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SIMULATION AND OPTIMIZATION IN

PRODUCTION PLANNING: A CASE STUDY

Jack P.C. Kleijnen
Department of Information Systems and Auditing
School oF Business and Economics
Catholic University Brabant (KUB)
5000 LE Tilburg
Netherlands

ABSTRACT

This paper reports on a practical decision support system (DSS) for pro-

duction planning, developed for a Dutch company. To evaluate this DSS, a

simulation model is built. Moreover, the DSS has 15 control variables

which are to be optimized. The effects of these 15 variables are investi-

gated, using a sequence of 2k-p experimental designs. Originally 34 res-

ponse variables were distinguished. These 34 variables, however, can be

reduced to one criterion variable, namely productive machine hours, which

is to be maximized, and one commercial variable measuring lead times,

which must satisfy a certain side-condition. For this optimization problem

the Steepest Ascent technique is applied to the experimental design out-

comes. The resulting Response Surface Methodology is developed theoreti-

cally. In practice a number of complications arise.

Keywords: heuristics, regression analysis, multiple criteria

1. INTRODUCTION: PROLOGUE AND OVERVIEW

This paper presents a case study concerning a decision support

system (DSS) for production planning in metal tube manufacturing. For

proprietary reasons it should suffice to characterize the company as fol-

lows. The factory makes different types of product, on order. The major

initial problem was the lead times: a drastic reduction seemed possible

(maybe 50X; in ~ ~ we shall indeed realize a 62.8x reduction). First the



2

company investigated Material Requirements Planning ( MRP-I) and Manufactu-
ring Resource Planning (MRP-II) but found thís type of approach not sui-
table for its job-shop production process. Next a team of operations re-
searchers started to develop a DSS especially for this company. This DSS
should yield daily production orders ( some details are given in Section
2). It was too risky to implement the DSS without further testing and fine
tuning. Therefore this OR team developed a simulation program (in SIMULA).
Fine tuning concerned 15 parameters or control variables of the DSS. Pre-
liminary sensitivity analysis with the simulated DSS had just started. A
major technical problem was that one simulation run took 6 hours on the
company's mainframe, provided the simulation program is executed at night
when no other jobs are run. Hence, sensitivity analysis as initially de-
signed, would require about 30 runs or 180 hours of computing time. That
was a prohibitíve amount of computer time. Therefore I was invited to
apply special statistical techniques to this problem; also see Kleijnen
(1974~ 1975. 1987).

This case study illustrates practical problems such as lack of
data, time pressures, and compromises to be made when modeling complex
systems in an organízational context. We further show how a set of 34
responses can be reduced to only two responses (see g 4). The study also
demonstrates the use of techniques, namely experimental design, regression
analysis, and steepest ascent. These techniques are standard for the ex-
pert in the various fields; nevertheless, in practice operations re-
searchers are often unfamiliar with techniques such as 2k-p designs (see
Section 3). Moreover, we add a novel idea to the steepest ascent technique
in situations with multiple responses (see ~ 6).

This paper is organized as follows.
~ 2 "A production planning system" describes the job shop and the DSS,
emphasizing commercial and production goals.
~ 3 "The oríginal simulation and experimental design" presents an (in-

ferior) one-factor-at-a-time design, a large set of simulation responses,

nnd the originnl regrr?ssion model.
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~ 4"Reconsidering the problem" reduces the original 34 responses to only
two responses; the production manager is interested in maximizing response
1 without violating an upper limit for response 2, a commercial variable.

i4-1o '~ 5 "Basic experimental design and results" uses a 2 design for a
local first-order model in the first stage of experimentation, which re-
sults in better control settings and in estimated local first-order ef-
fects (which will guide the second stage of experimentation); no control
variables are elíminated at this stage!
~ 6"Multi-variate optimization: theory" applies the steepest ascent tech-
nique to the estimated local first-order model for response 1(see g 4),

while considering the linear constraint on response 2, to determine the
maximum step size along the steepest ascent path (determining the step

size in this way, seems novel in Response Surface Methodology or RSM).
g ~ "Practical multi-variate optimization" does not determine the maximum

step size (since the linear constraint of g 6 could not be quantified soon
et~ough); instead it uses heuristics to determine the step size: a second
21~1-10 experiment is executed which results in improved control settings;
further exploration was stopped because the project was aborted.

~ 8"Epilogue: simulation methodology" criticizes the "shadow" or "paral-
lel" running approach which gives unfair comparisons between the simula-
tion model's output and the human planner's output; this section briefly
discusses validation, optimization, and sensitivity and robustness ana-
lyses.
~ 9 "Conclusions" summarizes the paper.

2. A PRODUCTION PLANNING SYSTEM

'1'he compuny has 6 machines on which different classes or types of'

products can be produced. (Together these classes comprise at least ~00

different products.) When a machine switches to a different class of pro-

ducts, major costs are incurred, i.e., major adjustments to a machine must

be made and during a sizable period of time no production is possible.

(Switchover costs within a class are minor.) To minimize these production

losses, it is desirable to have long production runs. Such a policy, how-

ever, would yield long lead times. Therefore it is necessary to balance
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commercial and production goals. The OR team developed a heuristic Produc-

tion Planning System (PPS), including 15 control variables or parameters

x. (w.ith j- 1,...,15). For example, xl is a"penalty for producing class-
J

2 products on the next best machine"; obviously this penalty can be mani-

pulated to improve the DSS performance. For this paper, the DSS is a black

box. We can indeed treat the DSS as a black box, since our methodology

(2k-p designs and Steepest Ascent) does not depend on specific knowledge

about the DSS and the corresponding production system. (Of course, actual

values resulting from the standardized design do depend on the specific

system; see Table 3 later on.) Another reason for treating the DSS as a

black box is the proprietary character of the system. Moreover, this paper

would become too long, were the details of the DSS heuristics explained.

These heuristic were the result of much effort by a number of operations

researchers.l)

So from a technological viewpoint there are many different pro-
ducts (at least ~00) which can be grouped into different "product" classes
such that switchover costs are minor within a product class and major
between classes. From a commercial viewpoint there are five different
"order" classes; for example, class-1 orders are emergency or rush orders,
i.e., a customer must be supplied "immediately". An individual order may
comprise different products.

3. THE ORIGINAL SIMULATION AND EXPERIMENTAL DESIGN

The OR team selected the following simulation approach (which we

shall criticize in ~ 8). The DSS was programmed and fed with the histori-

cal data of July 1986 through October 1986. For those 4 months detailed

data are available on orders (several thousands), changes in orders (30X

of the orders is revised), machine breakdowns, etc. By definition, one

simulaLion run implies constant values for the 15 DSS parameters, during

those 4 months. The original experimental design for sensitivity analysis

uses the one-factor-at-a-time method:

Run 1: Fix the 15 control variables at their base values (say) x~ with j-
1,...,15. (These base values were suggested by the developers of the DSS
using "common sense". Common sense implies subjectivity so that there are
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good reasons indeed to perform sensitivity analysis. The values xb will be
displayed in Table 3 for 14 of the original 15 control variables.)
Run 2: Increase variable xl by 20x and keep all other 14 variables at
their base values.
Run 3: Decrease variable xl by 20X and keep xj, - x~, with j' - 2,...,15.
Run 4: Increase x2 by 20x and keep all other variables at their base
value5 (xl - xi, x3 - x3, .. , x15 - xi5).

And so on. Altogether this approach would take 1 t 2 X 15 - 31 runs. It is
well-known in the experimental design literature that the one-at-a-time

method is inferior, compared to factorial designs. (Nevertheless opera-
tions researchers often apply this inferior design, as this case study

15-11illustrates.) So only 2 - 16 runs suffice to estimate the individual
effects of 15 variables; see Kleijnen (1987) and table 1. Moreover, opti-
mization takes several rounds of experimentation and analysis, as we shall
see in later sections, so that efficient designs become even more desi-
rable.

The original idea was to evaluate each run using the following
aspects (verbatim):
"a. Average and spread of realized lead times, for orders of types 1, 2

and 3.
b. Average and spread in lead time inaccuracy (- absolute value of rea-

lized lead time minus promised lead time) for orders of types 1, 2, 3,
4 and 5.

c. Utilization degree - production hours~(production hours t idle time .
switchover time) x 100x.

d. Switchover degree - switchover time~(production hours t idle time ~
switchover time) x 100x"

For each aspect (say) y, the OR team wanted to fit a regression
model. They assumed that the following first-order approximation would be
adequate in the first stage of the investigation (also see the last para-
graph of ~ 6):

15
Yi - AO ' f Aj xij ~ eij (i - 1,....31) (3.1)

j-1
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where the regression parameter p~ denotes the effect of the control va-

riable x~; g0 is the overall response; the OR team assumed that the clas-
:; i cn 1 rissump t i on5 ho I c9 , t. e., thc~ errors e~ ~ are Normrt 1 1 y and 1 ndepencir.n l.-
ly Distributed with mean zero and constant variance oZ:

ei~ ~ NID(0,62) . (3.2)

Ordinary Least Squares (OLS) yield the estimators p. If ~~ is significant,
according to the classical t test, then the OR team would follow up with a
more extensive experimental design exploring only the significant varia-
bles x~. Actually we shall not test ~B~ for significance; hence we shall
not need the assumptions of eq. (3.2) (see the text below eq. 5.3).

4. RECONSIDERING THE PROBLEM

The preceding section lists many aspects thought to be relevant
for the evaluation of the DSS. We count 34 aspects, namely the average
realized lead time of class-1 orders, the spread of the preceding va-
riable, the average for class-2 orders, .. , the spread of realized lead
times for class-5 orders, the average promised lead time of class-1 or-
ders, .. , the utilization degree of machine 1, .. , the utilization de-
gree of machine 6, the switchover degree of machine 1, .. , the switchover
degree of machíne 6.

Obviously, managers cannot select a system accounting for 34 as-
pects. (Miller, 1956, wrote a famous article with the revealing title "The
magical number seven plus or minus two: some limits on our capacity for
processing information".) Therefore we proposed to the client to recon-
sider the original problem formulation and to try and reduce the number of
criteria drastically. The preceding section (sub c and d) mentions the
"utilization degree" and the "switchover degree" per machine. We can
derive, as follows, that each machine has its own average contribution
(during "utilization") to gross profits. Each machine is technically more
suited for certain products: not all products can be made on all machines,
and if a product can be made on more than one machine then those machines
are not equally good. Moreover, profits margins differ over products.



Accounting data are indeed collected on the average gross-profit contribu-
tion per machine. In this way utilization and switchover degrees for each
c~f the 6 machines (together 2 x 6- 12 variables) can be combined into a
siiigle variable per simulation run, namely profit contribution (say) y.

The preceding section lists - besides utilization and switchover
degrees -"averages" and "spreads" of "realized" and "promised" lead times
(the absolute difference between realized and promised times is the lead
time inaccuracy), for each of the five order classes. Theoretically these
many aspects of lead time can be translated into financial terms, since a
reduction in (for example) realized lead times leads to more orders (good-
will effect). In practice, it is hard to quantify the financial consequen-
ces of (say) reducing the actual lead time from 2~ days to 26 days. In our
view it is management's job to specify a maximum for acceptable lead
times. (Analogy: inventory control theory assumes that the financial con-
sequences of out-of-stocks can be specified, whereas in practice manage-
ment specifies an acceptable service percentage.)

We are still confronted with lead times for five order classes.
Actually lead times are not critical for class-4 and -5 orders (by defini-
tion). As the outcome of several discussions with the client, we decided
to focus on orders in class 2, one reason being that class-2 orders form
the "major" part of the order portfolio. ( In inventory control there is
the 20-80 rule: 20x of the articles account for the "major" part, namely
80x of the sales volume.)

In order to reduce the number of aspects further, we observe that
lead time inaccuracy is negligible, according to historical data. There-
fore we concentrate on promised lead times. (We ignore realized lead times
when performing sensitivity analysis and optimization of the DSS; yet the
simulation does report realized lead times and lead times for orders in
classes other than class 2.)

A final sLcp concerns the distinction between the average and the

spread of ~, lead times promised for class-2 orders. These two measures
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can be easily combined into quantiles, i.e., we use the 90X quantile (say)
z:

P(,~ s z) - 0.90 . (4.1)

To estimate z we sort all individual lead times ~ which are promised to

class-2 customers during one simulation run; z is the value exceeded by

only lOx of these individual lead times. This procedure yields an asympto-

tically unbiased estimator, whether the observations ~i are correlated or

not (they are correlated, since they come from a single run). The autocor-

relation would become a serious problem, if we were to estimate the va-

riance of the estimated quantile; see Kleijnen (198~, p. 82) for a de-

tailed discussion. Actually we do not need vár(z) (also see note 4 later

on).

Note that the selection of the 90x instead of the 95X or 99X quan-
tiles, is quite arbitrary. (Quantiles rather than averages are also used
in the optimization of priority class queues in a computer center case
study; see Kleijnen, 198~, pp. 214-216.)

Summary: We succeeded in reducing the original 34 evaluation as-
pects of the DSS to only 2 variables. One variable y is the total profit
contribution by the 6 machines, and should be maximized. The other va-
riable z is the 90X quantile of promised (approximately equal to realized)
lead times of class-2 orders (the most important type of orders). So the
production manager should try to maximize y without violating a maximum
value for the quantile of lead times, to be quantified by the marketing
manager. All other aspects are also measured in the simulation, but they
do not explicitly control the optimization of the DSS.
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Table 1: 214-10 experimental design D-(d..).i~
(t means tl and - means -1; 5- 12 means di5 - dil di2, etc.)

run

li
12
13
14
15
16

1 2 3 4 5- 6- 7- 8- 9- 10- 11- 12- 13- 14-
12 13 14 23 24 34 123 124 134 234

t t t t t t t t t t t ; t
t a t - - - r t

} - i t - t t - - } - - 4

~ t t - - - - t t t
t

t

} - } - } - - } - 4 - t -

}

} f }

t - - } } - - } - - f

t t f t t f t
}

- 4 t - - - } ; - - - f t

t - } - - } - - } - - ; - }

- - } - } - } - t - } - t t

4 t - - - - t - - t t

i 4 } } } ; }

t
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5. BA5IC EXPERIMENTAL DFSIGN AND RFSULTS

At the outset the OR team considered 15 control variables which
were to be investigated in a first experiment of 31 simulation runs (see g
3). Note that experimental design theory speaks of "factors" instead of
"control variables".2)

Upon closer examination we find that 2 of the 15 factors can be
combined into a single factor (to explain this, we would have to explain
the DSS heuristics; see ~ 2). To optimize the remaining 14 variables xj (j
- 1,..., 14), we apply Response Surface Methodology (RSM); also see
Kleijnen (198~, pp. 202-206). So we start with a local first-order appro-
ximation (also see eq. 3.1):

y-~0

14
f ï gj xj t e.

1
(5.1)

RSM assumes that in the first stages of experimentation with the simula-
tion model, a first-order model is good enough to guide the search for
better responses (also see ~ 6). ~ 3 gave a one-factor-at-a-time design
with 31 runs. Actually the 15 regression parameters S in eq. (5.1) can be
estimated without bias, usin a classical 214-10 desig gn, which takes only
16 runs (and a single run requires 6 hours of computer time, so that the
savings are substantial). (Moreover, if the errors were independently and
identically distributed with zero mean, then a 214-10 design would be

n noptimal; for example, var(~j) would be minimal. We do not use this parti-
cular error specification in our analysis. Also see Kleijnen, 198~, pp.
;3h-337.) The des.ign matrix D is displayed in Table ](readers familiar
with experimental design do not need Table 1: a 214-10 design is fully
specified, once we give the 10 generators 5- 12, 6 - 13,...,14 - 234

which are also listed in Table 1).

To obtain the matrix of independent variables X corresponding to

eq. (5.1), we (arbitrarily) associate the levels ~1 and -1 of D in Table 1

with the actual "low" and "high" values of the control variables in the

DSS, i.e., in the first experiment (comprising 16 runs; more experiments

will follow) tl in Table 1 corresponds to the base values (which were
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specified using "common sense"; see ~ 3) and -1 corresponds to 20x higher
values (taking 20X is rather arbitrary: the control variables have not
much intuitive meaning so that it is difficult to specify a"high" value).
Fincilly D is augmented with a column of 16 one's corresponding to ~0 and
we compute the OLS estimator

Í3 - (X'X)-1X~Y (5.2)

where the vector y equals (yl "'' yi' "" y16)and yi denotes the total

number of productive hours of the 6 machines in run i. In the preceding

section we introduced the "profit contribution". However, it turned out to

be impossible to obtain the accounting data and to incorporate them in the

simulation program, at short notice (lack of data is a well-known problem

in OR implementation). Obviously productive hours and profit contribution

are closely related: both responses eliminate idle time and switchover

time, but profit contribution also accounts for different contributions

per machine.

We also observe zi, the 90X quantile of promised lead times for
order category 2 in run i, and we estimate ~r the effects of the control
variables on z:

ó - (X'X)-1X'z . 5-3)

We do not eliminate factors with small p and ~ effects: in RSM we fit a
first-order model only locally, snd we use the estimated first-order ef-
fects only to determine the direction of our search for better control
settings of x~ (see figure 1 later on). As we move in stages through the
experimental area (0 5 x~ ~ m), the local first-order effects change. We
do not eliminate factors, because a factor non-significant in one stage,
may become significant in a later stage. (A significance test would use
the Student t statistic which requires the estimators vár(je~) and vár(y~)

and the error specification of eq. 3.2.)3)

Note that reducing the number of factors from 15 to 14 does not

decrease the required number of runs: the way incomplete factorial designs
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are constructed, implies that the number of runs must be a multiple of
four exceeding the number of first-order effects; see Kleijnen ( 1987, pp.
301-303). So the number of runs remains 16 (- 214-10 - 215-11) .~e de-
grees of freedom increase from 16-16 to 16-15, but we do not use these

2degrees of freedom to estimate var(e) - 6 in (3.2), as we explained at
the end of the preceding paragraph.

For confidentiality reasons we do not display the responses yi and
zi (i - 1,...,16). However, we do give some comments on the results and we
do display the changes in y and z caused by changes in the control varia-
bles xj, that is, we do display the local sensitivity estimates ~j and ~j
in Table 2.
(i) Run 1 of the design in Table 1 corresponds to the base run (the common
sense setting of the control variables). Other settings yield more produc-
tive hours (higher y) while resulting in lower lead times (lower z). For
example, run 2 increases y by 0.7z and decreases z by 13.4X; run 4 increa-
ses y by 1.6x and decreases z by 9.SX. So our design identifies control
settings which "dominate" the base setting.
(ii) Some factors have favorable (local) effects on both responses, y and
z; see Table 2. For example, factor 1 increases y(because S1 ) 0) and
decreases z(since ~1 C 0). Factor 4 shows ~4 ~ 0 and ~4 ~ 0 so that it is
attractive to decrease x4. In run 2(see (i) above) these factors have the
good settings: d21 --1 and d24 - tl (see Table 1).
(iii) To evaluate the effect of factor j we should consider, not the unit
effects ~~ and ~j, but the products ~jx~ and yjx~ (where x~ denotes the
base run value of factor j; see the third column in Table 3). The reason
is that the factors have different scales and ranges; also see Bettonvil
and Kleijnen (1988) and Kleijnen (1987, pp. 141-142).
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'I'able 2: Local sensitivity estimates p and y.
(xb denotes the base run value.)

Control variable x~

.]

Productive hours y
Flj Hj xb

Lead time z

Xj ?lj xb

0.52 62.40
-39.30 -117.90

0.65 78.00
-18.07 -0.90

-128.96 -64.48
0.00 0.00

-0.22 -132.00
13.88 20.82
-1.53 -38.25
1.39 139.00
0.03 9.00

527.23 158.17
-9.27 -46.35
-0.46 -55.20

6. MULTI-VARIATE OPTIMIZATION: THEORY

-0.054 -6.48
-1.504 -4.51
0.072 8.64

150.583 7.53
-16.519 -8.26
-0.102 -29.38
-0.006 -3.60
2.963 4.44
1.311 32.78
0.072 7.zo
0.037 11.10
8.485 2.55

-6.351 -31.76
-0.145 -17.40

Optimization of simulated systems is a well-known problem area,
i.e., such optimization may be desired in practice but there is no stan-
dard mathematical technique to optimize a non-linear, possibly stochastic,
system with multiple responses. Kleijnen (1987, pp. 202-206) surveys dif-
ferent techniques such as RSM and coordinate search, and complications due
to side conditions and multiple responses. Hoerl (1985, p. 190) states
"... multiple responses ... is basically an unsolved problem ...". In the
present case study we needed a fast solution due to time constraints, and
we developed the following approach which turns out to work (see the re-
sults at the end of ~ 7).4)
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g 4 shows that we wish to optimize y, the total profit contribu-
tion by the 6 machines, under the restriction that z, the 90X quantile of
promised lead times for order category 2, does not exceed a prespecified
limit (say) zmax. For practical reasons, we redefined y as the total num-
ber of productive hours; see ~ 5. Quantifying the commercial limit zmax is
more difficult. The idea is that a higher zmax results in a higher maximum
for y, and that at the end of our investigation management selects an
attractive combination of zmax and max (y). (Analogy: in practical inven-
tory control, management selects a combination of service percentage and
inventory investment.)

The mathematical problem becomes (also see Figure 1 later on):
maximize

Y -
14 .

t i aJ xJ1
(6.1)

under the restriction5)

. - 14 .
z-~0 t i ~r~ x~ 5 zmax .

1
(6.2)

Because eqs. (6.1) and (6.2) are fitted only locally, we know that these

two equations do not hold over the whole area of interest (0 5 x~ C m).

Therefore it makes no sense to apply Linear Programming to eqs. (6.1) and

(6.2) (also see note ~ later on). Instead, we proceed as follows.

The sign of p~ shows whether x~ should be increased or decreased

to maximize y. Actually the path of steepest ascent implies

~.-~1 (J - 1,...,14) ,~xl - A1
(6.3)

tl~at is, this path is perpendicular to the hyperplane (6.1). The step size

along this path must be selected arbitrarily and depends on the scaling of

the independent variables x~. To test the goodness of this path we propose

to ask the Following two questions:6)
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(i) Does y indeed increase?
(ii) Does z indeed remain below zmax?

Figure 1 illustrates the situation for only 2 control variables.
We emphasize that the steepest ascent path is based on local and estimated
values p~. In Figure 1 the local experiment in the first stage is the
subdomain represented by the rectangle ABCD. The iso-production line y-

p0 } plxl } pZx2 is shown only for that subdomain (because this line holds
only locally). The illustration implies that the condition z- XO ~~lxl }
y2a2 5 z max is not violated by any of the observed responses zi corres-
ponding to A, B, C, D. If the local estimates hold far outside the subdo-
main, then the greatest step along the steepest ascent path takes us to P,
the intersection of the steepest ascent path and the restriction.~) Actu-
al.ly Q, the starting point of the steepest ascent path, is selected arbi-
trarily, i.e., several parallel paths could have been drawn in Figure 1.
For example, if C shows the highest production then a better heuristic
seems to start from C which leads to P'. The difference between P and P',
however, is not really important, because P and P' are both computed from
observations far away from P and P' (namely A, B, C, D); so we must repeat
the (first) experiment in the neighborhood of P and P' (not shown in Fi-
gure 1). The second experiment should reveal whether indeed the simulation
response y increases (see question i above) and whether z s zmax (see
question ii). We can start this second local experiment with a first run
with the control variables fixed to the values corresponding to P(or,
maybe better, P'). The following situations are possible, where the first
experiment comprised n runs (n - 4 in Figure 1 but n- 214-10 in the ac-
tual case) and ntl corresponds to P:
(i) yn41 ~ max (yi) and zntl s zmax.

lsisn 14-10Then we continue to experiment around P and execute a new 2 design:
see Table 1 where run 1 now corresponds to P.
(ii) yntl ~ max (yi) and zn}1 ~ zmax.
Then the local approximations do not hold outside the subdomain of the
first experiment. We might try a point (say) halfway between Q and P.
(iii) yn;l ~ max (yi) and zn;l ) zmax.



Figure l. Steepest Ascent Path with One Restriction.

Factor x2

Aj~--------~` l B..

~ ~ ~ ~
z`~Y~ tYixi tV2x2 - zmax

~y -~j0} ~lxl t ~j 2x2

Factor x~
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Since the commercial restriction is violated, we have to back up on the
steepest ascent path. If zn}1 is only slightly higher than zmax, then we
back up only a little. We may use linear interpolation, defining SO and Sn
to be the old and new step-sizes (i.e. SO is the distance between P and Q)
and defining ze to be the z value corresponding to Q:

Sn zmax - zQ

SO - Sn - zn;l - zmax '

iv) yn}1 C max (yi) and zn}1 s zmax.
We may proceed as in situation (ii).

(6.4)

Note that as we move into the optimal area, the first-order ap-
proximation of eq. (5.1) or (6.1) becomes less adequate so that we have to
switch to a second-order approxiation. This fine-tuning requires the esti-
mation of interactions ~Bjj, (j' - 2,...,14 and j' ~ j) and purely quadra-
tic effects pjj. See Kleijnen (1987, pp. 202-208, 312-316) (also see note
4 again).

~. PRACTICAL MULTI-VARIATE OPTIMIZATION

This project was performed under a very strict time schedule: each
simulation run took 6 hours and results were needed within a few weeks for
presentation to top management who had to decide if the project (in its
current form) was to be continued. The theoretical approach of the prece-
ding section requires specification of zmax, the commercially acceptable
maximum value for the 90X quantile of promised lead times in order catego-
ry 2. This value did not become available within the time constraints

mentioned above. Therefore we modified the theoretical approach as
follows.

We have available the results of the first local experiment; again

see Table 2. So we can compute the steepest ascent path for y(productive

hours) as required by the theoretical approach; see eq. (6.3). We decide

to start oiir seac~ch along this path starting at the midpoint of the first

experiment; see Q in Figure 1.8) The (first) step size along this path, is

always determined heuristically in RSM (see the comment below eq. 6.3). We
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may try to make this step size as big as seems "possible", which leads to

the heuristic developed around eq. (6.4.). However, the latter heuristic

requires quantification of zmax, which turned out to be impractical. Now

we try a step size such that it is not as big as possible but it does

change the control variables "sizably". We try the following two mutually

related heuristics:

(í) Select a step size such that one control variable is (roughly) doubled
while the other variables are less than doubled: see x12 in Table 3(co-
lumn 4).
(ii) Fix the control variable as in (i), but further increase the step
size such that one other variable becomes (roughly) halved: see x4 and x5
in Table 3 (column 5).
Table 3 shows that the other 11 control variables do not change substan-

tially, when applying the steepest ascent technique to the estimated res-

ponse plane of the first local experiment. How do these heuristics affect

the responses?

Upon applying heuristic (i), the productive hours indeed exceed
the values in the first experiment except for 2 combinations, namely y5
and y12; also z5, the lead time quantile for order category 2, is smaller.
Heuristic (ii) gives better results: its productive hours y exceed the
hours in Che fírst experiment, except for y12, but zl,~ is substanY.ially
smaller tlian z12 (yl~ exceeds y5 and zl~ is only marginally larger than
z5; see heuristic i). Therefore we perform a second experiment around the
setting of heuristic (ii) in Table 3. In other words, run 1 of experiment
2 is identical to run 1~ of the total experiment. This second experiment
again uses the first-order approximation of eq. (6.1) and hence the 214-10

design of Table 1. Now row 1 of Table 1 corresponds to the base run of
experiment 2, which is specified by the last column of Table 3(heuristic
ii). Again a minus sign in Table 1(di~ --1) means that the corresponding
control variable increases with 20x, for exemple, xl becomes 132 x 1.2 -
158.4.
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Table 3: Control variables xj in base run (xb) and along steepest ascent
p~ith.

Control x~

J
Effect ~Bj Value of control variable j in

Base run Heuristic (i) Heuristic (ii)

0.52
-39.30
0.65

-18.07
-128.96

0.00
-0.22
13.88
-1.53
1-39
0.03

527-23
-9.27
-0.46

132 132.0003 132.0001
3.3 3.28035 3.2214

132 132.0003 132.0001
0.075 0.065965 0.03886
0.55 0.48552 0.29208

316.8 316.8 316.8
660 659-9999 659.996

1.65 1.65694 1.6778
27.5 27.44992 27.4469

110 110.0007 110.003
330 330 330

0.33 0.5936 0.6
5.5 5.4954 5.4815

132 131.9998 131.9991

The second experiment yields the following results.
(i) The second experiment is performed in the neighborhood of the new base
run (see point P in Figure 1) so that some y-values are higher than y17
(namely runs 26, 30, 31) (9 z-values are smaller than z17).
(ii) Compared to the base run of experiment 1(the initial common sense
setting) only 3 out of 16 y-values are not higher, namely y~7, y28 and
y32. Though the steepest ascent path does not increase y for these three
combinations, it does happen to decrease z(z~7, z28 and z3~ are smaller
than 21). So RSM does yield improval control settings; also see the re-
sults (iii) through (v).
(iii) The maximum y-value is yz6 (run 10 of experiment 2); y26 is 2.6X
higher than yl. And z26 happens to be only 0.4z higher than zl so that, if
zl is acceptable, then z26 is too.
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(iv) Other combinations improve y less but they do improve z drastically.
For example, run 15 of experiment 2 improves the base run's yl by 1.9X
while z decreases by 12.5x.

(v) Run 5 of experiment 2 gives the minimum lead time quantile: zl is
reduced by 62.8z. And y21 is still 1.3x higher than yl.

The improvements of y in the second experiment are smaller than we

had hoped for. Several explanations are possible. Maybe RSM is not an

effective optimization technique for this case study (local hills?); also

see Kim and Blake (198~). Maybe the intuitively selected setting for the

control variables xj is close to the optimum. The intuitive setting, how-

ever, does not give good delivery times; for example, run 5 of experiment

2 decreases zl by 62.8x (while its y is still 1.3x higher than yl; see

result v above). And it was the delivery times that initiated this DSS

(see ~ 1). We might explore the dual problem formulation, namely, minimize

the lead time quantile z while keeping productive hours y at yl or, bet-

ter, while keeping y at its historical value. We might also compute the
n n

new local estimates S and ~ for y and z respectively, and continue sear-

ching in a third experiment. Unfortunately, these steps were not realized,

because the project was aborted, mainly because of lack of personnel nee-

ded to develop and implement the DSS.

8. EPILOGUE: SIMULATION METHODOLGY

Our approach emphasized the importance of obtaining historical
data on lead times in order to evaluate the simulation output z, the 90X
quantile of promised lead times for order category 2. Upon studying these
historical data, some people in the organization concluded that lead times
realized by the person responsible for production scheduling, are better
than the lead times realized by the model! This conclusion, however, is
based on the simulation originally followed by the OR team; this approach
was called shadow or parallel running (s term often used in the informa-
tion systems field).

Their simulation model represents the "factory" (6 machines) and
the DSS which use historical orders as input. The output consists of lead
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times, idle times, switchover times, and so on. In the preceding paragraph
this output. was compared to the historical output of the human planner.
L3ut tltis comparison, is unfair, in our opinion? For example, in practice
the production capacity is higher and more flexible than it is in the
simulation model; hence the human planner can realize better lead times.
Actually there are a number of complications in practice which are not

accounted for in the model; of course the human planner did respond to

these complications in reality. Therefore a fair comparison of the model

and the human planner requires a different simulation approach, namely the

following approach (which we think is standard).

The simulation model still represents the factory, and one variant

represents the heuristic production planning system, as above. The second
vnrinnt, however, represents tht~ human planner? 'This new model vartant. can
indcucf hc buflL, il' il, ís posvible to mnke the humun decision rules cxpli-
cit. (These rules may be represented by a few lines of code or by a com-

plete Expert System; see IntelliCorp, 1986.) If the human decision-making
process can not be formalized, then a gaming variant can be built, i.e.,
the human planner has to make decisions in a simulated factory. This ap-

proach yields fair comparisons, whereas the preceding approach does not?

We observe that the simulation was fed with historical orders.
This is an accepted methodology for validating a simulation model. So in
the second variant (presented in the preceding paragraph) the simulation
model is fed with historical input, and gives simulated output which can
be compared to the historical output, in order to check whether the model
of the factory and the human planner is realistic. After validation and
optimization, the sensitivity analysis should concentrate on changes in
the order stream and in the factory, in order to check the robustness of
the model versus the human planner; for example, can the model cope with a
labor strike (the simulation model already includes historical machine
breakdowns)?

This paper concentrates on optimizing the heuristic production
planning system. The original idea, however, was to use this system as a
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Decision Support System. In other words, the human planner does not com-
pete with a model but is assisted by a model, which in this case comprises
a heuristic module and a simulation module for what-if questions. So the
original project looked like this:
(i) Develop a heurístic production planning module.

(ii) Evaluate and "optimize" (improve) this heuristic module (this is the

topic of our paper).
(iii) Let the human plannner do his job assisted by the "optimized" pro-
duction planning system: the computer generates many more alternative
plans than the human expert can contemplate in the time available for
planning; the DSS can also screen-out alternatives which are clearly infe-
rior. (Remember that our optimization considered only 2 responses.) Is the
performance of this interactive system "better" than the performance of
the human planner alone?
As we mentioned before, the project was aborted before the end of step
(ii).

9. CONCLUSIONS

At the outset of this case study, we had a DSS with 15 control
variables and a great many, namely 34, response variables. We reformulated
the problem such that only 2 response variables remained, namely y, the
number of productive hours (which excludes idle times and switchover
times), and z, the 90x quantile for promised lead times of order category
2. We wished to maximize y since it directly affects profits, and origi-
nally we wished to keep z below some commercially acceptable limit, zmax.
Unfortunately, in the few weeks of this project we could not obtain a
"hard" value for zmax. Nevertheless we could proceed as follows.

The 15 control variables could be reduced to 14. At the outset of
the project these 14 variables xj had intuitively selected base values xb
(j - 1,...,14). Our first experiment investigated the 14 control variables

14-10in only 16 runs (a 2 design), increasing each variable by 20z. This
experiment showed that other settings of the control variables can indeed
increase y and at the same tíme decrease z. Moreover, this experiment gave
the estimated, local steepest-ascent path.



23

Next we heuristically selected a step size along this steepest
ascent path. In that neighborhood we performed a second 214-10 experiment,

again changing each control variable by 20x. Several combinations in the
second experiment were better than the initial base run, that is, yl was

smaller and zl was higher. The maximum increase in y was 2.6z while the

corresponding z remained virtually equal to zl. For practical reasons we

could not continue our (steepest ascent) search for better control set-

tings; neither could we implement our (suboptimal) solution. Nevertheless

this paper demonstrates statistical design and analysis techniques which

are standard for statistical experts but not for Operations Researchers.

This statistical methodology is simple and effective, i.e., it leads to

control settings better than the intuitively selected (base) setting. We

also indicated an extension of RSM methodology that seems novel (see ~ 6).

Our case study illustrates practical problems such as lack of data (see

the variables zmax and profit contribution), time pressure, and organiza-

tional politics.
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Notes

1) We give the following rough idea of the DSS, developed by the OR team.

Each of the 6 machines has a queue of assigned jobs. That queue first

has jobs of one type, say type a; next jobs of type b, and so on. Be-

tween these subqueues (corresponding to jobs of type a, b, ...) there

are open slots (reserve, slack) to accomodate newly arriving jobs of

typE: a, b, ... Moreover, not ell jobs are assigned to specific ma-

chines, i.e., some jobs are placed in a seventh queue (slack queue).

The assignment of a specific job to a queue depends on the DSS para-

meters xj (j - 1,...,15).

2) Actually we should not only optimize the control variables, but we
should also investigate the sensitivity of the optimal solution to
variations in the environmental variables such as factors determining
the orders (also see Kleijnen, 1987, p. 216). We shall return to this
issue in ~ 9.

3) More accurate estimators of S and y are possible using Weighted Least
Squares, assuming that different control settings yield different va-
riability of y so that oi ~ a2. But then, we have to estimate these ai.
See Kleijnen (1987, pp. 161-169).

4) Myers and Carter (1973) consider a problem quite analogous to our's,

namely maximize the primary response (say y) subject to a restriction

on the secondary response (say z); however, their methods (based on

Lagrangian multipliers) "are applicable only to quadratic response

functions". Biles (1975, p. 155) uses "Rosen's gradient-projection"

technique in case one or more constraints are violated.

5) Our approach ignores the random character of the estimated factor ef-
. . 14 . ~

fects. A better formulation is: P(z -~0 f ï ~j xj 5 zmax) Z P with
~ ~ 1

prespecified P, say P- 0.90. Then eq. (6.2) - also see Figure 1-

becomes
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. . 14 - .
z-~rp f F~r j x j s zmax - t~ Qz

1
(6.2')

where v- 16-15 and oZ - x'4~x where Q~ is the covariance matrix of ~r
and x is the vector of control variables including the dummy variable
xC - 1. Also see Khuri and Colon (1981). The practical approach of ~ ~
does not use eq. (6.2) or its variant (6.2').

6) Our proposal is devised especially for this case study; the general
problem of testing regression model adequacy is discussed in Kleijnen
(1987. pp. 185-196).

~) If the two fitted equations held over the whole area of interest (0 5
n n

x. ~ m), then the optimum would correspond to the point where z-~rC t
n~ n n n n n

~ixl } ~2x2 - zmax intersects the xl axis ( assuming -pl~s2 ~ - ~1~~2 as
is illustrated), which is well-known from Linear Programming.

8) We could have started the steepest ascent path at a corner of t:he first

lucnl c~xpc~rimenl;al arca;'see C in [~igure 1. Actually, t.he second locul
experiment comprises 16 runs (as we shall see), and it does not seem to
matter what the exact position is of the second local experimental
area, when using RSM.

MMM
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