 |05131 [0.019 0,112 | 10 8.08
3 1 H + 0.663 [0.915 [-0.252 [0.090 |0.289 -0.199 9 18.1
3 1 H + 0.570 |0.403 0.167 |0.236 |0.044 0.192 7 18.1
3 2 & + 0.030 (0.115 |-0.085 |0.127 [0.126 0.001 1 3.01
3 2 L + 0.380 |0.378 0.002 {0,0133/0.012 0.001 4 3.01
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continuation of Table 9

3| 2| M| * 0.763 |0.938 {-0.175 |0.087 |0.088 | -0.001 8 5.86

32| M + |0.500 [0.473 | 0.027 |0.028 |0.024 0.004 | 9 5.86 1
3l 28]+ 0.503 |[0.485 | 0.018 |0.122 |0.114 0.008 | 7 9.31 ?
32 e + ]0.390 {0.290 | 0.100 |0.080 |[0.048 0.032 1] 9 9.31 |
33t L= 0.290 |0.445 |{-0.155 |0,120 | 0.127 | -0.007 1 3.06

313|'L + |0.705 [0.763 |-0.058 [0.037 |0.021 0.016 | 4 3.06

3] 3| ML+ 0.770 {0.850 [-0.080 |0.117 | 0.091 0.026 | 5 7.43

313 | M + |0.650 [0.393 | 0.257 |0.382 [0.037 0.345 | 8 7.43

£ I ¢ O (O 0.515 |0.403 |[0.112 |0.103 | 0.099 0.004 | 6 15.8 -
3134t A + |1.080 [0.523 |0.492 |0.470 |0.098 0.372 | 6 15.8 =
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Remarks by tables 7, 8 and 9:

The results in these tables are restricted to successfully applied Johnson Sy
transformations. A global impression from the tables 1is, that when the data
are in fact non-normally distributed, the Johnson Sy transformation does in
general not lead to significantly improved structural parameter estimates.
When the information in the tables is studied separately for small and large
sample sizes and for different kurtosis values, the conclusions are as fol-
lows: enlarging the sample size or the kurtosis values, generally improves the
structural parameter estimates via the Johnson Sy transformation only for
scheme 2 and 3, for scheme 1 it remains nearly the same. Other tables which
will not be given here indicate that the Box-Jenkins estimation procedure for

the structural parameters is fairly robust against non—normality.

d. The possible relation between the quality of the transformation parameter

estimates and that of the structural parameter estimates

An interesting question is if an improvement on the structural parameter
estimates is due to the good quality of the transformation parameter estima-
tes.

To answer this question, we first concider relative and absolute déviations of
the parameter estimates from their true values, before and after transforma-
tion, and then determined how often an overall improvement or worsening of the
structural parameter estimates occurred after transformation. This has lead to
the following global impression: We could not find any clear relation between
the quality of the structural parameter estimates after Johmson Sy transforma—

tion and the quality of the transformation parameter estimates.
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7. CONCLUSIONS

When testing normality of correlated data that are in fact sampled from John
son SU distributions, the test statistics of Lomnicki and Cram@r-von Mises
have a comparable power function, at least for the cases which we investiga-
ted. For both statistics the power is not good for a sample size of 50 obser-—
vations, but for a sample size of 200 observations and large kurtosis it 1is
reasonable. Further it should be noted that numerical problems arise it‘l the
estimation of the Johnson Sy transformation parameters, when the generated
probability distributions lie near the normal one or near the boundary of the
Johnson SL distributions. Finally we found the following interesting result:
When the data are sampled from a Johnson SU distribution, the SU transformed
data do in general not lead to improved structural parameter estimates in
ARMA-models, suggesting that the Box-Jenkins structural parameter estimates
are fairly robust against the type of non-normality which we studied. This
impression 1is strengthened by the fact that we _could not find a relation
between the quality of the structural parameter estimates after Johnson SU

transformation and the quality of the transformation parameter estimates.

APPENDIX A —FORMULAS FOR THE FIRST FOUR MOMENTS OF THE INVERSE JOHNSON Sy

TRANSFORM

Assume y = sinh (Z—EY—), with z € N(0,1).

For the first central moments of y we have [10]:

ul--&sinhn

, = %(m—l) (w cosh(2R) + 1)
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o _[1:((,,_1)2 VG {6(w+2) sinh(32) + 3 sinh @}

2
LA (w-1) {dA cosh(4) + d2 cosh(2Q) + do}

with ¢ = exp(l/Gz), Q= v/6, d& = % wz(wa+2w3+3w2—3),
I 2
d2 =5 (wt+2), d0 = 3(2wtl)/8.
|
(z-Y)

Now assume: y = £ + X sinh( ), with z & N(0,1), then the first four cem

8

tral moments of y are:

AEE ¥ =58 * o -
vy, = ¥y £, U, Hos Mg My M, M,

(x-Y)

5 ), with x & N(o,oz), then:

At last, assume y = & + A sinh(

z = x/o € N(0O,1) and y = £ + ) sinh(Eg%ég).

* * * *
The central moments of y are now: "1’ ”2’ u3, My where in this case:

2
w = exp(gi) and Q = (%J-
8

APPENDIX B — GENERATING NON-NORMAL SEQUENCES FROM ARMA SCHEMES VIA NON-NORMAL

NOISE PROCESSES

Let us assume that X,  satisfies an infinite moving average scheme or can be
@

written in this form: x = I ¢, €
a3 =

with E{et} = 0. Then it can be shown that the skewness and the kurtosis of X,

, where {e_} is a white noise process,
[ d

can be expressed in the equivalent expressions of the {et} process:
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3
/B[ = (1 eh (1 b A
1=0 i=0

Bt e T s ol E B et s 1 RS

¢ =l * g=h = 2 1=0 y=i41 + 3

3 3
(1 2)2 pete JET = (ot 2= GOGE) °
AN 9y7 » WRETEWEY = gty Hq? g
and B.(x) = () 2 = w72, as E{x,} = 0
2 4 2 4 2 % & = {

In case of normal distributed noise we have W = 0 and 82(5) = 3, When
{et} is a non-normal process, then we will investigate the skewness and
kurtosis measures for the {xt} process, assuming the {xt} satisfy the ARMA-
schemes in section 2. Therefore we have to rewrite the ARMA-schemes in the

infinite moving average form and then use the above formulas. J

Table B-1
Values of /Blixs and Bz(x) for the ARMA-schemes in section 2, by

assuming different values for v‘BlieS' and 82(8).

Table of /Blix;

/EI(E? Model 1 Model 2 Model 3
0.5 0.155 0.178 0.042
1 0.310 0.356 0.083
2 0.620 0.712 0.167
) 1.024 1.174 0.275
5 1.551 1.780 0.417
6 1.861 2135 0.500
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Table of BZ(X)

Bz(c) Model 1 Model 2 Model 3

3 3 3 3

5 3.249 4.093 3771

7 3.499 5.187 4,541

9 3.748 6.281 5.311

11 3.998 7.374 6.082

13 4.247 8.468 6.852 |
20 5.121 12:2937 9.550

40 7.742 23.782 17.641

From the above Table B-1 we can see that the above generating mechanism for
non-normal sequences cannot be recommended beause a strongly non-normal {et}
process with high (/E},BZ)—values is reduced to an {xt} process with much

lower (/E;,Bz)—values, probably under influence of the central limit theorem.
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