



## ESTIMATION IN LINEAR REGRESSION UNDER

 THE PRESENCE OF HETEROSKEDASTICITY OF A COMPLETELY UNKNOWN FORMB.B. van der Genugten

FEW 328

# ESTIMATION IN LINEAR REGRESSION UNDER THE PRESENCE OF HETEROSKEDASTICITY OF A COMPLETELY UNKNOWN FORM 

by<br>B.B. van der Genugten<br>Department of Econometrics<br>Tilburg University<br>Tilburg - The Netherlands

## Abstract

A method is investigated for estimating the regression coefficients in a linear model with symmetrically distributed errors. The variances $\sigma_{t}^{2}$ of the errors are unknown; it is neither assumed that they are an unknown function of the explanatory variables nor that they are given in some parametric way.

The estimation is carried out in a bounded number of steps, the first one being OLS. In each step $\sigma_{t}^{2}$ is estimated with a weighted sum of $m$ squared residuals in the neighbourhood of $t$ and the coefficients are estimated using WLS. Furthermore an estimate of the covariance matrix is obtained. If in some sense this matrix decreases a new step is performed unless the last step has been reached.

Large sample properties of this estimation method are derived for fixed $m$. Some particular cases show that the asymptotic efficiency can be increased by allowing more than two steps. The asymptotic efficiency of the WLSestimator with known variances can be approached by choosing m large.

Finally some finite sample properties are evaluated on base of simulation results.

## 1. Introduction

Consider the heteroskedastic linear regression model of the form

$$
y_{t}=\beta^{\prime} x_{t}+\varepsilon_{t} \quad, E\left\{\varepsilon_{t}\right\}=0, V\left\{\varepsilon_{t}\right\}=\sigma_{t}^{2}, t=1, \ldots, n
$$

with $y_{t} \in \mathbb{R}, x_{t} \in \mathbb{R}^{k}$ and independent errors $\varepsilon_{t} \in \mathbb{R}$.
We concentrate on the asymptotic efficiency of estimators for $\beta$ and the consistency of estimators for corresponding covariance matrices. Set $y=$ $\left(y_{1}, \ldots, y_{n}\right)^{\prime} \in \mathbb{R}^{n}$ and $x=\left[x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right]^{\prime} \in \mathbb{R}^{n \times k}$.

If the error variances $\sigma_{t}^{2}$ are known, we can use the WLS-estimator $\tilde{b}$ for $\beta$ :

$$
\begin{equation*}
\tilde{b}=\left(\sum_{1}^{n} x_{t} x_{t}^{\prime} / \sigma_{t}^{2}\right)^{-1} \sum_{1}^{n} x_{t} y_{t} / \sigma_{t}^{2} \tag{1.1}
\end{equation*}
$$

Under appropriate conditions we have asymptotic normality of the form
(1.2) $\sqrt{n}(\tilde{b}-\beta) \rightarrow N_{k}(0, \widetilde{\Phi})$
(Strictly, an additional index $n$ should be introduced when discussing the asymptotic behaviour as $n \rightarrow \infty$, e.g. $\tilde{b}_{n}, x_{t}(n), \sigma_{t}^{2}(n)$. Because such notation becomes cumbersome we will omit this index.)

If the error variances $\sigma_{t}^{2}$ are completely unknown, the ordinary LSestimator $\mathrm{b}_{\mathrm{O}}$ can be used:

$$
\begin{equation*}
\left.\mathrm{b}_{0}=\sum_{1}^{\mathrm{n}} \mathrm{x}_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}^{\prime}\right)^{-1} \sum_{1}^{\mathrm{n}} \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{y} \tag{1.3}
\end{equation*}
$$

with asymptotic normality of the form
(1.4) $\quad \sqrt{n}\left(\mathrm{~b}_{0}-\beta\right) \rightarrow \mathrm{N}_{\mathrm{k}}\left(0, \Phi_{0}\right)$

However, its asymptotic efficiency $R_{0}=\operatorname{det}(\widetilde{\Phi}) / \operatorname{det}\left(\Phi_{0}\right)$ with respect to $\tilde{b}$ can be low. This arises the main question: are alternatives available with a higher asymptotic efficiency for a broad class of heteroskedastic errors?

There is a large statistical and econometric literature available discussing all kind of alternatives.

A common approach is to specify a parametric form for the $\sigma_{t}^{2}$ and to estimate the underlying parameters together with $\beta$ using some parametric method. This is a fruitful approach if the form of the heterskedasticity is of interest in itself. We refer to Nelder and Wedderburn (1972), Amemyia (1973), Jobson and Fuller (1980), Carroll and Ruppert (1982a), (1982b).

However, if the main problem is to estimate $\beta$ other methods can be considered which are not optimal for a particular form of heteroskedasticity but are still good for a broad class of alternatives. We refer to Fuller and Rao (1978), White (1982), Carroll (1982). A possible approach to replace $\sigma_{t}^{2}$ in (1.1) by some weigthed sum $\hat{\sigma}_{t 0}^{2}$ of squared LS-residuals in $\left(e_{10}, \ldots, e_{n 0}\right)^{\prime}=e_{0}=y-X b_{0}$. A particular approach used by Robinson (1987) is to assume that $\sigma_{t}^{2}=\sigma^{2}\left(x_{t}\right)$ with $\sigma^{2}($.$) some unknown function of the$ vector of explanatory variables $x_{t}$. Based on the work of Stone (1977), he has shown that there exist estimators for $\beta$ which have the same asymptotic efficiency as the WLS-estimator (1.1). These estimators are called m-NN (Nearest Neighbour) because here $\sigma_{t}^{2}$ is estimated by a linear combination of $m$ squared LS-residuals $\hat{\sigma}_{t 0}^{2}$ corresponding to the $m$ closest $x_{j}$ to $x_{t}$.

The question arises if something like this can be done if it is not realistic to assume that $\sigma_{t}^{2}$ is a function of $x_{t}$ alone. This may be expected in the context of time series where the index $t$ has the natural interpretation of time. If we consider the errors to be the common effect of all variables not explicitely stated in the model, it is rather unlikely that the variance of the errors can be satisfactory explained by the explanatory variables. It is more likely that $\sigma_{t}^{2}$ is connected with the $\sigma_{j}^{2}$ for indices $j$ in the neighbourhood of $t$. This suggests estimating $\sigma_{t}^{2}$ with a weighted sum of $m$ squared LS-residuals $\hat{\sigma}_{j 0}^{2}$ around $t$. We describe such a method which is suitable for symmetrically distributed errors. In the analysis no functional relationship of the errors is imposed.

Let ( $w_{j}>0, j \in I_{m}$ ) be a fixed set of $m$ weighting coefficients (not depending on $n$ ). We propose an estimator $\widehat{\beta}$ for $\beta$, which is the result of an iteration procedure stopped after $\hat{q}$ iterations not exceeding a (formal) fixed bound $Q>0$. It is determined from the condition

$$
\begin{equation*}
\operatorname{det}\left(\hat{\Phi}_{0}\right)>\ldots>\operatorname{det}\left(\hat{\Phi}_{\hat{q}}\right) \leq \operatorname{det}\left(\hat{\Phi}_{\hat{\mathrm{q}}}+1\right) \tag{1.5}
\end{equation*}
$$

with the convention $\hat{q}=Q$ if no such $\hat{q} \leq Q$ exists. Here, $\hat{\Phi}_{0}, \ldots, \hat{\Phi}_{Q}$ are covariance matrices calculated from the LS-residual vector $e_{0}$ and the weighting coefficients ( $\mathrm{w}_{\mathrm{j}}$ ) with the interpretation that $\hat{\Phi}_{\hat{q}}$ estimates the covariance matrix of $\hat{\beta}$. The precise form is specified in section 2.

Let $\mathrm{b}_{\mathrm{q}}$ denote the estimator for $\beta$ at some intermediate step $\mathrm{q}<\mathrm{Q}$. Then new estimators for the $\sigma_{t}^{2}$, based on the squared residuals in $\left(e_{1 q}, \ldots, e_{n q}\right)^{\prime}=e_{q}=y-X b_{q}$ are calculated as

$$
\begin{equation*}
\hat{\sigma}_{t q}^{2}=\sum_{j \in I_{m}} w_{j} e_{t+j, q}^{2} . \tag{1.6}
\end{equation*}
$$

(For the simulation results in section 4 we let $e_{t q}=e_{1 q}$ for $t<1$ and $e_{t q}=e_{n q}$ for $t>n$; this particular definition does not influence the asymptotic properties but has effect on the finite sample size results) Using the form (1.1) a new estimator $\mathrm{b}_{\mathrm{q}+1}$ for the next step is calculated according to
(1.7) $\quad b_{q+1}={\left.\underset{1}{n} x_{t} x_{t}^{\prime} / \hat{\sigma}_{t q}^{2}\right)^{-1} \sum_{1}^{n} x_{t} y_{t} / \hat{\sigma}_{t q}^{2} .}^{n}$

The final estimator $\hat{\beta}$ is defined by $\hat{\beta}=\mathrm{b} \hat{\mathrm{q}}$.
Theorem 2.1 and 2.2 together show the asymptotic normality of $b_{q}$ :
(1.8) $\quad \sqrt{n}\left(b_{q}-\beta\right) \rightarrow N_{k}\left(0, \Phi_{q}\right)$
where $\Phi_{q}=$ plim $\hat{\Phi}_{q}$. Theorem 2.3 shows that
(1.9) $\quad \sqrt{\mathrm{n}}(\hat{\beta}-\beta) \rightarrow \mathrm{N}_{\mathrm{k}}\left(0, \Phi_{\mathrm{q}}\right) \quad, \hat{q} \rightarrow \mathrm{q}$
for $0 \leq q \leq Q$ such that
(1.10) $\operatorname{det}\left(\Phi_{0}\right)>\ldots>\operatorname{det}\left(\Phi_{q}\right)<\operatorname{det}\left(\Phi_{q+1}\right)$
(with the obvious interpretation for $q=Q$ ).

From (1.9) it follows that the asymptotic efficiency of $b_{q}$ (or $\hat{\beta}$ ) with respect to $\tilde{b}$, given by $R_{q}=\operatorname{det}(\widetilde{\Phi}) / \operatorname{det}\left(\Phi_{q}\right)$, is larger than that of $b_{0}$ unless $q=0$.

In section 3 we impose a smoothing condition on the variances, which still permits all kinds of heteroskedasticity. Theorem 3.1 shows that the asymptotic efficiency $R_{q}$ of $\hat{\beta}$ can be expressed as a simple function of $R_{0}$, the asymptotic efficiency of the LS-estimator $b_{0}$. From this it follows that the proposed method is often better for moderate values of $R_{0}$. Furthermore a guidance for choosing the weighting coefficients can be obtained. Roughly spoken, they should be high where the probability of the distribution of the errors is high. In particular it is important that $0 \in I_{m}$ (with high $w_{0}$ ) for common error distributions with a high probability around 0 (e.g. normal distributions). In that case we often have $q>1$. This means that more than one iteration step increases the asymptotic efficiency. Only for rather curious (bimodal) error distributions with a low probability around 0 a choice $0 \notin I_{m}$ (or $0 \in I_{m}$ with $w_{0}$ low) seems to be appropriate. In that case mostly $q=0$ or 1 .

For large values of $m$ the value of $R_{q}$ often approaches 1 . This raises the question of the finite sample behaviour of the method, where the choice of $m$ will have to be made in relation to $n$. We touch this problem in a particular example of estimating a common level under the presence of heteroskedastic normal distributed errors. Here results are based on simulation.

Finally, section 4 contains the proofs of the theorems.

## 2. Statement of the main results

With respect to the errors $\varepsilon_{t}$ we assume for the moments that for some $\varepsilon>0$ :
(2.1) inf $\sigma_{t}^{2}>0 \quad, \sup _{t} E\left|\varepsilon_{t}\right|^{2+\varepsilon}<\infty$
(2.2) if $0 \in I_{m}$ then $\sup _{t} E\left|\tilde{\sigma}_{t}^{-2}\right|^{1+\varepsilon}<\infty$ else $\sup _{t} E\left|\tilde{\sigma}_{t}^{-4}\right|^{1+\varepsilon}<\infty$
where (compare (1.3)):
(2.3) $\tilde{\sigma}_{t}^{2}=\sum_{j \in I_{m}} w_{j} \varepsilon_{t+j}^{2}$,
and as conditions for symmetry that:

The conditions (2.1), (2.2) guarantee $0<\inf \mathrm{E}\left\{\tilde{\sigma}_{t}^{-2}\right\} \leq \sup \mathrm{E}\left\{\tilde{\sigma}_{t}^{-2} \mid<\infty\right.$ and that similar relations hold for $E\left\{\varepsilon_{t}^{2} / \hat{\sigma}_{t}^{2}\right\}$ and $E\left\{\varepsilon_{t}^{2} / \hat{\sigma}_{t}^{4}\right\}$. (see lemma 4.1) In particular this implies the existence of the moments in (2.4). For symmetrically distributed errors $\varepsilon_{t}$ the conditions (2.4) are fulfilled for any set of weifting coefficients $\left(w_{j}\right)$. However, (2.4) is just what is needed in the proofs of the theorems. For normal distributed errors (2.2) is fulfilled for $m \geq 3$ if $0 \in I_{m}$ and $m \geq 4$ if $0 \notin I_{m}$ (see example 1 of section 3).

The explanatory variables are assumed to be deterministic with
(2.5) $\sup _{t}\left|x_{t}\right|<\infty \quad, C_{0}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime}>0$.

Furthermore we assume also that the following limits exist:

$$
\left\{\begin{array}{l}
C_{1}=\lim \frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime} \sigma_{t}^{2} \quad, C_{2}=\lim \frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime} / \sigma_{t}^{2} \\
v_{0}=\lim \frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime} E\left\{\tilde{\sigma}_{t}^{-2}\right\} \\
v_{1}=\lim \frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime} E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right\}, v_{2}=\lim \frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime} E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right\}
\end{array}\right.
$$

With (2.1), (2.2) we see that the second relation in (2.5) implies that all limits in (2.6) are non-singular.

In the following theorems it is assumed that (2.1) - (2.6) hold.

## Theorem 2.1

The matrices $C_{1}, V_{0}, V_{1}, V_{2}$ are consistently estimated by $\hat{C}_{1}, \hat{V}_{0}, \hat{V}_{1}, \hat{v}_{2}$, defined by

$$
\begin{cases}\hat{c}_{1}=\frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime} e_{t 0}^{2} & , \hat{v}_{0}=\frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime} / \hat{\sigma}_{t 0}^{2}  \tag{2.7}\\ \hat{v}_{1}=\frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime} e_{t 0}^{2} / \hat{\sigma}_{t 0}^{2} & , \hat{v}_{2}=\frac{1}{n} \sum_{1}^{n} x_{t} x_{t}^{\prime} e_{t 0}^{2} / \hat{\sigma}_{t 0}^{4} .\end{cases}
$$

Under (2.1), (2.5), (2.6) the asymptotic normality of the WLSestimator $\tilde{b}$ and the LS-estimator $\mathrm{b}_{\mathrm{O}_{-}}$is guaranteed: (1.2) holds with $\widetilde{\Phi}=$ $C_{2}^{-1}$ and (1.4) with $\Phi_{0}=C_{0}^{-1} C_{1} C_{0}^{-1}$. The following theorem shows that the same holds for $b_{q}$ and specifies $\Phi_{q}$ in (1.8).

## Theorem 2.2

The relation (1.8) holds with
(2.8) $\quad \Phi_{q}=A_{q} V_{2} A_{q}^{\prime}+A_{q} V_{1} B_{q}^{\prime}+B_{q} V_{1} A_{q}^{\prime}+B_{q} C_{1} B_{q}^{\prime}$
where
(2.9) $\quad A_{q}=\sum_{j=0}^{q-1}\left(2 v_{0}^{-1} W\right)^{j} V_{0}^{-1} \quad, B_{q}=\left(2 v_{0}^{-1} w\right)^{q} C_{0}^{-1} \quad, w=w_{0} V_{2}$
(with $w_{0}=0$ if $0 \notin I_{m}$ )

Corollory
Let $\hat{\Phi}_{\mathrm{g}}$ be defined by (2.8) with replacement of $\mathrm{C}_{1}, V_{0}, V_{1}, V_{2}, W$ by $\hat{C}_{1}$, $\hat{V}_{0}, \hat{V}_{1}, \hat{V}_{2}$, $\hat{W}$. Then theorem 2.1 implies that $\hat{\Phi}_{q}$ is a consistent estimator of $\Phi_{q}$.

Theorem 2.3
If there exists a $q$ for which (1.10) is fulfilled, then (1.9) holds.

The corollory of theorem 2.2 makes clear that for $0 \& I_{m}$ a further iteration beyond $q=1$ is useless. The asymptotic efficiency is constant for $q \geq 1$ since $w_{0}=0$. In fact the decision between OLS $(q=0)$ and one further iteration step $(q=1)$ is governed by $\Phi_{0}=C_{0}^{-1} C_{1} C_{0}^{-1}$ and $\Phi_{q}=\Phi_{1}=$ $V_{0}^{-1} V_{2} V_{0}^{-1}$. However, for common error distributions it is better to choose $0 \in I_{m}$ and then $\Phi_{q}$ will depend on $q$. This will be explained more in detail in section 3 .

Suppose that $\sigma_{t}$ is a scale parameter of $\varepsilon_{t}$. We write $E_{1}$ in stead of $E$ if $\sigma_{t}^{2}=1$ for all $t$. In the moment conditions (2.1), (2.2), (2.4) we may replace $E$ and sup $E$ by $E_{1}$ provided that we assume also that $\sup \sigma_{t}^{2}<\infty$.

We introduce the following smoothing condition:
(3.1) $\max _{t \not \subset \mathrm{~T}_{\mathrm{n}}}\left|\sigma_{\mathrm{t}+1}^{2} / \sigma_{\mathrm{t}}^{2}-1\right| \rightarrow 0$
with $T_{n}$ an exception set of $\{1, \ldots, n\}$ such that $\# T_{n}$ is bounded in $n$. This condition is fulfilled for a broad class of heteroskedastic errors.
A simple example satisfying (3.1) with $T_{n}=\varnothing$ is $\sigma_{t}^{2}=\sigma^{2}(1+\lambda t / n)^{2}, \lambda>0$. The exception set $T_{n}$ is introduced to covor jumps: if the $\sigma_{t}^{2}$ fall into $p$ classes of equal size with fixed levels then (3.1) is fulfilled with $\# T_{\mathrm{n}}=\mathrm{p}-1$.

For technical reasons we introduce also the condition that for all $i \in I_{m}$ :
(3.2) if $0 \in I_{m}$ then $E_{1}\left|\varepsilon_{t}^{2} \varepsilon_{t+i}^{2} / \tilde{\sigma}_{t}^{6}\right|<\infty$ else $E_{1}\left|\varepsilon_{t+i}^{2} / \tilde{\sigma}_{t}^{6}\right|<\infty$

For normal distributed errors (3.2) is satisfied again for $m \geq 3$ if $0 \in I_{m}$ and $m \geq 4$ if $0 \& I_{m}$ (see example 1 ).

The corollory of the following theorem shows that $R_{q}$ can be expressed as a simple function of $R_{0}$.

Theorem 3.1
Under the additional conditions (3.1), (3.2) we have

$$
v_{0}=v_{0} C_{2} \quad, v_{1}=v_{1} C_{0} \quad, v_{2}=v_{2} C_{2}
$$

where

$$
\begin{equation*}
v_{0}=E_{1}\left\{\tilde{\sigma}_{t}^{-2}\right\} \quad, v_{1}=E_{1}\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right\} \quad, v_{2}=E_{1}\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right\} \tag{3.4}
\end{equation*}
$$

## Corollory

Substitution of (3.3) in (2.8) leads to
where

$$
\begin{array}{ll}
\text { (3.5) } & \Phi_{\mathrm{q}}=a_{\mathrm{q}} \widetilde{\Phi}+b_{\mathrm{q}} \Phi_{0} \\
\text { (3.6) } & \mathrm{R}_{\mathrm{q}}^{-1}=a_{q}^{k}+b_{q}^{k_{\mathrm{R}}} \mathrm{R}_{0}^{-1} \tag{3.5}
\end{array}
$$

(3.7) $\begin{cases}a_{q}=c_{q}^{2} v_{2} / v_{0}^{2}+2 \tau^{q_{c}} c_{q} v_{1} / v_{0} & , b_{q}=\tau^{2 q} \\ c_{q}=\left(1-\tau^{q}\right) /(1-\tau) & , \tau=2 w_{0} v_{2} / v_{0} .\end{cases}$

From its definition it follows that $0 \leq \tau \leq 2$.
If $0 \notin I_{m}$ then $\tau=0$ and so $R_{q}=\bar{R}_{\infty}=\left(v_{\underline{0}}^{2} / v_{2}\right)^{k}, q \geq 1$. Therefore $\hat{\beta}$ is asymptotically equivalent to OLS if $\bar{R}_{\infty}<R_{0}$ and to WLS with $q=1$ if $\overline{\mathrm{R}}_{\infty}>\mathrm{R}_{0}$.
If $0 \in I_{m}$ and if the weighting coefficients are choosen such that $\tau<1$ then $R_{q} \rightarrow R_{\infty}=\left\{(1-\tau)^{2} v_{0}^{2} / v_{2}\right\}^{k}$ if $q<\infty$. Therefore we choose $0 \in I_{m}$ and make iteration steps if $R_{q}>R_{0}$. This can be wise even if $R_{\infty}<R_{0}$ depending on the maximum value of $R_{q}$.

## Example 1

Let $\varepsilon_{t}$ have a symmetric distribution such that $\varepsilon_{t}^{2} \sim \Gamma\left(\rho / \sigma_{t}^{2}, \rho\right)$, where $\Gamma(\lambda, p)$ stauds for the gamma-distribution with scale-parameter $1 / \lambda$ and shape-parameter $\rho>0$. So $\varepsilon_{t} \sim N\left(0, \sigma_{t}^{2}\right)$ for $\rho=\frac{1}{2}$. For $\rho>\frac{1}{2}$ we get an error distribution with even higher probabilities around 0 and for $0<\rho<\frac{1}{2}$ a bimodal distribution with low probabilities around 0 .

In this case the WLS-estimator $\tilde{b}$ for $\beta$ is MVUE. Therefore the asymptotic efficiency of any other (regular) estimator for $\beta$ cannot exceed 1.

Simple analytic results can only be obtained for equal weighting coefficients. We restrict ourselves to this case. Then all necessary expectations follow from
$E_{1}\left\{\prod_{j=1}^{m} \varepsilon_{j}^{2 \alpha} j /\left(\sum_{j=1}^{m} \varepsilon_{j}^{2}\right)^{\beta}\right\}=\rho^{\beta-\sum \alpha_{j}}\left(\Gamma\left(\sum \alpha_{j}+m \rho-\beta\right) / \Gamma\left(\sum \alpha_{j}+m \rho\right)\right) \Gamma^{-m}(\rho) \prod_{j=1}^{m} \Gamma\left(\alpha_{j}+\rho\right)$
(for $\beta, \alpha_{j} \geq 0$ and $\beta<\Sigma \alpha_{j}+m \rho$ ).
For $0 \notin I_{m}$ we get $v_{0}=1 /(m-1 / \rho), v_{2}=1 /\{(m-1 / \rho)(m-2 / \rho)\}, \bar{R}_{\infty}^{1 / k}=$ $\{1-2 /(m p)\} /\{1-1 /(m p)\}$ provided that $m>2 / \rho$.

For $0 \in I_{m}$ we get under the weaker condition $m>1 / \rho$ that $v_{0}=$ $1 /(m-1 / \rho), \quad v_{1}=1 / m, \quad v_{2}=1 /\{m(m-1 / \rho)\}, \quad \tau=2 / m, \quad a_{q}=c_{q}\left(c_{q}+2 \tau^{q}\right)(1-$ $1 /(m \rho))$. This leads for $m \geq 3$ to $R_{\infty}^{1 / k}=(1-2 / m)^{2} /\{1-1 /(m \rho)\}$. Hence, $\bar{R}_{\infty}>$ $R_{\infty}$ iff $\rho>\frac{1}{2}$ and $m \geq 2 \rho /(2 \rho-1)$. This illustrates that for error distributions with high probabilities around 0 (e.g. $\rho \leq \frac{1}{2}$ ) it is wise to include 0 in $I_{m}$.

## Example 2

We continue example 1 for $0 \in I_{m}$ and take the special values $\rho=\frac{1}{2}$ (normal distributed errors) and $k=1$ (one explanatory variable). The figure below shows for $m=3,4,5,10,25$ the asymptotic efficiency $R_{q}$ of $\hat{\beta}$ as a function of $R_{O}$. Points at which the number of iteration steps $q$ changes are indicated by stars (e.g. for $m=3$ the value $R_{0}=0.60$ leads to $R_{q}=0.66$ with $q=1$ and $R_{0}=0.20$ gives $R_{q}=0.43$ with $q=3$ ). It is seen that $\hat{\beta}$ is better than $b_{0}$ for moderate values of $R_{0}$.


## Example 3

The results of example 2 describe the behaviour of the estimators for large $n$. In this example we give some simulation results for the (finite) efficiencies $R_{0}(n)=V\left\{b_{0}\right\} / V\{\tilde{b}\}$ and $R_{\hat{q}}(n)=V\{\hat{\beta}\} / V\{\tilde{b}\}$ of $b_{0}, \hat{\beta}$ for some particular values of $n$. Here we take the special case that the explanatory variable is the constant term $\left(x_{t}=1\right)$. So the problem becomes to estimate the constant level $\beta_{1}$ of independent normal distributed $y_{t} \sim N\left(\beta_{1}, \sigma_{t}^{2}\right)$, $t=1, \ldots, n$. The estimator $\hat{\beta}$ will be based on equal weighting coefficients with $I_{m}=\{-[\mathrm{m} / 2]+1, \ldots,[\mathrm{~m} / 2]\}$.

As a model for the variances we take $\sigma_{t}^{2}=\sigma^{2}(1+\lambda t / n)^{2}, \lambda>0$ (see section 3). Then $R_{0}=(1+\lambda) /\left(1+\lambda+\lambda^{2} / 3\right)$ decreases with increasing $\lambda$.

The following table is based on simulation. It gives the values of $R_{0}(n)$ and $R \hat{q}(n)$ for some interesting values of $n, m$, and $\lambda$ based on $N=5000$ runs. In each run a sample $\left(y_{1}, \ldots, y_{n}\right)$ was drawn and the estimates $b_{0}$, $\tilde{b}$ and $\hat{\beta}$ were calculated. The variances $V\left\{b_{0}\right\}, V\{\tilde{b}\}, V\{\hat{\beta}\}$ were calculated from those $N$ estimates. The values $\lambda=0$ and $\lambda=10$ correspond resp. with homoskedasticity and a large increasing heteroskedasticity. The random generator was that of Logitech's Modula-2 compiler (version 3.0).

| m | $\lambda=0$ |  | $\lambda=10$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{n}=25 \quad \mathrm{n}=\infty$ |  | $\mathrm{n}=10$ | $\mathrm{n}=25$ | $\mathrm{n}=100$ | $\mathrm{n}=\infty$ |
| - $\mathrm{R}_{0}\left(\mathrm{n}_{\mathrm{\prime}}\right)$ | 1.00 | 1.00 | 0.34 | 0.28 | 0.26 | 0.25 |
| 3 | 0.97 | 1.00 | 0.38 | 0.34 | 0.39 | 0.45 |
| 5 | 0.97 | 1.00 | 0.41 | 0.44 | 0.62 | 0.65 |
| 10 R^( $n$ ) | 0.97 | 1.00 | 0.43 | 0.56 | 0.76 | 0.81 |
| 15 q | 0.98 | 1.00 | - | 0.57 | 0.81 | 0.87 |
| 20 | 0.99 | 1.00 | - | 0.58 | 0.83 | 0.90 |
| 25 | 0.99 | 1.00 | - | 0.52 | 0.86 | 0.92 |
| 50 | - | 1.00 | - | - | 0.82 | 0.96 |
| 100 | - | 1.00 | - | - | 0.60 | 0.98 |

In the homoskedastic case of course $b_{0}$ is better than $\hat{\beta}$ but not much is lost. In the heteroskedastic case $\hat{\beta}$ is much better than $b_{0}$ although the effect is less for small sample sizes. Note that for fixed $n$ efficiency of $\mathrm{R}_{\hat{q}}(\mathrm{n})$ attains a maximum in m .

In these proofs $c, c_{i}$ denote general positive constants not depending on $n$.

Lemma 4.1
a) $E\left\{\tilde{\sigma}_{t}^{-2}\right\}, E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right\}, E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right\}$ are bounded away from 0 .
b) for some $\varepsilon_{\sim}^{\varepsilon}>0 \quad \mathrm{E}\left|\varepsilon_{t} / \tilde{\sigma}_{t}\right|^{1+\varepsilon}, \quad \mathrm{E}\left|\varepsilon_{t} / \tilde{\sigma}_{t}^{3}\right|^{1+\varepsilon}, \quad \mathrm{E}\left|\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right|^{1+\varepsilon}, E\left|\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right|^{1+\varepsilon}$, $E\left|\varepsilon_{t} \varepsilon_{t+i} / \tilde{\sigma}_{t}^{4}\right|^{1+\varepsilon}\left(i \in I_{m}\right)$ are bounded.

## Proof

The assertions follow from (2.1), (2.2).
a) For some i $\in I_{m}$ we have $E\left\{\tilde{\sigma}_{t}^{-2}\right\} \geq \operatorname{cE}\left\{1 / \varepsilon_{t+i}^{2}\right\} \geq c / E\left\{\varepsilon_{t+i}^{2}\right\} \geq 1 /$ sup $\sigma_{t}^{2}$. If $0 \in I_{m}$ then $\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2} \geq c, \varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4} \geq c / \tilde{\sigma}_{t}^{-2}$ and if $0 \& I_{m}$ then $E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right\}=$ $E\left\{\varepsilon_{t}^{2}\right\} E\left\{\tilde{\sigma}_{t}^{-2}\right\}, E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right\}=E\left\{\varepsilon_{t}^{2}\right\} E\left\{\tilde{\sigma}_{t}^{-4}\right\} \geq E\left\{\varepsilon_{t}^{2}\right\}\left(E\left\{\sigma_{t}^{-2}\right\}\right)^{2}$.
b) If $0 \in I_{m}$ then $\varepsilon_{t} \leq c,{ }^{n} t \leq c \tilde{\sigma}_{t}$ and so $\left|\varepsilon_{t} / \tilde{\sigma}_{t}\right| \leq c,\left|\varepsilon_{t} / \tilde{\sigma}_{t}^{3}\right| \leq c \tilde{\sigma}_{t}^{-2}$, $\varepsilon_{t}^{2} / \sigma_{t}^{2} \leq c, \varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4} \leq c \tilde{\sigma}_{t}^{-2},\left|\varepsilon_{t} \varepsilon_{t+i}\right| / \tilde{\sigma}_{t}^{4} \leq c \tilde{\sigma}_{t}^{-2}$.
If $0 \notin I_{m}$ then $E\left|\tilde{\sigma}_{t}^{-2}\right|^{1+\varepsilon} \leq\left(E\left|\tilde{\sigma}_{t}^{-4}\right|^{1+\varepsilon}\right)^{1 / 2}, E\left|\varepsilon_{t} / \tilde{\sigma}_{t}^{3}\right|^{1+\varepsilon}=$
$\left.=E\left|\varepsilon_{t}\right|^{1+\varepsilon} E\left|\tilde{\sigma}_{t}^{-3}\right|^{1+\varepsilon} \leq\left(E\left|\varepsilon_{t}^{2}\right|^{1+\varepsilon}\right)^{1 / 2}\left(\left.\left.E\right|_{\sigma_{t}} ^{-4}\right|^{1+\varepsilon}\right)^{3 / 4}, E \mid \varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right)^{1+\varepsilon}=$
$=E\left|\varepsilon_{t}^{2}\right|^{1+\varepsilon_{E}}\left|\tilde{\sigma}_{t}^{-2}\right|^{1+\varepsilon}, E\left|\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right|^{1+\varepsilon}=E\left|\varepsilon_{t}^{2}\right|^{1+\varepsilon} E\left|\tilde{\sigma}_{t}^{-4}\right|^{1+\varepsilon}, E\left|\varepsilon_{t} \varepsilon_{t+i} / \tilde{\sigma}_{t}^{4}\right|^{1+\varepsilon} \leq$ $\leq c E\left|\varepsilon_{t} / \tilde{\sigma}_{t}^{3}\right|^{1+\varepsilon}$. $\quad$

For estiators for $\beta$ and related variables at some iteration stage some preparatory lemina's are needed.

Let $b=b_{n}$ be any estimator for $\beta$ such that $b_{n}-\beta=0(1 / \sqrt{n})$ (in probability). Let $e=y-X b, f=\varepsilon-e$ with corresponding components $e_{t}=\varepsilon_{t}-f_{t}$, $f_{t}=x_{t}^{\prime}\left(b_{n}-\beta\right)$. According to (1.6) set $\hat{\sigma}_{t}^{2}=\sum_{j} w_{j} e_{t+j}^{2}$ and let

$$
\eta_{t}=\max _{j \in I_{m}}\left|\varepsilon_{t+j}\right|, g_{n}=\left|b_{n}-\beta\right| / \min _{1 \leq t \leq n} \tilde{\sigma}_{t}
$$

Note that $\eta_{t} \leq c_{1} \tilde{\sigma}_{t} \leq c_{2} \eta_{t}$.

Lemma 4.2
(4.1) $\quad g_{n} \xrightarrow{P} 0$
(4.2) $\quad \forall \delta>0: P\left\{\min _{1 \leq t \leq n} \tilde{\sigma}_{t} \geq \delta \max _{1 \leq t \leq n}\left|f_{t}\right|\right\} \rightarrow 1$.

Proof
For $\delta>0, \mathrm{M}>0$ we have:

$$
\begin{aligned}
& P\left\{\left|g_{n}\right| \geq \delta\right\}=P\left\{\sqrt{n}\left(n_{n}-\beta\right) \geq \delta \sqrt{n} \min \tilde{\sigma}_{t}\right\} \leq \\
& \leq P\left\{\sqrt{n}\left|b_{n}-\beta\right| \geq M\right\}+P\left\{\min \tilde{\sigma}_{t}^{2} \leq M^{2} /\left(n \delta^{2}\right)\right\}
\end{aligned}
$$

Since $b_{n}-\beta=O(1 / \sqrt{n})$ the first term can be made arbitrary small by taking $M$ large enough. For such $M$ the second term tends to 0 as follows from

$$
\begin{aligned}
& P\left\{\min \tilde{\sigma}_{t}^{2} \leq c / n\right\} \leq \sum_{1}^{n} P\left\{\tilde{\sigma}_{t}^{2} \leq c / n\right\}=\sum_{1}^{n} P\left\{\tilde{\sigma}_{t}^{-2} \geq n / c\right\} \leq \\
& \leq \sum_{1}^{n}\left(\frac{c}{n}\right)^{1+\varepsilon} E\left|\tilde{\sigma}_{t}^{-2}\right|^{1+\varepsilon} \leq c_{1} n^{-\varepsilon} \text { sup } E\left|\tilde{\sigma}_{t}^{-2}\right|^{1+\varepsilon} \rightarrow 0,
\end{aligned}
$$

using lemma 4.1,b. This proves (4.1). Furthermore, using (2.5):

$$
\max \left|f_{t}\right| \leq\left|b_{n}-\beta\right| \max \left|x_{t}\right| \leq c_{1} g_{n} \min \tilde{\sigma}_{t} \leq c_{2} g_{n} \min \eta_{t}
$$

Hence, max $\left|f_{t}\right| / \min \eta_{t} \leq c_{2} g_{n} \xrightarrow{P} 0$, proving (4.2). $\quad$ o
Choose $\delta$ such that $0<\delta<1$ and set $A_{n}=\left\{\min \eta_{t} \geq \delta \max \left|f_{t}\right|\right\}$. Then $P\left(A_{n}^{\prime}\right) \rightarrow 0$ according to (4.2). The following lemma shows that results about convergence in probability can be obtained by restricting the analysis to the set $A_{n}$.

## Lemma 4.3

Let $\left|h_{n}\right| \leq r_{n}$ or $A_{n}$. Then:

$$
r_{n}=o\left(\alpha_{n}\right) \Rightarrow h_{n}=o\left(\alpha_{n}\right), \quad r_{n}=O\left(\alpha_{n}\right) \Rightarrow h_{n}=0\left(\alpha_{n}\right)
$$

## Proof ${ }^{\text { }}$

For $\Delta>0$ we have:

$$
\begin{aligned}
& P\left\{\alpha_{n}^{-1}\left|h_{n}\right| \geq \Delta\right\}=P\left\{\alpha_{n}^{-1}\left|h_{n}\right| \geq \Delta, A_{n}\right\}+P\left\{\alpha_{n}^{-1}\left|h_{n}\right| \geq \Delta, A_{n}^{\prime}\right\} \\
& \leq P\left\{\alpha_{n}^{-1}\left|r_{n}\right| \geq \Delta\right\}+P\left\{A_{n}^{\prime}\right\}
\end{aligned}
$$

and so the result follows from $P\left\{A_{n}^{\prime}\right\} \rightarrow 0$. The following inequalities on $A_{n}$ will be used.

Lemma 4.4
On $A_{n}$ we have for all $t=1, \ldots, n$ :
(4.3) $\left|e_{t+j}^{2}-\varepsilon_{t+j}^{2}\right| \leq c\left|b_{n}-\beta\right|\left(n_{t}+\left|\varepsilon_{t+j}\right|\right), j \in I_{m}$ or $j=0$
(4.4) $\left|\hat{\sigma}_{t}^{2}-\tilde{\sigma}_{t}^{2}\right| \leq c\left|b_{n}-\beta\right| \underline{n}_{t}$
(4.5) $\quad \hat{\sigma}_{t}^{2} \geq c \tilde{\sigma}_{t}^{2}$
(4.6) $\left|\hat{\sigma}_{t}^{-2}-\tilde{\sigma}_{t}^{-2}\right| \leq \mathrm{cg}_{\mathrm{n}} / \tilde{\sigma}_{t}^{2}$
(4.7) $\left|\varepsilon_{t}^{2} \tilde{\sigma}_{t}^{2}-e_{t}^{2} / \hat{\sigma}_{t}^{2}\right| \leq \operatorname{cg}_{n}\left(1+\left|\varepsilon_{t}\right| / \tilde{\sigma}_{t}+\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right)$
(4.8) $\left|\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}-e_{t}^{2} / \hat{\sigma}_{t}^{4}\right| \leq \operatorname{cg}_{n}\left(\tilde{\sigma}_{t}^{-2}+\left|\varepsilon_{t}\right| / \tilde{\sigma}_{t}^{3}+\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right)$
(4.9) $\left|\varepsilon_{t} / \hat{\sigma}_{t}^{2}-\varepsilon_{t} / \tilde{\sigma}_{t}^{2}-2\left(b_{n}-\beta\right) \cdot \sum_{j} w_{j} x_{t+j} \varepsilon_{t+j} \varepsilon_{t} / \tilde{\sigma}_{t}^{4}\right| \leq c\left|b_{n}-\beta\right| \varepsilon_{t} \mid / \tilde{\sigma}_{t}^{3}$.

Proof
Note that $e_{t}^{2}-\varepsilon_{t}^{2}=f_{t}\left(f_{t}-2 \varepsilon_{t}\right)$.
(4.3): With (2.5) we get

$$
\left|e_{t+j}^{2}-\varepsilon_{t+j}^{2}\right| \leq\left|b_{n}-\beta\right|\left|x_{t}\right|\left(\left|f_{t+j}\right|+2\left|\varepsilon_{t+j}\right|\right) \leq c\left|b_{n}-\beta\right|\left(n_{t}+\left|\varepsilon_{t+j}\right|\right)
$$

(4.4): Since $\left|\varepsilon_{t+j}\right| \leq \eta_{t}$ for $j \in I_{m}$ we have

$$
\left|\hat{\sigma}_{t}^{2}-\tilde{\sigma}_{t}^{2}\right| \leq \Sigma w_{j}\left|e_{t+j}^{2}-\varepsilon_{t+j}^{2}\right| \leq c\left|b_{n}-\beta\right| \underline{\eta}_{t} .
$$

(4.5): Let $j$ ' be such that $\left|\varepsilon_{t+j}\right|=\eta_{t}$. Then

$$
\begin{aligned}
& \hat{\sigma}_{t}^{2} \geq w_{j}, e_{t+j^{\prime}}^{2}=w_{j^{\prime}}\left(\varepsilon_{t+j^{\prime}}-f_{t+j^{\prime}}\right)^{2} \geq w_{j},(1-\delta)^{2} \varepsilon_{t+j}^{2}= \\
& =w_{j},(1-\delta)^{2} \eta_{t} \geq c \tilde{\sigma}_{t}^{2} .
\end{aligned}
$$

(4.6): With (4.4) and (4.5) we get

$$
\left|\hat{\sigma}_{t}^{-2}-\tilde{\sigma}_{t}^{-2}\right|=\left|\hat{\sigma}_{t}^{2}-\tilde{\sigma}_{t}^{2}\right| \hat{\sigma}_{t}^{-2} \tilde{\sigma}_{t}^{-2} \leq c_{1}\left|\hat{\sigma}_{t}^{2}-\tilde{\sigma}_{t}^{2}\right| / \tilde{\sigma}_{t}^{4} \leq
$$

$$
s c_{2}\left|b_{n}-\beta\right| n_{t} / \tilde{\sigma}_{t}^{4} \leq c_{2} g_{n} n_{t} / \tilde{\sigma}_{t}^{3} \leq c_{3} g_{n} / \tilde{\sigma}_{t}^{2}
$$

(4.7): With (4.3), (4.5), (4.6) we get

$$
\begin{aligned}
& \left|\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}-e_{t}^{2} / \hat{\sigma}_{t}^{2}\right| \leq\left|\varepsilon_{t}^{2}-e_{t}^{2}\right| / \hat{\sigma}_{t}^{2}+\varepsilon_{t}^{2}\left|\hat{\sigma}_{t}^{-2}-\tilde{\sigma}_{t}^{-2}\right| s \\
& \leq c_{1}\left|b_{n}-\beta\right|\left(n_{t}+\left|\varepsilon_{t}\right|\right) / \tilde{\sigma}_{t}^{2}+c_{2} g_{n} \varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2} s \\
& \leq \operatorname{cg}_{n}\left(1+\left|\varepsilon_{t}\right|\right) / \tilde{\sigma}_{t}+c g_{n} \varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2} .
\end{aligned}
$$

(4.8): In the same way as (4.7) it follows

$$
\begin{aligned}
& \left|\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}-e_{t}^{2} / \hat{\sigma}_{t}^{4}\right| \leq\left|\varepsilon_{t}^{2}-e_{t}^{2}\right| / \hat{\sigma}_{t}^{4}+\varepsilon_{t}^{2}\left|\hat{\sigma}_{t}^{-2}-\tilde{\sigma}_{t}^{-2}\right|\left|\hat{\sigma}_{t}^{-2}+\tilde{\sigma}_{t}^{-2}\right| \leq \\
& \leq \operatorname{cg}_{n}\left(1+\left|\varepsilon_{t}\right|\right) / \tilde{\sigma}_{t}^{3}+\operatorname{cg}_{n} \varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}
\end{aligned}
$$

(4.9): Substitution of

$$
\begin{aligned}
\hat{\sigma}_{t}^{-2} & =\tilde{\sigma}_{t}^{-2}-\tilde{\sigma}_{t}^{-4}\left(\hat{\sigma}_{t}^{2}-\tilde{\sigma}_{t}^{2}\right)+\tilde{\sigma}_{t}^{-4} \hat{\sigma}_{t}^{2}\left(\hat{\sigma}_{t}^{2}-\tilde{\sigma}_{t}^{2}\right)^{2}= \\
& =\tilde{\sigma}_{t}^{-2}+\tilde{\sigma}_{t}^{-4} \sum_{j} w_{j} f_{t+j}\left(2 \varepsilon_{t+j}-f_{t+j}\right)+\tilde{\sigma}_{t}^{-4} \hat{\sigma}_{t}^{2}\left(\hat{\sigma}_{t}^{2}-\tilde{\sigma}_{t}^{2}\right)^{2}
\end{aligned}
$$

leads with (4.4), (4.5) to

$$
\begin{aligned}
& \left|\varepsilon_{t} / \hat{\sigma}_{t}^{2}-\varepsilon_{t} / \tilde{\sigma}_{t}^{2}-2 \tilde{\sigma}_{t}^{-4} \sum_{j} w_{j} f_{t+j} \varepsilon_{t+j} \varepsilon_{t}\right| s \\
& \leq\left(\tilde{\sigma}_{t}^{-4} \sum_{j} w_{j} f_{t+j}^{2}+c_{1} \tilde{\sigma}_{t}^{-6}\left|b_{n}-\beta\right|^{2} \eta_{t}^{2}\right)\left|\varepsilon_{t}\right| \leq \\
& \leq c_{2}\left|b_{n}-\beta\right|^{2} \tilde{\sigma}_{t}^{-4}\left(1+\eta_{t}^{2} / \tilde{\sigma}_{t}^{2}\right)\left|\varepsilon_{t}\right| \leq c_{3}\left|b_{n}-\beta\right| g_{n}\left|\varepsilon_{t}\right| / \tilde{\sigma}_{t}^{3}
\end{aligned}
$$

In agreement with (2.7) set $\hat{\mathrm{C}}_{1}=\frac{1}{n} \sum x_{t} x_{t}^{\prime} e_{t}^{2}, \tilde{\mathrm{c}}_{1}=\frac{1}{n} \sum x_{t} x_{t}^{\prime} \varepsilon_{t}^{2}$. Let
$\hat{V}_{i}, \widetilde{v}_{\dot{1}}$ for $i=0,1,2$ be defined in the same way, e.g. $\hat{v}_{2}=\frac{1}{n} \Sigma x_{t} x_{t}^{\prime} e_{t}^{2} / \hat{\sigma}_{t}^{2}$, $\tilde{v}_{2}^{1}=\frac{\ddagger}{n} \Sigma x_{t} x_{t}^{\prime} \varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}$. We have:

## Lemma 4.5

(4.10) $\quad \hat{c}_{1}-\widetilde{c}_{1} \xrightarrow{P} 0 \quad, \hat{v}_{i}-\widetilde{v}_{i} \xrightarrow{P} 0 \quad(i=0,1,2)$.

## Proof

Let $\|\cdot\|=\|\cdot\|_{2}$.
Ad $C_{1}$ : On $A_{n}$ we get with (2.5), (4.3)

$$
\left\|\hat{c}_{1}-\widehat{c}_{1}\right\| \leq c_{1} \cdot \frac{1}{n} \Sigma\left|\varepsilon_{t}^{2}-e_{t}^{2}\right| \leq c_{2}\left|b_{n}-\beta\right| \frac{1}{n} \sum_{1}^{n}\left(n_{t}+\left|\varepsilon_{t}\right|\right)
$$

So bemma 4.3 gives $\hat{C}_{1}-C_{1} \xrightarrow{P} 0$ if the right hand side tends to 0 in probability. From (2.1) we get $E\left|\varepsilon_{t+j}\right| \leq \sigma_{t+j} \leq \sup \sigma_{t} \leq c$ or

$$
\begin{aligned}
& \frac{1}{n} \sum \eta_{t}=O(1), \frac{1}{n} \sum\left|\varepsilon_{t}\right|=O(1) \text { and so this follows from } b_{n}-\beta= \\
& O(1 / \sqrt{n}) \text {. }
\end{aligned}
$$

Ad $V_{i}$ : On $A_{n}$ we get with (4.6), (4.7), (4.8):

$$
\begin{aligned}
& \left\|\hat{v}_{0}-\widetilde{v}_{0}\right\| \leq c \cdot g_{n} \cdot \frac{1}{n} \Sigma \tilde{\sigma}_{t}^{-2}, \\
& \left\|\hat{v}_{1}-\widetilde{v}_{1}\right\| \leq c \cdot g_{n}\left(1+\frac{1}{n} \Sigma\left|\varepsilon_{t}\right| / \tilde{\sigma}_{t}+\frac{1}{n} \Sigma \varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right), \\
& \left\|\hat{v}_{2}-\widetilde{v}_{2}\right\| \leq c \cdot g_{n}\left(\frac{1}{n} \Sigma \tilde{\sigma}_{t}^{-2}+\frac{1}{n} \Sigma\left|\varepsilon_{t}\right| / \tilde{\sigma}_{t}^{3}+\frac{1}{n} \Sigma \varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right) .
\end{aligned}
$$

So with (4.1) and lemma 4.3 it follows in the same way that $\hat{V}_{i}-\tilde{V}_{i} \xrightarrow{P} 0$ provided that $\mathrm{E}\left\{\tilde{\sigma}_{t}^{-2}\right\}, \mathrm{E}\left|\varepsilon_{t} / \tilde{\sigma}_{t}\right|, \mathrm{E}\left|\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right|, \mathrm{E}\left|\varepsilon_{t} / \tilde{\sigma}_{t}^{3}\right|$, $E\left|\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right|$ are bounded in $t$. However, this follows from lemma 4.1,b. $\quad$ -

The sequence of random variables $U_{1}, U_{2}, \ldots$ is called $p$-dependent ( $p \geq 0$ ) if $\left(U_{1}, \ldots, U_{t}\right)$ and $\left(U_{t+p+1}, U_{t+p+2}, \ldots\right)$ are independent for all $t$. We have the following weak law of large numbers:

## Lemma 4.6

Let $U_{1}, U_{2}, \ldots$ be $p$-dependent with $E\left\{U_{t}\right\}=0$ and sup $E\left|U_{t}\right|^{1+\varepsilon}<\infty$ for some $\varepsilon>0$. Then

$$
\frac{1}{n} \sum_{1}^{n} a_{t} U_{t} \stackrel{P}{\rightarrow} 0
$$

for any bounded sequence $a_{1}, a_{2}, \ldots$

## Proof

The case $p=0$ is implied by Rao [1973], excercise 4.5, p. 146. The general case follows easily from this by splitting up the sum in independent parts. $\quad$

## Lemma 4.7

(4.11) $\quad \tilde{c}_{1}-C_{1} \stackrel{P}{\rightarrow} 0 \quad, \tilde{v}_{i}-v_{i} \xrightarrow{P} 0 \quad(i=0,1,2)$.

## Proof

Ad $C_{1}$ : Since
$\widetilde{c}_{1}-C_{1}=\frac{1}{n} \Sigma x_{t} x_{t}^{\prime}\left(\varepsilon_{t}^{2}-\sigma_{t}^{2}\right)$
this follows from (2.5) and lemma 4.6 for $p=0$ provided that sup $E\left|\varepsilon_{t}^{2}-\sigma_{t}^{2}\right|^{1+\varepsilon / 2}\langle\infty$ for some $\varepsilon>0$. However, this is implied by the condition $\sup E\left|\varepsilon_{t}\right|^{2+\varepsilon}<\infty$ in (2.1).

Ad $V_{2}$ : Since
$\tilde{v}_{2}-v_{2}=\frac{1}{n} \sum x_{t} x_{t}^{\prime}\left(\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}-E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right\}\right)$
this follows in the same way from lemma 4.5 for $p>\operatorname{dist}\left(I_{m}\right)$ provided that sup $E\left|\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right|^{1+\varepsilon}<\infty$. However, this is guaranteed by lema 4.1.b.
Ad $V_{0}, V_{1}$ : Compare the proof of $V_{2}$.

Corollory
From (4.10), (4.11) we get:
(4.12) $\quad \hat{C}_{1} \xrightarrow{P} C_{1} \quad, \hat{v}_{i} \xrightarrow{P} V_{i} \quad(i=0,1,2)$.

## Proof of theorem 2.1

The result follows immediately from (4.12) provided that we can show that $b_{0}-\beta=0(1 / \sqrt{n})$. However, this follows immediately from $E\left\{b_{0}\right\}=\beta$ and nV $\left\{b_{0}\right\} \rightarrow C_{0}^{-1} C_{1} C_{0}^{-1}$, where $C_{0}, C_{1}$ are specified in (2.5), (2.6).

## Remark

Note that theorem 1.1 is not only true for the OLS-estimator $b_{0}$ as starting point but also for any estimator $b_{0}$ for which $b_{0}-\beta=0(1 / \sqrt{n})$.

Lemma 4.8
(4.13) $\frac{1}{n} \sum_{t} \sum_{j} w_{j} x_{t} x_{t+j}^{\prime}{ }^{\varepsilon} t+j{ }^{\varepsilon} t^{/ \sigma_{t}^{4}} \stackrel{P}{\rightarrow} w$.

## Proof

For fixed $j \in I_{m}$ it follows from lemma 4.6 for some $p \geq m+1$ that

$$
\frac{1}{n} \sum_{t} x_{t} x_{t+j}^{\prime}\left(\varepsilon_{t+j} \varepsilon_{t} / \tilde{\sigma}_{t}^{4}-E\left\{\varepsilon_{t+j} \varepsilon_{t} / \tilde{\sigma}_{t}^{4}\right\}\right) \stackrel{P}{\rightarrow} 0
$$

provided that $\sup E\left|\varepsilon_{t+j} \varepsilon_{t} / \tilde{\sigma}_{t}^{4}\right|^{1+\varepsilon}<\infty$. This is guaranteed by lemma 4.1,b. However, by (2.4) we have $E\left\{\varepsilon_{t+j} \varepsilon_{t} / \tilde{\sigma}_{t}^{4}\right\}=0$ for $j \neq 0$. Since $w_{0}=0$ for $0 \& I_{m}$ this gives

$$
\frac{1}{n} \sum_{t} \sum_{j} w_{j} x_{t} x_{t+j}^{\prime} \varepsilon_{t+j} \varepsilon_{t} / \tilde{\sigma}_{t}^{4}-\frac{1}{n} \sum x_{t} x_{t}^{\prime} w_{0} E\left\{\varepsilon_{t}^{2} / \widetilde{\sigma}_{t}^{4}\right\} \xrightarrow{P} 0 .
$$

Then (4.13) follows with (2.6), (2.9). 口

Lemma 4.9
(4.14) $\frac{1}{\sqrt{n}} \sum_{t} x_{t}{ }^{\varepsilon} t^{/ \hat{\sigma}_{t}^{2}}-\frac{1}{\sqrt{n}} \sum x_{t} \varepsilon^{\varepsilon} / \tilde{\sigma}_{t}^{2}-2 W \cdot \sqrt{n}\left(b_{n}-\beta\right) \xrightarrow{P} 0$.

Proof
On $A_{n}$ we get with (4.9):
$\left|-\frac{1}{\sqrt{n}} \sum x_{t} \varepsilon_{t} / \hat{\sigma}_{t}^{2}-\frac{1}{\sqrt{n}} \sum x_{t} \varepsilon_{t} / \tilde{\sigma}_{t}^{2}-2\left(\frac{1}{n} \sum_{t} \sum_{j} w_{j} x_{t} x_{t+j}^{\prime}{ }_{t+j}{ }^{\varepsilon} t / \tilde{\sigma}_{t}^{4}\right) \cdot \sqrt{n}\left(b_{n}-\beta\right)\right| \leq$
$\leq c \sqrt{n}\left(b_{n}-\beta\right) g_{n} \cdot \frac{1}{n} \sum_{t} x_{t}\left|\varepsilon_{t}\right| / \tilde{\sigma}_{t}^{3}$.
So with (4.1), lemma 4.3 and $\sup E\left|\varepsilon_{t}\right| / \tilde{\sigma}_{t}^{3}<\infty$ it follows that the left hand side of this inequality tends to 0 in probability. With (4.13) and $b_{n}-\beta=O(1 / \sqrt{n})$ this leads to (4.14)

Lemma 4.10
(4.15) $E\left\{\frac{1}{\sqrt{n}} \sum x_{t}{ }_{t} / \tilde{\sigma}_{t}^{2}\right\}=0$
(4.16) $\operatorname{Cov}\left\{\frac{1}{\sqrt{n}} \sum x_{t} \varepsilon_{t} / \tilde{\sigma}_{t}^{2}\right\} \rightarrow v_{2}$.

Proof
Both relations follow from (2.4). In particular the left hand side of (4.16) equals

$$
E\left\{\frac{1}{n} \sum_{t} \sum_{s} x_{t} x_{s}^{\prime} \varepsilon_{t} \varepsilon_{s} / \tilde{\sigma}_{t}^{2} \tilde{\sigma}_{s}^{2}\right\}=\frac{1}{n} \sum_{t} x_{t} x_{t}^{\prime} E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right\}
$$

and this tends to $V_{2}$ according to (2.6). व

## Corollory

From (4.15), (4.16) and (4.14) we get:
(4.17) $\frac{1}{\sqrt{n}} \sum_{t} x_{t}{ }^{\varepsilon} t / \tilde{\sigma}_{t}^{2}$ and $\frac{1}{\sqrt{n}} \sum x_{t} \varepsilon_{t} / \hat{\sigma}_{t}^{2}$ are P-bounded.

Lemma 4.10
Let
(4.18) $\hat{b}_{n}=\left(\sum_{t} x_{t} x_{t}^{\prime} / \hat{\sigma}_{t}^{2}\right)^{-1} \sum_{t} x_{t} y_{t} / \hat{\sigma}_{t}^{2}$,
then
(4.19) $\sqrt{n}\left(\hat{b}_{n}-\beta\right)=v_{0}^{-1} \frac{1}{\sqrt{n}} \sum_{t} x_{t} \varepsilon_{t} / \tilde{\sigma}_{t}^{2}+2 v_{0}^{-1} w \cdot \sqrt{n}\left(b_{n}-\beta\right)+o(1)$

## Proof

We have with (4.12), (4.17), (4.14)

$$
\begin{aligned}
& \sqrt{n}\left(\hat{b}_{n}-\beta\right)=\left(\frac{1}{n} \sum_{t} x_{t} x_{t}^{\prime} / \hat{\sigma}_{t}^{2}\right)^{-1} \cdot \frac{1}{\sqrt{n}} \sum_{t} x_{t} \varepsilon_{t} / \hat{\sigma}_{t}^{2}=\hat{v}_{0}^{-1} \frac{1}{\sqrt{n}} \sum x_{t} \varepsilon_{t} / \hat{\sigma}_{t}^{2}= \\
& =v_{0}^{-1} \frac{1}{\sqrt{n}} \sum_{t} x_{t}{ }_{t} / \hat{\sigma}_{t}^{2}+o(1)=v_{0}^{-1} \frac{1}{\sqrt{n}} \sum_{t} x_{t} \varepsilon_{t} / \tilde{\sigma}_{t}^{2}+2 v_{0}^{-1} W \cdot \sqrt{n}\left(b_{n}-\beta\right)+o(1)
\end{aligned}
$$

and this gives (4.16). व

## Lemma 4.11

(4.20) $\sqrt{n}\left(\underline{b}_{q}-\beta\right)=A_{q} \frac{1}{\sqrt{n}} \Sigma x_{t} \varepsilon_{t} / \tilde{\sigma}_{t}^{2}+B_{q} \frac{1}{\sqrt{n}} \Sigma x_{t} \varepsilon_{t}+o(1)$.

## Proof

From (1.7), (4.15), (4.16) it follows that

$$
\sqrt{n}\left(b_{q+1}-\beta\right)=v_{0}^{-1} \frac{1}{\sqrt{n}} \sum_{t} x_{t} \varepsilon_{t} / \tilde{\sigma}_{t}^{2}+2 v_{0}^{-1} w \cdot \sqrt{n}\left(b_{q}-\beta\right)+o(1)
$$

provided that $b_{q}-\beta=O(1 / \sqrt{n})$. With (4.17) we see that then also $b_{q+1}-\beta=$ $O(1 / \sqrt{n})$. Iteration and substitution of (2.9) leads to

$$
\sqrt{n}\left(b_{q}-\beta\right)=A_{q} \frac{1}{\sqrt{n}} \sum_{t} x_{t} \varepsilon_{t} / \tilde{\sigma}_{t}^{2}+B_{q} \sqrt{n}\left(b_{0}-\beta\right)+o(1)
$$

provided that $b_{0}-\beta=0(1 / \sqrt{n})$. However, this has been shown in the proof of theorem 2.1. Then (4.20) follows with (1.3). a

## Lemma 4.12

Let $U_{1}, U_{2}, \ldots$ be $p$-dependent with $E\left\{U_{t}\right\}=0$ and $\sup E\left|U_{t}\right|^{2+\varepsilon}<\infty$ for some $\varepsilon>0$. Then

$$
\frac{1}{\sqrt{n}} \sum_{1}^{n} a_{t} U_{t} \xrightarrow{L} N\left(0, \sigma^{2}\right)
$$

for any bounded sequence $a_{1}, a_{2}, \ldots$ for which

$$
\sigma^{2}:=\lim _{n \rightarrow \infty} \frac{1}{n} v\left\{\sum_{1}^{n} a_{t} U_{t}\right\}
$$

exists.

## Proof

See Anderson (1971), theorem 7.7.9, p. 431. 口

## Remark

By considering linear combinations the theorem is easily extended to random vectors and a bounded sequence of matrices.

Proof of theorem 2.2
Since $E\left|\varepsilon_{t} / \tilde{\sigma}_{t}^{2}\right|^{2+\varepsilon}$ and $E\left|\varepsilon_{t}\right|^{2+\varepsilon}$ are bounded for some $\varepsilon>0$, we can apply lemma 4.12, remark to the right hand side of (4.20) by taking $p>\operatorname{dist}\left(I_{m}\right)$ It remains to calculate the covariance matrix of the limit distribution. Using (2.4) we get

$$
\begin{aligned}
& \operatorname{Cov}\left\{\frac{1}{\sqrt{n}} \sum_{t} x_{t} \varepsilon_{t} / \tilde{\sigma}_{t}^{2}\right\}=\frac{1}{n} \sum_{t} x_{t} x_{t}^{\prime} E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{4}\right\} \rightarrow V_{2} \\
& \left.\operatorname{Cov}\left\{\frac{1}{\sqrt{n}} \sum_{t} x_{t} \varepsilon_{t}\right\}=\frac{1}{n} \sum_{t} x_{t} x_{t}^{\prime} \sigma_{t}^{2}\right\} \rightarrow C_{1}
\end{aligned}
$$

$$
\operatorname{Cov}\left\{\frac{1}{\sqrt{n}} \sum_{t} x_{t} \varepsilon_{t} / \tilde{\sigma}_{t}^{2}, \frac{1}{\sqrt{n}} \sum_{t} x_{t} \varepsilon_{t}\right\}=\frac{1}{n} \sum_{t} x_{t} x_{t}^{\prime} E\left\{\varepsilon_{t}^{2} / \tilde{\sigma}_{t}^{2}\right\} \rightarrow v_{1}
$$

and so this covariance matrix equals

$$
A_{q} V_{2} A_{q}^{\prime}+A_{q} V_{1} B_{q}+B_{q} V_{1} A_{q}^{\prime}+B_{q} C_{1} B_{q}^{\prime} .
$$

However, this is $\Phi_{q}$ in (2.8) and so (1.8) follows. This completes the proof. ㅁ

## Proof of theorem 2.3

Under (1.10) we can take $\varepsilon>0$ less than $\operatorname{det}\left(\Phi_{q+1}\right)-\operatorname{det}\left(\Phi_{q}\right)$ and $\operatorname{det}\left(\Phi_{j}\right)-$ $\operatorname{det}\left(\Phi_{j+1}\right)$ for all $j=0, \ldots, q-1$. Then $P\{\hat{q}=q\}=P\left\{\operatorname{det}\left(\hat{\Phi}_{j}\right)>{ }^{q} \ldots>\operatorname{det}\left(\hat{\Phi}_{q}\right) \leq\right.$ $\left.\operatorname{det}\left(\hat{\Phi}_{\mathrm{q}+1}^{\mathrm{j}}\right)\right\} \geq \mathrm{P}\left\{\left|\operatorname{det}\left(\hat{\Phi}_{\mathrm{j}}\right)-\operatorname{det}\left(\Phi_{\mathrm{j}}\right)\right|<\varepsilon / 2, \mathrm{j}=0, \ldots, \mathrm{Q}\right\} \rightarrow 1$ according to theorem 2.2, corollory. This implies $\mathrm{P}\left\{\hat{\beta}=\mathrm{b}_{\mathrm{q}}\right\} \rightarrow 1$. With (1.8) this completes the proof of (1.9). व

## Proof of theorem 3.1

Let $(\alpha, \beta)=(0,1),(1,1)$ or (1.2). If we can show that

$$
\frac{1}{n} \Sigma x_{t} x_{t}^{\prime} E\left\{\varepsilon_{t}^{2 \alpha} / \tilde{\sigma}_{t}^{2 \beta}\right\}-\frac{1}{n} \Sigma x_{t} x_{t}^{\prime} \sigma_{t}^{2(\alpha-\beta)} E_{1}\left\{\varepsilon_{t}^{2 \alpha} / \tilde{\sigma}_{t}^{2 \beta}\right\} \rightarrow 0 .
$$

then (3.3) follows from (2.6) and (3.4). Let $\eta_{0}, \eta_{j}$ for $j \in I_{m}$ have the same distribution as $\varepsilon_{t} / \sigma_{t}, \varepsilon_{t+j} / \sigma_{t+j}$ for $j \in I_{m}$. Then it suffices to prove that

$$
\frac{1}{n} \Sigma^{\prime}\left|E\left\{\eta_{0}^{2 \alpha} /\left(\Sigma w_{t j} \eta_{j}^{2}\right)^{\beta}\right\}-E\left\{n_{0}^{2 \alpha} /\left(\Sigma w_{j} n_{j}^{2}\right)^{\beta}\right\}\right| \rightarrow 0,
$$

where $w_{t j}=w_{j} \sigma_{t+j}^{2} / \sigma_{t}^{2}$. Here $\Sigma^{\prime}$ denotes summation outside the exception set $\Gamma_{\mathrm{n}}$ of (3.1). Note that (3.1) implies sup $\left|w_{t j}-w_{t}\right| \rightarrow 0$. The partial derivative of $f(\eta, v)=\eta_{0}^{2 \alpha} /\left(\Sigma v_{j} \eta_{j}^{2}\right)^{\beta}$ is given by $\partial f / \partial v_{j}=\eta_{0}^{2 \alpha} \eta_{j}^{2} /\left(\Sigma v_{j} \eta_{j}^{2}\right)^{\beta+1}$. So the result follows easily with the mean value theorem provided that

$$
E\left\{\eta_{0}^{2 \alpha} n_{j}^{2} /\left(\Sigma v_{j} n_{j}^{2}\right)^{\beta+1}\right\}=E_{1}\left\{\varepsilon_{t}^{2 \alpha} \varepsilon_{t+j}^{2} / \tilde{\sigma}_{t}^{2(\beta+1)}\right\}<\infty
$$

However, this is implied by (2.2), lemma 4.1,b and (3.2). व

## References

Amemyia, T. (1973) - Regression analysis when the variance of the dependent variable is proportional to the square of its expectation JASA 68, 928-934.

Anderson, T.W. (1971) - The Statistical Analysis of Time Series - Wiley, New York.

Carroll, R.J. (1982) - Adapting for heteroskedasticity in linear models Ann. Stat. 10, 1224-1233.

Carroll, R.J. and Ruppert, D. (1982a) - Robust estimation in heteroskedastic linear models, Ann.Stat. 10, 429-441.

Carroll, R.J. and Ruppert, D. (1982b) - A comparison between maximum likelihood and generalized least squares in a heteroskedastic linear model - JASA 77, 878-882.

Fuller, W.A. and Rao, J.N.K. (1978) - Estimation of a linear regression model with unknown diagonal covariance matrix - Ann.Stat. 6, 11491158.

Jobson, J.D. and Fuller, W.A. (1980) - Least squares estimation when the covariance matrix and parameter vector are functionally related JASA 78, 176-181.

Nelder, F.D. and Wedderburn, R.W.M. (1972) - Generalized linear models J.Royal Stat. Soc. B. 135, 370-384.

Rao, C.R. (1973) - Linear Statistical Inference and Its Applications, 2nd edit. - Wiley, New York.

Robinson, P.M. (1987) - Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form - Econometrica 55, 875-891.

Stone, C.J. (1977) - Consistent nonparametric regression - Ann.Stat. 5, 595-645.

White, H. (1982) - Instrumental variable regression with independent observations - Econometrica 50, 483-499.

## IN 1987 REEDS VERSCHENEN

```
242 Gerard van den Berg
    Nonstationarity in job search theory
243 Annie Cuyt, Brigitte Verdonk
    Block-tridiagonal linear systems and branched continued fractions
244 J.C. de Vos, W. Vervaat
    Local Times of Bernoulli Walk
245 Arie Kapteyn, Peter Kooreman, Rob Willemse
    Some methodological issues in the implementation
    of subjective poverty definitions
246 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel
    Sampling for Quality Inspection and Correction: AOQL Performance
    Criteria
247 D.B.J. Schouten
    Algemene theorie van de internationale conjuncturele en strukturele
    afhankelijkheden
248 F.C. Bussemaker, W.H. Haemers, J.J. Seidel, E. Spence
    On (v,k,\lambda) graphs and designs with trivial automorphism group
249 Peter M. Kort
    The Influence of a Stochastic Environment on the Firm's Optimal Dyna-
    mic Investment Policy
250 R.H.J.M. Gradus
    Preliminary version
    The reaction of the firm on governmental policy: a game-theoretical
    approach
251 J.G. de Gooijer, R.M.J. Heuts
    Higher order moments of bilinear time series processes with symmetri-
    cally distributed errors
252 P.H. Stevers, P.A.M. Versteijne
    Evaluatie van marketing-activiteiten
253 H.P.A. Mulders, A.J. van Reeken
    DATAAL - een hulpmiddel voor onderhoud van gegevensverzamelingen
254 P. Kooreman, A. Kapteyn
    On the identifiability of household production functions with joint
    products: A comment
255 B. van Riel
    Was er een profit-squeeze in de Nederlandse industrie?
256 R.P. Gilles
    Economies with coalitional structures and core-like equilibrium con-
    cepts
```

257 P.H.M. Ruys, G. van der Laan
Computation of an industrial equilibrium
258 W.H. Haemers, A.E. BrouwerAssociation schemes
259 G.J.M. van den Boom
Some modifications and applications of Rubinstein's perfect equili- brium model of bargaining
260 A.W.A. Boot, A.V. Thakor, G.F. UdellCompetition, Risk Neutrality and Loan Commitments261 A.W.A. Boot, A.V. Thakor, G.F. UdellCollateral and Borrower Risk
262 A. Kapteyn, I. WoittiezPreference Interdependence and Habit Formation in Family Labor Supply
263 B. BettonvilA formal description of discrete event dynamic systems includingperturbation analysis
264 Sylvester C.W. Eijffinger
A monthly model for the monetary policy in the Netherlands
265 F. van der Ploeg, A.J. de Zeeuw
Conflict over arms accumulation in market and command economies
266 F. van der Ploeg, A.J. de Zeeuw
Perfect equilibrium in a model of competitive arms accumulation
267 Aart de ZeeuwInflation and reputation: comment
268 A.J. de Zeeuw, F. van der Ploeg
Difference games and policy evaluation: a conceptual framework
269 Frederick van der Ploeg
Rationing in open economy and dynamic macroeconomics: a survey
270 G. van der Laan and A.J.J. Talman
Computing economic equilibria by variable dimension algorithms: state of the art
271 C.A.J.M. Dirven and A.J.J. Talman
A simplicial algorithm for finding equilibria in economies with linear production technologies
272 Th.E. Nijman and F.C. Palm
Consistent estimation of regression models with incompletely observed exogenous variables
273 Th.E. Nijman and F.C. Palm
Predictive accuracy gain from disaggregate sampling in arima - models

274 Raymond H.J.M. Gradus
The net present value of governmental policy: a possible way to find the Stackelberg solutions

275 Jack P.C. Kleijnen
A DSS for production planning: a case study including simulation and optimization

276 A.M.H. Gerards
A short proof of Tutte's characterization of totally unimodular matrices

277 Th. van de Klundert and F. van der Ploeg
Wage rigidity and capital mobility in an optimizing model of a small open economy

278 Peter M. Kort
The net present value in dynamic models of the firm
279 Th. van de Klundert
A Macroeconomic Two-Country Model with Price-Discriminating Monopolists

280 Arnoud Boot and Anjan V. Thakor
Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing

281 Arnoud Boot and Anjan V. Thakor
Appendix: "Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing

282 Arnoud Boot, Anjan V. Thakor and Gregory F. Udell
Credible commitments, contract enforcement problems and banks: intermediation as credibility assurance

283 Eduard Ponds
Wage bargaining and business cycles a Goodwin-Nash model
284 Prof. Dr. hab. Stefan Mynarski
The mechanism of restoring equilibrium and stability in polish market
285 P. Meulendijks
An exercise in welfare economics (II)
286 S. Jørgensen, P.M. Kort, G.J.C.Th. van Schijndel
Optimal investment, financing and dividends: a Stackelberg differential game

287 E. Nijssen, W. Reijnders
Privatisering en commercialisering; een oriëntatie ten aanzien van verzelfstandiging

288 C.B. Mulder
Inefficiency of automatically linking unemployment benefits to private sector wage rates

289 M.H.C. Paardekooper
A Quadratically convergent parallel Jacobi process for almost diagonal matrices with distinct eigenvalues

290 Pieter H.M. Ruys
Industries with private and public enterprises
291 J.J.A. Moors \& J.C. van Houwelingen
Estimation of linear models with inequality restrictions
292 Arthur van Soest, Peter Kooreman
Vakantiebestemming en -bestedingen
293 Rob Alessie, Raymond Gradus, Bertrand Melenberg
The problem of not observing small expenditures in a consumer expenditure survey

294 F. Boekema, L. Oerlemans, A.J. Hendriks
Kansrijkheid en economische potentie: Top-down en bottom-up analyses
295 Rob Alessie, Bertrand Melenberg, Guglielmo Weber Consumption, Leisure and Earnings-Related Liquidity Constraints: A Note

296 Arthur van Soest, Peter Kooreman Estimation of the indirect translog demand system with binding nonnegativity constraints

## IN 1988 REEDS VERSCHENEN

297 Bert Bettonvil
Factor screening by sequential bifurcation
298 Robert P. Gilles
On perfect competition in an economy with a coalitional structure
299 Willem Selen, Ruud M. Heuts
Capacitated Lot-Size Production Planning in Process Industry
300 J. Kriens, J.Th. van Lieshout
Notes on the Markowitz portfolio selection method
301 Bert Bettonvil, Jack P.C. Kleijnen
Measurement scales and resolution IV designs: a note
302 Theo Nijman, Marno Verbeek
Estimation of time dependent parameters in lineair models using cross sections, panels or both

303 Raymond H.J.M. Gradus
A differential game between government and firms: a non-cooperative approach

304 Leo W.G. Strijbosch, Ronald J.M.M. Does
Comparison of bias-reducing methods for estimating the parameter in dilution series

305 Drs. W.J. Reijnders, Drs. W.F. Verstappen
Strategische bespiegelingen betreffende het Nederlandse kwaliteitsconcept

306 J.P.C. Kleijnen, J. Kriens, H. Timmermans and H. Van den Wildenberg Regression sampling in statistical auditing

307 Isolde Woittiez, Arie Kapteyn
A Model of Job Choice, Labour Supply and Wages
308 Jack P.C. Kleijnen
Simulation and optimization in production planning: A case study
309 Robert P. Gilles and Pieter H.M. Ruys
Relational constraints in coalition formation
310 Drs. H. Leo Theuns
Determinanten van de vraag naar vakantiereizen: een verkenning van materiële en immateriële factoren

311 Peter M. Kort
Dynamic Firm Behaviour within an Uncertain Environment
312 J.P.C. Blanc
A numerical approach to cyclic-service queueing models

313 Drs. N.J. de Beer, Drs. A.M. van Nunen, Drs. M.O. Nijkamp Does Morkmon Matter?

314 Th . van de Klundert Wage differentials and employment in a two-sector model with a dual labour market

315 Aart de Zeeuw, Fons Groot, Cees Withagen
On Credible Optimal Tax Rate Policies
316 Christian B. Mulder
Wage moderating effects of corporatism Decentralized versus centralized wage setting in a union, firm, government context

317 Jörg Glombowski, Michael Krüger
A short-period Goodwin growth cycle
318 Theo Nijman, Marno Verbeek, Arthur van Soest The optimal design of rotating panels in a simple analysis of variance model

319 Drs. S.V. Hannema, Drs. P.A.M. Versteijne De toepassing en toekomst van public private partnership's bij de grote en middelgrote Nederlandse gemeenten

320 Th. van de Klundert
Wage Rigidity, Capital Accumulation and Unemployment in a Small Open Economy

321 M.H.C. Paardekooper
An upper and a lower bound for the distance of a manifold to a nearby point

322 Th. ten Raa, F. van der Ploeg A statistical approach to the problem of negatives in input-output analysis

323 P. Kooreman
Household Labor Force Participation as a Cooperative Game; an Empirical Model

324 A.B.T.M. van Schaik Persistent Unemployment and Long Run Growth

325 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans De lokale produktiestructuur doorgelicht. Bedrijfstakverkenningen ten behoeve van regionaal-economisch onderzoek

326 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel Sampling for quality inspection and correction: AOQL performance criteria

327 Theo E. Nijman, Mark F.J. Steel
Exclusion restrictions in instrumental variables equations

Bibliotheek K. U. Brabant


17000010659226

