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Abstract

A method is investigated for estimating the regression coefficients in a
linear model with symmetrically distributed errors. The variances ot of
the errors are unknown; it is neither assumed that they are an unknown
function of the explanatory variables nor that they are given in some
parametric way.

The estimation is carried out in a bounded number of steps, the first one
being OLS. In each step 6t is estimated with a weighted sum of m squared
residuals in the neighbourhood of t and the coefficients are estimated
using WLS. Furthermore an estimate of the covariance matrix is obtained.
If in some sense this matrix decreases a new step is performed unless the
last step has been reached.

Large sample properties of this estimation method are derived for fixed m.
Some particular cases show that the asymptotic efficiency can be increased
by allowing more than two steps. The asymptotic efficiency of the WLS-
estimator with known variances can be approached by choosing m large.

Finally some finite sample properties are evaluated on base of simulation
results.
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1. Introduction

Consider the heteroskedastic linear regression model of the form

Yt -(~'xt t Et , E{et} - 0. V{Et} - ot. t- 1,...,n

with yt E R, xt E Rk and independent errors Et E R.
We concentrate on the asymptotic efficiency of estimators for g and the
consistency of estimators for corresponding covariance matrices. Set y-
(Yl....,yn)' E Rn and X-[xl,...,xn]' E Rnxk.

If the error variances at are known, we can use the WLS-estimator
b for p:

(i.i) b - (1 xtxt~~t)-1 i
xtyt~~t

Under appropriate conditions we have asymptotic normality of the form

(1.2) ~(b-P) ~ Nk(U.~)

(Strictly, an additional index n should be introduced when discussing the
asymptotic behaviour as n-~ m, e.g. bn, xt(n), 6t(n). Because such nota-
tion becomes cumbersome we will omit this index.)

If the error variances ot are completely unknown, the ordinary LS-
estimator b~ can be used:

(1.3) bo - (F xtxt)-1 F xtYt - (x'x)-lx'y
1 1

with asymptotic normality of the form

(1.4) f(bC-J3) ~ Nk(U.~O)

However, its asymptotic efficiency RC - det(~)~det(~C) with respect to b
can be low. This arises the main question: are alternatives available with
a higher asymptotic efficiency for a broad class of heteroskedastic
errors?
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There is a large statistical and econometric literature available
discussing all kind of alternatives.

A common approach is to specify a parametric form for the at and
to estimate the underlying parameters together with p using some para-
c;ctric method. This is a fruitful approach if the form of the heterske-
dasticity is of interest in itself. We refer to Nelder and Wedderburn
(19~2), Amemyia (1973), Jobson and Fuller (1980), Carroll and Ruppert
(1982a), (1982b).

However, if the main problem is to estimate g other methods can be
considered which are not optimal for a particular form of heteroskedasti-
city but are still good for a broad class of alternatives. We refer to
Fuller and Rao (1978), White (1982), Carroll (1982). A possible approach
to replace cst in (1.1) by some weigthed sum 6t0 of squared LS-residuals in

{e10 ""'en0) - e0 - y-XbO. A particular approach used by Robinson (198~)
is to assume that ot - o2(xt) with 62(.) some unknown function of the
vector of explanatory variables xt. Based on the work of Stone (19~~), he
has shown that there exist estimators for S which have the same asymptotic
efficiency as the WLS-estimator (1.1). These estimators are called m-NN
(Nearest Neighbour) because here 6t is estimated by a linear combination
of m squared LS-residuals 6t0 corresponding to the m closest xj to xt.

The question arises if something like this can be done if it is
not realistic to assume that ot is a function of xt alone. This may be
expected in the context of time series where the index t has the natural
interpretation of time. If we consider the errors to be the common effect
of all variables not explicitely stated in the model, it is rather un-
likely that the variance of the errors can be satisfactory explained by
the explanatory variables. It is more likely that ot is connected with the
o~ for indices j in the neighbourhood of t. This suggests estimating ot
with a weighted sum of m squared LS-residuals ~~0 around t. We describe
such a method which is suitable for symmetrically distributed errors. In
the analysis no functional relationship of the errors is imposed.

Let (wj)0, jEIm) be a fixed set of m weighting coefficients (not
depending on n). We propose an estimator g for g, which is the result of
an iteration procedure stopped after q iterations not exceeding a(formal)
fixed bound Q) 0. It is determined from the condition
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(1.5) det(~0) ~ ... ) det(~q) s det(~q}1)

with the convention q- Q if no such q s Q exists. Here, ~0,...,~Q are
covariance matrices calculated from the LS-residual vector e0 and the
weighting coefficients (w~) with the interpretation that ~q estimates the
covariance matrix of j3. The precise form is specified in section 2.

Let bq denote the estimator for J3 at some intermediate step q~ Q.
Then new estimators for the ot, based on the squared residuals in
(elq,...,enq)' - eq - y-Xbq are calculated as

(1.6) ótq - F w~et} .
~Elm J.9

(Eor the simulation results in section 4 we let etq - elq for t( 1 and
etq - enq for t ~ n; this particular definition does not influence the
asymptotic properties but has effect on the finite sample size results)
Using the form (1.1) a new estimator bqtl for the next step is calculated
according to

(1.7) bq,l - (F xtxt~ótq)-1 F xtYt~ótq .
1 1

The final estimator g is defined by g- b~.
q

Theorem 2.1 and 2.2 together show the asymptotic normality of b:
9

(1.8) f(bq-p) -~ Nk(O.~q)

where ~q - plim ~q. Theorem 2.3 shows that

(1.9) f (f~-!~) ~ Nk(O.~q) . 9 ~ 9

for 0 s q s Q such that

(1.10) det(~0) ) ... ) det(~q) ~ det(~qtl)

(with the obvious interpretation for q- Q).
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From (1.9) it follows that the asymptotic efficiency of b(or jB)
q

with respect to b, given by Rq - det(~)~det(~q), is larger than that of b0
unless q - 0.

In section 3 we impose a smoothing condition on the variances,
which still permits all kinds oF heteroskedasticity. Theorem 3.1 shows
that the asymptotic efficiency Rq of ~3 can be expressed as a simple func-
tioii of R~, the asymptotic efficiency of the LS-estimator b~. From this it
follows that the proposed method is often better f'or moderate values of
R~. Furthermore a guidance for choosing the weighting coefficients can be
obtained. Roughly spoken, they should be high where the probability of the
distribution of the errors is high. In particular it is important that
0 E Im (with high w~) for common error distributions with a high
probability around 0(e.g. normal distributions). In that case we often
have q) 1. This means that more than one iteration step increases the
asymptotic efficiency. Only for rather curious (bimodal) error distri-
butions with a low probability around 0 a choice 0~ Im (or 0 E Im with w~
low) seems to be appropriate. In that case mostly q- 0 or 1.

For large values of m the value of Rq often approaches 1. This
raises the question of the finite sample behaviour of the method, where
the choice of m will have to be made in relation to n. We touch this prob-
lem in a particular example of estimating a common level under the
presence of heteroskedastic normal distributed errors. Here results are
based on simulation.

Finally, section 4 contains the proofs of the theorems.
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2. Statement of the main results

With respect to the errors Et we assume for the moments that for some

(2.1) inf 6t ) 0 , sup EIEtl2'E C~
t

2 1tE 4 1tE(2.2) if 0 E Im then sup E~át ~ C ~ else sup E~Gt ~ C~
t t

where ( compare (1.3)):

(2.3) 6t - JÉIm wj Et4j .

and as conditions for symmetry that:

(2.4)
E{Et~~t} - 0 , E{EtEtti~ót} - O , i~ 0

l E{(Etti~otti)(Ettj~ót~j)} - O , i~ j.

The conditions (2.1), (2.2) guarantee 0 C inf E{á-2} s sup E{Qt2~ C s and
that similar relations hold for E{E2~e12} and E{E~~64}. ( see lemma 4.1) Int t t t
particular this implies the exístence of the moments in (2.4). For symme-
trically distributed errors Et the conditions (2.4) are fulfilled for any
set of wei~ting coefficients (wj). However, (2.4) is just what is needed
in the proofs of the theorems. For normal distributed errors (2.2) is
fulfilled for m z 3 if 0 E Im and m 2 4 if 0 fC Im ( see example 1 of sec-
tion 3).

The explanatory variables are assumed to be deterministic with

( 2.5) suPlxt~ C m
t

n
, C~ - lim n i xtxt ) 0.

n~ 1

Furthermore we assume also that the followins limits exist:



(2.6)

n
C1 - lim ~ E xtxtGt

1

n
, C2 - lim n E xtxt~Gt

1
n

VU - lim n E xtxt E{~t2}
1
n n

V1 - lim n i xtxt E{Et~Gt} , V2 - lim n i xtxt E{Et~Gt} .

With (2.1), (2.2) we see that the second relation in (2.5) implies that
all limits in (2.6) are non-singular.

In the following theorems it is assumed that (2.1) -(2.6) hold.

Theorem 2.1

The matrices C1, V~, V1, V2 are consistently estimated by C1, V~, V1, V2,
def'ined by

( L . ~ )

1 n , 2
C1 - n i xtxtet0

1 n 2 2
V1 - n i xtxtet0,Gt0

1 ~2n
' VO - n E xtxt,ot01

1 n 2 4. V2 - n i xtxtet~~Gtp .

Under (2.1), (2.5), (2.6) the asymptotic normality of the WLS-
estimator b and the LS-estimator b0 is guaranteed: (1.2) holds with ~-
C21 and (1.4) with ~U - CUIC1CC1. The following theorem shows that the
same holds for bq and specifies ~q in (1.8).

Theorem 2.2
The relation (1.8) holds with

(2.8) ~q - AqV2Aq t AqVlgq . BqV1Aq t gqClBq

where

q-1
(2.9) Aq - i (2Vp1W)~V~1 . Bq - (2V~1W)qC~l . w - w~V2

j-0

(with wU - 0 if 0 a Im)
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Corollory
Let ~C~ be defined by (2.8) with replacewent oF C1, V0, V1, V2, W by C1,
V0, V1, V~, lv. Then theorem 2.1 implies that ~q is a consistent estiwator
of' 4 .

q

Theorem 2.3
If ttiere exists a q for which (1.10) is fulfilled, then (1.9) holds.

The corollory of theorem 2.2 makes clear that for 0~ I a furtherm
iteration beyond q- 1 is useless. The asymptotic efficiency is constant
for q z 1 since w0 - 0. In fact the decision between OL5 (q-0) and one
further iteration step (q-1) is governed by ~0 - CO1C1C01 and ~q -~1 -
VO1V2V01. However, for cowwon error distributions it is better to choose
0 E Im and then ~q will depend on q. This will be explained more in detail
in section 3.
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j. A smoothitig condition

Suppose that 6t is a scale parameter of et. We write E1 in stead
of E if Gt - 1 for all t. In the moment conditions (2.1), (2.2), (2.4) we
may replace E and sup E by E1 provided that we assume also that
sup 6t C m.

We introduce the following smoothing condition:

(3.1) max ~Gt}1~6t-1~ ~ 0
t~~r„

with Tn an exception set of {1,...,n} such that ifTn is bounded in n. This
condition is fulfilled for a broad class of heteroskedastic errors.
A simple example satisfying (3.1) with Tn - el is Gt - 62(lt~t~n)2, ~) 0.
Tlie exception set Tn is introduced to covor jumps: if the Gt fall into p
classes of equal size with fixed levels then (3.1) is fulfilled with
flTn - P-1.

i E I :m

For technical reasons we introduce also the condition that for all

(3.2) if 0 E I then E ~e2e2 ~á6~ C m else E ~e2 ~cs6 C mtn 1 t tti t 1 tti tl

For normal distributed errurs ( 3.2) is satisfied again for m z 3
if 0 E Im and m z 4 if 0~ Im ( see example 1).

The corollory of the following theorem shows that R can be ex-q
pressed as a simple function of R~.

Theorem 3.1
C;nder the additional conditions ( 3.1), (3.2) we have

13.3) ~'o - ~oc2 . vl - ~lco . v2 - "2C2

„'r,at~e
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C u i~u 11 O 1'y

Substitution of (3.3) in ( 2.8) leads to

(3-5) ~q - aq~ t bq~0

13.b) Rql - aq t bqR~l

whore

(3.ïi
aq - c~v~;'v~ t 2Tqcqvl~v0 , b - T2qq

Cq - (1-Tq)~{1-T) , T - 2wOv2w0 .

N'rom its definition it follows that 0 5 T 5 2.
If 0~ Im then 2- 0 and so Rq - Rm -(v~w2)k, q z 1. Therefore J3 is
asymptotically equivalent to OLS if Rm C RO and to WLS with q- 1 if
Rm ~ R0.
If 0 E Itn and if the weighting coefficients are choosen such that T C 1
then R~ R ~ 2 kq m-{(1-T) v0 w2} if q C m. Therefore we choose 0 E In~ and
make iteration steps if Rq ) R0. This can be wise even if Rm C RO depend-
ing on the maximum value oF R.q

Example 1

Let et have a syunnetric distribution such that et ~ C(p~ót,p), where
I"(~,p) sta,y~ds for the gamma-distribution with scale-parameter 1~~ and
shape-parameter p) 0. So Et ~ N(0,6t) for p-}. For p~} we get an
error distribution with even higher probabilities around 0 and for
0 C p C~ a bimodal distribution with low probabilities around 0.

Iii this case the WLS-estimator b for (3 is D1VUE. Therefore the
asy~uiptotic efficiency of any other (regular) estimator for (3 cannot exceed

Simple ~uialytic results can only be obtained for equal weightiiig
coefficients. We restrict ourselves to this case. Then all necessary ex-
pectations follow from
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m 2a. m 2 ~ ji-Laj -m tu
E1{ fT Ej ~~( F Ej) }- P (~(~ajtmP-t~)~r(FajtmP))r ( P) R r(ajtP)

j-1 j-1 j-1

(for j3,aj z 0 and (3 ~ Faj t mp).
For 0~ Im we get v0 - 1~(m-l~p), v2 - 1~{(m-l~p)(m-2~p)}, Rl~k -

{1-2~(mp)}~{1-1~(mp)} provided that m ) 2~p.
For 0 E Im we get under the weaker condition m~ l~p that v0 -

1~(m-l~p), vl - l~m, v2 - 1~{m(m-l~p)}, T- 2~m, aq - cq(cqt2Tq)(1-
lj(mp)). T'his leads for nt Z 3 to Rl,k - (1-2~m)2~{1-1~(mp)}. Hence, Rm )
Rm iff p ) ~ and m Z 2p~(2p-1). This illustrates that for error
distributions with higli probabilities around 0 ( e.g. p s~) it is wise to
include 0 in I .m

Example 2

We continue exawple 1 for 0 E Im and take the special values p-}(normal

distributed errors) and k- 1(one explanatory variable). The figure below

shuws for m- 3,4,5,10,25 the asymptotic efficiency Rq of (3 as a function
of R~. Points at which the number of iteration steps q chatiges are in-

dicated by stars (e.g. for m- 3 ttte value RO - 0.60 leads to Rq - 0.66

with y- 1 and RO - 0.20 gives Rq - 0.43 with q- 3). It is seen that 13 is

better tt:an b0 for moderate values of R0.
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Example 3
The results of example 2 describe the behaviour of the estimators for
large n. In this example we give some simulation results for the ( finite)
efficiencies RO(n) - V{b0}~V{b} and RQ(n) - V{~3}~V{b} of b0,j3 for some
particular values of n. Here we take the special case that the explanatory
variable is the constant term ( x -1). So the problem becomes to estimatet
the constant level (31 of independent normal distributed yt ~ N(g1,6t),
t- 1,...,n. The estimator (3 will be based on equal weighting coefficients
with Im - {-[m~2] ~ 1,...,[m~2]}.

As a model for the variances we take 6t - 62(lt~t~n)2, ~) 0(see
section 3). Then Ro - (1.~)~(l.a4a2~3) decreases with increasing ~.-~

T}ie following table is based on simulation. It gives the values of
RO(n) and RQ(n) for some interesting values of n, m, and a based on
N- 5000 runs. In each run a sample (yl,...,yn) was drawn and the esti-
mates b0, b and S were calculated. The variances V{b0}, V{b}, V{p} were
calculated from those N estimates. The values ~- 0 and ~- 10 correspond
resp. with homoskedasticity and a large increasing heteroskedasticity. The
rundom generator was that of Logitech's Modula-2 compiler (version 3.0).

~ - 0 a - 10

m n- 25 n- m n- 10 n- 25 n- 100 n- m

- RO(r.~ 1.00 1.00 0.34 0.28 0.26 0.25

3 0.97 l.o0 0.38 0.34 0.39 0.45
5 0.97 1.00 0.41 0.44 0.62 0.65

10 R~(n)
q

0.97 1.00 0.43 0.56 0.76 0.81
15 o.98 1.00 - 0.57 0.81 0.87
20 0.99 1.00 - 0.58 0.83 0.90
25 0.99 1.00 - 0.52 0.86 0.92
50 - 1.00 - - 0.82 0.96
loU - 1.00 - - 0.60 0.98
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In the homoskedastic case of course b~ is better than R but not much is
lost. In the heteroskedastic case g is much better than b~ although the
effect is less for small sample sizes. Note that for fixed n efficiency of
Rq(n) attains a maximum in m.
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4. I'roofs of the theorems

In these proofs c,ci denote general positive constants not depend-
in~ on n.

Lemma 4.1
a) E{~-2}, E{E~~62}, E{E2~64} are bounded away from 0.
b) fOrt SOme E~tO EIEt~GtI1;E, EIEt~6~I14E, EIEC~GtIl}E, EIEt~Gtll{E,

E~EtEtti,Gtll}E ( iEIm) are bounded.

Yroof
'I'!ie assertions follow from (2.1), (2.2).
a) For some i E I we have E{C-2} ? cE{1~E2 } a c~E{E2 } z l~sup G2. Ifm t tti tti t

20 E It then Et~Gi ? c, Et~6t Z c~6t2 and if' 0~ In~ then E{Et~Gt} -

E{Et}E{ct2}, E{Et~~t} - E{Et}E{6t4} z E{Et}(E{Gt2})2,

b) If 0 E Im then Et s c, nt s cát and so ~Et~~tl 5 c, IEt~6t~ s cct2,

Et~Gt s c. Et~6t 5 cát2, IEtEt4i~~~t 5 cát2.

If 0~ In then EIGt2I1}E s(EIGt4I1}E)1,2 . EIEt~GZIl'E -
- EIE I1'EEI~-3I1tE 5 (EIE2I1'E)1~2(EI6-4I1,E)3~4.

EIE2~G2)1;E -t t t t t t
2 1tE 2 1tE 2 4 1tE 2 1tE 4 1tE 4 1tE

- EIEtI EIGt I . EIEt~Gtl - EIEtI EIGt I . EIEtEtti~Gtl 5

5 CEIEtjG~ll}E. o

For est:eators for J3 and related variables at some iteration stage some
preparatory lemma's are needed.

Let b- bil be any estimator for j3 such that bn-(3 - 0(l~f ) ( in proba-
bility). Let e- y-Xb, f- E-e with corresponding components et - Et-ft'
f't - xt(bn-(~). According to (1.6) set ~t - ï wje~tj and let

J

~- max ~E I. B- ~b -J~~~ min 6t jEIm tt~ n n lstsn t.

t~UCe that nt 5 c1Gt 5 c2~t.
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Lemma 4.2

P
(4.11 gn ~ 0

(4.L~) vb ~ 0: P{ min G z b max ~f ~} -~ 1.
lstsn t lstsn t

Prooi'
For b~ 0, M ~ 0 we have:

P{~gn~ Z b} - P{f(nn-J3) 2 b~ min 6t} s

5 P{~Ibn-(1~ Z M} 4 P{min Gt 5 M2~(nb2)} .

Siiice bt~-(3 - 0(l~f) the first term can be made arbitrary small by taking

M large enough. For such M the second term tends to 0 as follows from

n n
p{min Gt 5 c~n} 5 F P{át 5 c~n} - i P{~t2 z n~c} 5

1 1

S F(C)liE EI ~-2I1tE 5 C n-E SUp EI6-2I1;E ~ ~,1 n t 1 t

using lemma 4.1,b. This proves (4.1). Furthermore, using (2.5):

max~ft~ 5 ~bn-(~~max~xt~ s clgn min ~t s c2gn min nt .

P
Hence, max~ft~~min r~t 5 c2gn ~ 0, proving (4.2). o

Choose b such that 0( b( 1 and set An -{min r~t Z b max~ft~}.

Then P(An) ~ 0 according to (4.2). The following lemma shows that results
about convergence in probability can be obtained by restricting the analy-

sis to the set A.n

Lemma 4.3
Let ~hn~ s rn or An. Then:
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rn - o(a~~) o hn - oÍan) . rl~ - 0(an) ~ hi~ - 0(an) ,

Proof

For o) 0 we have:

5 P{a-llr In n

P{anl~hn~ z o} - P{anllhn~ z ~, An} . P{anl~hn~ Z o, An}

aiid so the result follows from P{A' }-~ 0. on

The followitig inequalities on A will be used.n

Lemma 4.4
On An we have for all t- 1,...,n:

Iet~j-Ettj~ s c~bn-(~I(Tit'~Ettj~).

IGt-~tl s clbn-~I~t

(4.5) ct z cót

l ~' . '~~ )

(4.7)

(4.8)

~GtZ-Gt2~

z o} t P{A'}n

5 cgn~at

j E Im or j- 0

~ 2 2~Et,~st-et~ót~ s cgn(14~EtI~~t.Et~~t)

~n 3IEtjGt-e~~6~1 S cgn(6t2tIEtI~Gt{Et~6t)

(4.9) IE ~G2-E ~62-2(b -~3)' F W.X E E ~64I S Clb 'ÏdIE I~63t t t t n j ,7 ttj t~j t t n t t

Proof
~cte that ez - Et - ft(ft-[Et) .

(4.3): k'ith ( 2.5) we get

2 2 I S ~b -l~IIX ~(~f ~'2~E ~) s c~b -l~~(n 4~E ~)letfj-Ettj n t t4j ttj n t tij
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(4.4): Since ~ettj~ s r~t for j E In we have

IGt-Gtl s F wjlet;j-et4j~ s c~bn-(3IT~t

(4.5): Let j' be such that ~ett ,~ - nt, Then
j

6t 2 wj,etij, - wj~(Et~j~-fttj~)Z 2 wj~(1-b)2et} ,'
j

- wj, (1-b)2~,t z ccst .

(4.6): With (4.4) and (4.5) we get

I~-2-~-2I - ~62-62I~-2~-2 5
t t t t t t C11Gt-GtI~Gt 5

s czlbn-~IT1t,Gt s c2gn~t,Gt s c3gn~át ,

(4.7): With (4.3), (4,5), ( 4.6) we get

letjót-et~Gtl s let-etl,Gt t Et~Gt2-6t21 s

s cl~bn-!~I(ntt~Et~)~Gt t c2gnEt~Gt s

~
s C~~Il ( lt I E t I),Gt

} CgI1E t,Gt
.

(4.8): In the same way as (4.7) it follows

~e21c4-e2~~4~ s ~eZ-e2I~64 t E2I~-2 ~-2II6-2}6-2~ st t t t t t t t t- t t t

s cgn(I'~Et~)~Gt ' cgnEt~ót .

(4.9): Substitution of

-2 -2 -4 2 2 -4~2 2 2 2
Gt - Gt - Gt (~t-~t) ' át Gt(Gt-Gt) -

- 6t2 } G't4 ï wjft}j(2et}j-ft} ) t Gt4c~,t(6t-~t)2
j ~
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leads witli (4.4), (4.5) to

IEt~Gt - Et~Cft - 26t4 E WJftt~Et}JEtI S

J

5(Gt4 ï w~ft}~ t cict6~bn-fil2Tit)IEt~ s

~ c2~bn-l~~2Gt4(1tRt~Gt)~Et~ s c3lbn-1~Ign~Etl~6t. o

In agreement with (2.~) set C1 - n F xtxtet'
V., V. for i- 0,1,2 be defined in the same way, e.g.~
V2 - n L xtxtEt~ót. We have:

Lemma 4.5

C1 - n F xtxtEt. Let
1 2 2V2 - n ï xtxtet~~t,

P p
(4.1U) C1 - C1 -~ 0 , Vi - Vi ~ 0 ( i - 0,1,2) .

Proof'
Lec ~.~~ - ~~.~2.
r1d C1: On An we get with (2.5), (4.3)

So

in

n
II~1-~111 5 cl.R E~Et-etl 5 c2lbn-I1I n i( nttlEtl) .

P
iamma 4.3 gives C1 - C1 -~ 0 iF the right hand side tends

n E~it - 0(1), n F~Et~
0(l~~n).

1 1
probability. From ( 2.1) we get E~Et}~~ s Gt{~ s sup Gt

- 0(1) and so this follows from

ad Vi: On An we get with ( 4.6), (4.7), (4.8):

ÍIVU-VU~~ S c.gn.n ï 6t2 ,

HV1-Vi~i S c.gn(1. n E~Et~~6t ' n ï Et~6t) ,

ÍiV2-V2~ s c.gn(n L Gt2 t n FIEtI~~~ t n F E~~6~)

to 0

scor

bn-!~ -
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So with ( 4.1) and lemma 4.3 it follows in the same way that
P

Vi - V. -~ 0 provided that E{~t2}, E~Et~~t~, E~Et~6t~, E~Et~G~I,
E~Et~6~~ are bounded in t. However, this follows from lemma
4.1,b. o

The sequeuce of random variables U1,U2,... is called p-dependent

(p~0) if (U1,...,Ut) and (Uttp~l,Uttpt2,...) are independent for all t. We
hace the following weak law of large numbers:

Lemma 4.6
LeL U1,U2,... be p-dependent with E{Ut} - 0 and sup EIUtI1tE C m for sowe
E ) 0. Then

n P

n P atUt ~ U1

for any bounded sequence al,a2,...

Proof'
The case p- 0 is implied by Rao [1973J, excercise 4.5, p. 146. The gene-

ral case follows easily from this by splitting up the sum in independent
parts. o

Lemma 4.7

P P
(4.11) C1 - C1 -~ 0 , Vi - Vi -~ 0 ( i - 0,1,2) .

I'ruof

ad C1: Since

C1 - C1 - n ï xtxt(Et-Gt)

this follows from (2.5) and leuima 4.6 for p- 0 provided that
sup EIEt-GtI14E~2 C m for some E) 0. However, this is implied by

the condition sup E~EtI2tE C m in (2.1).
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Ad V2: Since

V2 - V2 - n E xtxt(Et~6t-E{Et~6t})

this follows in the same way from lemma 4.5 for p) dist(Im) pro-
vided that sup E~Et~GtI1tE ( m. However, this is guaranteed by
lemma 4.1,b.

Ad VO,V1: Compare the proof of V2. o

Corollory

b'row (4.10), ( 4.11) we get:

P P
(4.12) C1 ~ C1 , Vi -~ Vi ( i - 0,1,2).

Proof oF theorem 2.1
Tlie result follows immediately from ( 4.12) provided that we can show that
b0-J3 - 0(l~f). However, this follows immediately from E{b0} -(3 and
nV{b0} ~ CO1CiC01, where C0, C1 are specified in (2.5), ( 2.6). o

Remlrk
vote that theorem 1.1 is not only true for the OLS-estimator b0 as start-
ing point but also for any estimator b0 for which b0-~3 - 0(l~f).

Lemma 4.8

P
(4.13) n ï F w.xtxt} Et4 Et~6t -~ W.

t j J j j

Froof
For fixed j E In it follows Frow lemma 4.6 for some p Z mtl that

P
n ~ xtxCrj(Et}jEt~Gt - E{Et}jEt~Gt}) ~ o

4 1tEprov-ded that sup E~Et}jEt~Gtl ( m. This is guaranteed by lemma 4.1,b.
Ho~~ever, by (2.4) we have E{E E ~64} - 0 forttj t t J~ 0. Since w0 - 0 for
0 ~ I this givesm
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P
1 E i w.x x' E E ~c34 - 1 ï x x'w E{E2~64} ~ 0 .n t j ~ t ttj ttj t t n t t 0 t t

Then (4.13) follows with ( 2.6), (2.9). o

Lemma 4.9

P
(4.14) 1 L xtEt~6~ - 1 F xtEt~~t - 2W.f(bn-~3) ~ 0.

~t ,~t

Proof

On An we get with (4.9):

~J, ~ xtEt~ct - 1 F xtet~6t - 2(n i E wjxtxt}jEt}jEt~át).f(bn-!~)I 5
fn t j

s c f(bn-l~)gn.n i xt~ Etl~G~ .
t

So with ( 4.1), lemma 4.3 and sup E~Et~~6t ~ m it follows that the left
hand side of this inequality tends to 0 in probability. With ( 4.13) and
b-(3 - 0(1~~) this leads to ( 4.14). o

Lenuna 4.10

(4.15) E{~ F xtEt~Gt} - 0

(4.16) COV{1 F xtEt~ót} ~ V2 .
~

Proof
Both relations follow from (2.4). In particular the left hand side of
(4.16) equals

E{n
t s xtxSEtES,atGS} - n t xtxtE{Et~át}

and this tends to V2 according to (2.6). a
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Corollory
From (4.15), ( 4.16) and ( 4.14) we get:

(4.17) n~ xtEt~át and ~ E xtEt~G~ are P-bounded.
n

Leunna 4.10

Let

(4.1t~) bn - (ï xtxt~cst}-1 ~ xtYt,ótt t

thon

(4.15) f(bn-P) - VO1 n t xtEt,~i
t 2VO1W.~(bn-~3) t o(1)

Proof
We have with (4.12), (4.17), (4.14)

~(bn-!~) (n F XtX~~G~)-1 1~ xtEt'6~ - VO 1 1~ xtEt,6~ -
t ,~ t ,~

- VO1 1 F XtEt~Gt t O(1) - VO1 1 F XtEt~Gt t 2VO1W.f(bn-~3) t O(1)f t f t

and tllis gives (4.16) . a

Lenuna 4.11

(4.20) f (b -j3) - A 1 F x E ~62 i B 1 E x E a o(1) .-9 q f t t t t q~ t t

Proof
From (1.7), (4.15), ( 4.16) it follows that

f (bqtl-l~) - VO1 1 ï xtEt~Gt t 2VO1W.f (bq-A) ~ 0(1),
f t

provided that bq-p - 0(l~f). With ( 4.17) we see that then also bqtl-J3 -
0(l~f). Iteration and substitution of (2.9) leads to
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f(bq-!1) - Aq 1 i xtetját t Bq~(b0-p) t o(1)
f t

provided that b0-J3 - 0(1~~). However, this has been shown in the proof of
theorem 2.1. Then (4.20) follows with (1.3). o

Lemmu 4.12
Let U1,U2,... be p-dependent with E{Ut} - 0 and sup EIUt~24E ( m for some
e ) 0. Then

n L
1 F atUt ~ N(0 a2)
~ 1

for any bour,ded sequence al,a2,... for which

n
62 .- lim 1 V{F a U}n~m n 1 t t

exists.

Proof
See Anderson (19~1), theorem 7.7.9, p. 431. a

Remark
By considering linear combinations the theorem is easily extended to ran-
dom vectors and a bounded sequence of matrices.

Proof of theorem 2.2
Since E~stjGt~2}E and E~Et~2}E are bounded for some E ) 0, we can apply
lemma 4.12, remark to the right hand side of (4.20) by taking p) dist(Im)
It remains to calculate the covariance matrix of the limit distribution.
Using ( 2.4) we get

co~{n~ xtEt~~t} - n~ xtxtE{et~t} -~ v2

Cov{n~ xtEt} - ~~ xtxtót} -~ C1
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Cov{1 F xtEt~ot, 1 ï xtEt} - n F xtxtE{Et~6t} ~ V1~n t f t t

and so this covariance matrix equals

A V A' t A V B t B V A' t B C B' .
q 2 9 9 1 9 q 1 q q 1 q

However, this is ~ in (2.8) and so (1.8) follows. This completes theq
proof. o

Proof of theorem 2.3
Under (1.10) we can take e~ 0 less than det(~qtl) - det(~q) and det(~j) -
det(~j{1) for all j- 0,...,q-1. Then P{q-q} - P{det(~.) ~... ~ det(~ ) s
det(~q}1)} z P{~det(~j) - det(~j)~ C e~2, j- 0,...JQ} -~ 1 according to
theorem 2.2, corollory. This implies P{j3-bq} ~ 1. With (1.8) this com-
pletes the proof of (1.9). o

Proof of theorem 3.1
Let (a,(3) -(0,1), (1,1) or (1.2). If we can show that

1 , 2a 2p 1 , 2( a-(~ ) 2a 2~3n F xtxtE{et ~6t }- n F xtxtót E1{Et ~dt }-~ 0,

then (3.3) follows from (2.6) and (3.4). Let r~0, r~j for j E Im have the
saine distribution as Et,ot' Ettj,óttj for j E Im. Then it suffices to
prove that

r~'IE{Tt~a~ÍE wtjTi~)~} - E{n~a~ÍF wj~.~)~}~ ~ 0.

wllere wtj - wjGttj~6t. Here ï ' denotes summation outside the exception set
'f11 of (3.1). IVote that (3. 1) implies sup~w -w ~~ 0. The partial deriva-tj t
tive of f(rl,v) - nÓa~(ï vj~~)~ is given by ~f~~vj -~Óa,~~~(F vjn~)~'1. So
the result follows easily with the mean value theorem pro~~ided that

E{T2~a~i~~(E vjnj)~}1} ' El{E~aE~}j~6~(Atl)} ~ m .

Howe~er, this is implied by ( 2.2), lemma 4.1,b and (3.2). o
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