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Abatract:

Multi-item inventory systems with joint replenishmentcosts are considered under constant deterministic demand.Two different types of strategies are distinguished:direct grouping strategies and indirect groupingstrategies. Different heuristics are reviewed andcompared for different strategies. The performance of thestrategies is measured as the percentage cost savings ofusing a jóint replenishment strategy instead of anindependent strategy. This performance is compared bymeans of simulation. Regression analysis is used tosummarize the output of several simulation experiments.
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1. Introduction

Joint replenishment strategies are used in a multi-item
inventory systems. A characteristic of multi-item systems
is the existence of some kind of interaction among the
items. Joint replenishment strategies are based on
interaction of the set-up or order costs. These costs can
be subdivided into major and minor costs. Interaction is
caused by the fact that the major set-up cost is
independent of the number of items in the replenishment.
In addition to the major set-up cost, there is a minor
set-up cost, charged to each particular item included in
the replenishment. Cost savings can be obtained by
coordinating the replenishments of several items. The
major set-up cost is then shared if two or more items are
jointly replenished. In many practical situations it
makes sense to coordinate replenishments of individual
items. If several items are purchased from the same
supplier; fixed order costs can be shared if two or more
items are jointly replenished. Joint replenishments may
also be attractive if a group of items use the same mode
of transport or production facility.

In the case of constant demand, the strategies can be
classified into two classes, which will be called
"indirect grouping strategies" and "direct grouping
strategies". A group is defined as the set of those items
that have the same replenishment cycle. The replenishment
cycle is the time between two subsequent replenishments
of a particular item. Items of the same group are jointly
replenished.

Using the indirect grouping strategy, a family
replenishment is made at constant intervals. The
replenishment cycle of each item (or group) is an integer
multiple of this basic cycle interval. The problem is to
determine the basic cycle interval and the replenishment
frequency of all items simultaneously. A group is then
(indirectly) formed by those items that have the same
replenishment frequency. In the last two decades several
authors have encountered this sort of joint replenishment
problem. For extended reviews of joint replenishment
inventory strategies we refer to Aksoy and Erenguc (1988)
and Goyal and Satir (1989). Another approach, which is
not mentioned in the surveys of Aksoy and Erenguc and
Goyal and Satir, is the formulation of a direct grouping
strategy. Here, the replenishment cycles of the groups
are generally not an integer multiple of the shortest
(basic) cycle. In this case the problem is to form



3

(directly) a predetermined number of groups in such a waythat the total relevant costs of the ftems in the familyare as low as possible.
To the best of our knowledge, a comparison betweenindirect grouping and direct grouping strategies hasnever been made. The purpose of our study was twofold:first, to find out whether the direct qrouping strategyoutperforms the indirect groupinq strategy in somesituations; secondly to determine the effect of somevariables on the performance of joint replenishmentstrategies; this performance was measured as thepercentage cost savings of using a joint replenishmentstrategy instead of an independent strategy.
Section 2 gives a short review of the literature on thejoint replenishment problem, together with a decisionwhich algorithms are to be used for comparing directgrouping and indirect grouping strategies. The
experimental design and simulation results are describedin section 3. Finally, section 4 gives the conclusions.

2. Litorature revier

The joint replenishment problem was investigated under aset of assumptions that are the same as for the classical
economic order quantity (EOQ) model, except for the joint
set-up cost. Due to these assumptions the relevant costfactors are the set-up costs and the carrying inventorycost. We will review the literature on both grouping
strategies; see also figure 1 later on.

2.1. Indirect grouping

The decision variables in the indirect qrouping model are
the basic cycle time (T) and the frequency (number ofbasic cycles) of ordering for each item (k~). Theobjective is to find a combination (T,kL) such that the
total relevant cost (TRC) of the family is as low as
possible:

1 N al T N
TRC - -( A f E -) f - E kLDih~ .

T i-1 k~ 2 i-1
(1)

s.t. k~ e {1,2,3,...),
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where N: number of items in the family.

A : major set-up cost.
as: minor set-up cost.
D~: demand per period for item i.hs: inventory carrying cost per unit of item i perperiod.
T: basic cycle time, the time between twosuccessive family replenfshments.
k1: the number of basic cycles between twosuccessive replenishments of item i.

By takinq the first derivative of TRC with respect to Tand kl (kl is then treated as a continuous variable) wecan derive the optimal basic cycle time, T(kl), and theoptimal frequency of ordering ,k~(T). However, T can notbe determined without knowing k„ and vice versa. Severalauthors have encountered this problem: Brown (1967),Goyal(1973a,1973b,1974a,1974b, 1979,1988), Silver (10),Kapsi and Rosenblatt (1983,1985), etc. Only one of them(Goyal (1974a)) presented an (enumerative) algorithm thatgives the global optimum. Although Goyal's approachresults in an optimal solution, it may be computationallyprohibitive. Therefore, heuristic algorithms weredeveloped. The heuristics may be classified into twoclasses: iterative algorithms and single iterationalgorithms.Zt is not our intention to give a detailedreview of the literature. We refer to the extensivesurveys of Aksoy and Erenguc (1988) and Goyal and Satir(1989).

In a simulation study Kapsi and Rosenblatt (1985)compared iterative algorithms due to Brown (1967) andGoyal (1974b), and single iteration algorithms due toSilver (1976), Goyal and Belton (1979) and Kapsi andRosenblatt (1983). They also suqgested a combinedapproach. This approach uses the single iterationheuristic of Silver (1976) with the modification of Goyaland Belton (1979) as starting point in the iterativealgorithm of Goyal (1974b). The heuristic with thesmallest average deviation from the optimal solution) wasthe combined approach, followed by that of Goyal, Brown,Kapsi and Rosenblatt, Goyal and Belton and finally thatof Silver. Kapsi and Rosenblatt found that the iterativealqorithms, as expected, are more time consuming, but thedifference in computation time appeared not to besignificant. This was affirmed by our own findings.Consequently, we used the combined heuristic for
comparinq the direct grouping strategy with the indirectgrouping strategy. The algorithm is listed in part one ofappendix A.
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2.2 Dtrect group3.r;g strategíea

The main difference between indirect grouping and directgrouping strategies is that the replenishment cycles ofthe groups formed by indirect grouping are a multipleinteger of some basic cycle time, whereas this isgenerally not the case for groups formed by directgrouping. Note that the number of groups is an outputvariable in indirect grouping, whereas the number ofgroups is predetermined in direct grouping. Hence, thedirect grouping problem is to divide N items into Mgroups such that the set-up and inventory carrying costsare minimized. The groups must form disjunct sets of theitems in the family.

The minimalisation problem is:
M A~

TRC(S1r .. ,SM) - E ( - f ~ T~~ H~ ) . (2)
j-1 T~

where M: number of groups to be formed.
S: set of all items in the family.
Sj: set of items in group j.
T~: replenishment cycle time of group j, the timebetween two successive replenishments of allitems in group j.
Ai: total set-up cost per replenishment of group j.

A~ -(A t E ai ), H~ - E hiD1.
iESj iES~

The problem of dividing N items into M groups is hard,
because there may be numerous combinations. Fortunately,
Chakravarty (1981) and Bastian (1986) proved a theorem
that they call the "consecutiveness property". The
property states that the optimal groups will be
consecutive with the ratio D~h,~a1. So, when the items
are arranged in increasing order with respect to the
ratio D~h,~al, the optimal groups can be created from this
sequential list.

For example: consider a set of items {1,2,3,4}, which is
arranged in increasing order of the ratio D~hJa~ (so,item 1 is the item with the smallest ratio). In this
case, the groups S1-(1,2} and SZ-{3,4) are consecutive,
but S1-{1,3} and S2-{2,4} are not.
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Usinq this rankinq scheme, several authors proposedprocedures for direct grouping: Page and Paul (1976),Chakravarty (1981,1985), and Bastian (1986). We note thatin the orginal papers of Page and Paul and Chakravartythe major set-up cost is not incorporated explicitly. Thealgorithms of Page and Paul and Chakravarty (1981) can beadjusted easily for the major set-up cost. However, wecould not adjust the heuristic of Chakravarty (1976).
Chakravarty (1981) uses dynamic proqramming to creategroups. This algorithm identifies the global optimum ofthe minimalisation problem in (2). However, computer timeincreases exponentially with the size of the problem.
After analyzing the heuristics of Bastian (1986), Pageand Paul (1976) and Chakravarty (1985)), we found thatBastian's heuristic was the best. This simple heuristicstarts with N consecutive groups (- the number of itemsin the family). Each iteration combines two neighbouringgroups such that the increase (decrease) of the objectivefunction is minimal (maximal). The procedure terminateswhen M groups are formed. Bastian proved that thisgrouping heuristic is optimal when the major set-up costis zero.

We simulated many inventory situations. These testexamples showed that the deviations of Bastian'ssolution from Chakravarty's optimal solution are verysmall, even with a high major set-up cost. We alsoanalyzed the computer time needed for both algorithms. Asexpected, the difference in computer time appeared to beimportant. Therefore we used Bastian's algorithm, whichis outlined in part two of appendix A, for comparingdirect grouping and indirect groupinq strategies.
Figure 1 summarizes the research papers that werementioned in this review.

3. gsperimental desiqn and simulation results

Several inventory situations with constant demand weresimulated to compare the performances of both directgrouping and indirect grouping strategies. Besides ananalysis of the differences between these two ways ofgroupinq, the performances of the strategies werecompared with the performance of an independent single-
item strategy. We used regression analysis to summarizethe output of several simulation runs.
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Silver (1976) Brovn (1967)
Goyal and Belton (1979) Goyal(1973ab,1974b,1988)
Rapsi and Rosenblatt (1983) Combined approach (1985)

Figure i. Literature on joint replenishment strategies

Kleijnen (1987) described a hierarchical modeling
approach, which can be summarized in the following steps:
1) Determine the response or criterion variable.
2) Determine the independent variables.
3) Construct a regression metamodel (a cause-effect

relation between the response variable and the
independent variables).

4) Determine the experimental design (the situations that
will be simulated).

5) Estimate the regression parameters and validate the
metamodel. When the model is not valid step 3 is
repeated; otherwise conclusions can be drawn.

Several papers have used simulation to study joint
replenishment models. Goyal and Satir [1989, p.ll] list
some simulation studies. A response variable that often
is used is the average cost savings of joint
replenishment strategy i expressed as a percentage of the
total cost of the independent strategy. This is a
dimensionless variable, which we denote by y~.

number of iterations
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TRC(EOQ) - TRCL
Yi - 100 . , (3)

TRC(EOQ)

where TRC(EOq) : total cost of the family of items when an
independent EOQ strategy is used.

TRCj : total cost of joint replenishment
strategy i.

Kapsi and Rosenblatt (1985) used the deviation from thecost of the optimal joint replenishment strategy.
However, this criterion is not adequate for our studysince we compared direct and indirect grouping
strategies, which are based on a different formulation
with different optimal solutions. The response variable
(y~) is not only useful for comparing joint replenishment
strategies with independent strateqies but also for
comparing joint replenishment strategies among
themselves.

The relevant cost factors in the joint replenishment
problem are: a) the major set-up cost A, b) the minor
set-up cost a~, c) the inventory carrying cost of
stocking the periodic demand of item i for one period D,hl(this factor consists of the demand for item i per period
D~, and the inventory carrying cost per unit per periodh~, which in turn is a constant percentage h of the unitcost of item i v1: h,-hv1) . Other relevant factors are: d)
the number of items in the family N, e) the number of
groups to be formed M, and f) the joint replenishment
strategy.

Instead of blindly incorporating all these factors in thesimulation experiments, these factors were examined, and,after an extensive analysis, it appeared that only twofactors must be included in the metamodel. The resultsare listed below.
~ Instead of using Dih~ and ai per item, we used themeans Dh and a in our analysis (in the remainder of

this study the bar over a and Dh will be deleted).
~ Instead of using the major set-up cost (A) and minor

set-up cost (a) separately, we used the set-up cost
ratio (A~a). It can be shown that a different
combination of the major set-up cost (A) and the minor
set-up cost (a) with an equal set-up ratio (A~a) yields
the same value of the response variable y~. This is
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proven for Bastian's heuristic and the combinedheuristic, based on Goyal (1974b), in part one of
appendix B.

~ It can be shown that an increase of the factor Dh does
not affect the response variable y~, all other things
being equal. For that reason, the factor Dh was not
used as a separate factor. The proof is also given in
appendix 2 (part two).

~ A difference between direct groupinq and indirect
grouping is that the number of groups is an input
variable in the first and an output variable in the
latter type of strategy. Therefore, Bastian's algorithm
was changed a little, so that the number of groups need
not be predetermined (see the note in part two of
appendix A). In this way the number of groups is not a
relevant factor anymore.

~ After performing several pilot experiments it appeared
that the set-up cost ratio and the number of items are
the only factors with a significant impact on theresponse variable yL. We also incorporated otherfactors such as (Ata)~Dh, the variance of Dh, and thevariance of the minor set-up cost ( a), but these
factors were not significant. The response differencebetween the direct grouping and the indirect groupinqstrategy seemed to be very small.

Summarizing, two variables were important: the set-upcost ratio ( A~a) and the number of items (N). Zn the
remainder of this study we concentrate on these two
factors. A graphical analysis of the simulation data ofthe pilot experiments showed that an increase of the set-
up cost ratio or the number of items yields decreasing
returns to scale. Therefore a regression metamodel with
decreasing returns to scale for the variables A~a and Nwere specified.

Possible metamodels, with one or more of these
characterics are a) a quadratic model, b) a square root
model,c) a logarithmic model, and d) a reciprocal model.
All these models are linear in the parameters. So we
could apply linear regression analysis for estimating the
parameter vector B.

An experimental design determines which factor level
combinations are simulated. The choice of the
experimental design is affected by the metamodel. Since
in our case there are only two factors, a full factorial
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design could be used. The factor A~a was varied over sixlevels, and the factor N was varied over four levels. Thelevels are given in table 1.

factor levels
A~a

N

1, 2, 4, 8, 12, 16

10, 20, 30, 60

Table 1. Factors with corresponding levels
So, there were 24 different combinations. Every
combination was used for both joint replenishmentstrategies. The 24~2 responses (percentage cost savings
of both strategies) were generated by simulation.
Given a certain combination, the simulation program
generated particular inventory situations: the number of
items (N), the major set-up cost (A) and the individual
values of al and Dih~. Individual values of a~ and D1vL were
randomly generated from a uniform distribution with
parameters [1,5] and [1000,9000] respectively. D1h1 was
obtained by multiplying Dlv~ by the given carrying charge
h(0.20); the major set-up cost was selected such that
A~a was equal to the given value (thus, A-3.A~a). So, weused sampling to generate a situation; once a situation
was created, the inventory problem was deterministic.
Both direct grouping and indirect grouping were always
applied to the same inventory situation. So, the reponses
(yi) of different joint replenishment strategies were
based on the same random numbers. Each factor combination
was replicated 500 times (a~ and D,v~ differed, whereas N,
A and h were fixed). The performances of the strategies
for the given factor combination were then measured by
the average cost savings (in ~) of the 500 replications.
The simulation output of the 24 factor combinations was
summarized by regression analysis. The linear metamodels
were estimated with estimated qeneralised least squares,
since common random numbers have been used (remember that
both strategies were applied to the same input).

After testing the assumptions for least squares, the four
metamodels, mentioned earlier, were estimated. We
validated the models with Rao's lack of fit test [18],
Kleijnen's cross validation test [19] and interpolation.
It seemed that a logarithmic model fits and predicts the
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simulation data well within the range over which thevariables were varied.
The results are given in table 2(standard error inparentheses): ydg denotes the cost savings (in á~, obtainedby Bastian's direct groupinq algorithm, whereas yL~denotes the cost savings (in ~) of the combined indirectgrouping algorithm, which is mainly based on Goyal(1974b).

n
ydg - 6,6588 t 15,9710 ln (A~a) f 5,6209 ln(N)

(1.4E-05) (2.3E-04)
~
yig- 6,3064 t 15,7797 ln (A~a) t 5,9964 ln(N)(1.6E-05) ( 2.2E-04)

Table 2: Metamodel

No interaction between the variables was included,because this variable was not significant. We used Rao'sF-test [18] for linear hypotheses to see if theparameters of the independent variables are equal forboth strategies . All coefficients deviatedsignificantly, because the standard errors were virtuallyzero.
n

~igures 2 and 3 show that the predicted responses yb andye as a function of the cost set-up ratio and the numberof items respectively. Over the observed range of table 1the indirect grouping strategy performed always betterthan the direct grouping strategy, although the effect isslightly better. So the coefficients differedsignificantly but not importantly. The estimators of Bshow that the better performance of the indirect groupingstrategy is due to the effect of the number of items inthe family (see table 2).

It is not possible to extrapolate the logarithmic modelto the left of the observed range, since for levels ofA~a lower than one, the variable ln(A~a) will benegative. Extrapolation to the right of the observedrange may result in responses yl greater than hundred,which is impossible (note that y1~100 because of (3)).So, the metamodel is only adequate for situations withinthe observed range.
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grouping (IG) strateqy (y,~) as a function of thenumber of items N (A~a-8).
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Various conditions were simulated with a set-up costratio higher than sixteen. Table 3 shows that theresponses grow very slowly with an increasinq set-up costratio when the ratio is higher than twenty-five. If theratio was higher than seventy-five, the direct qroupingand indirect grouping strategy became identical, becauseonly one group is created.

Factor combination Cost savinqs (~)
Cost set-up number of Direct Indirect
ratio (A~a) items (N) grouping

(Bastian) (Goyal)
25.00 20 69.34 69.44
50.00 20 72.73 72.74
75.00 20 73.94 73.94

100.00 20 74.59 74.59
500.00 20 76.25 76.25

1000.00 20 76.49 76.49

Table 3. Simulations with A~a~16 (N-20)

We already mentioned that indirect grouping strategies
performed slightly better than direct grouping strategies
within the observed range of table l. Table 4 shows that
for very small values of the set-up cost ratio, direct
grouping strategies performed better than indirect
grouping strateqies. With a set-up cost ratio of 0.01,
the indirect grouping strategy performs even badder than
the independent strategy, because the replenishment
cycles of the groups have to be a integer multiple of the
basic cycle. In this case the extra carrying cost is
higher than the saved major set-up cost. However, in
these situation a joint replenishment strategy does not
make much sense.

Factor combination Cost savings (~)

Cost set-up number of Direct Indirect
ratio (A~a) items (N) grouping

(Bastian) (Goyal)
0.01 20 0.28 -0.56
0.05 20 1.78 1.33
0.10 20 3.66 3.50
0.25 20 8.87 9.24
0.50 20 15.76 16.56
0.75 20 21.24 22.26

Table 4. Simulations with A~a~l (N-20)
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~. Conclueions

Joint replenishment strategies reduce the set-up costs of
a family of related items. In this paper two types
inventory strategies were investigated, namely indirect
and direct grouping strategies, assuming constant demand.
We presented a short review of the literature on both
strategies. In indirect grouping, individual items are
replenished at fixed time intervals. The replenishment
cycle of an individual item is a integer multiple (kl) of
a basic cycle time (T). We mentioned some algorithms for
determining (T,kl). Obtaining the optimal solution
requires much computational effort. Therefore, several
heuristics were proposed. These can be classfied into
heuristics that require several iterations and heuristics
that require only a single iteration. A comparitive
simulation was done by Kapsi and Rosenblatt (1985). They
recommended a combined approach, based on Goyal (1974b),
provided an iterative algorithm is allowed; when only a
single iteration is allowed the approach of Kapsi and
Rosenblatt was recommended. Kapsi and Rosenblatt found
that the iterative procedures, as expected, are more time
demanding, but the difference in computation time is not
significant. In direct grouping the items are partitioned
into a predetermined number of groups with a common order
interval for each group. The replenishment cycle of the
groups is not a integer multiple of some basic cycle.
Since the number of groups is predetermined, the problem
is to divide N items into M qroups such that the total
costs are minimized. Dynamic programming yields the
optimal solution, but becomes too expensive for large
problems. Bastian's heuristic (1986) seems to be a good
alternative. Several test examples were examined. It
appeared that the deviations of Bastian's solution from
Chakravarty's optimal solution are very small, whereas
the difference in computer time seems important.
Therefore, Bastian's algorithm is recommended whren a
direct grouping strategy is used.

In the literature, simulation is used to compare
different algorithms. However, the algorithms that were
compared in these studies were all based on the indirect
grouping strategy. The direct grouping strategies are not
mentioned at all. To the best of our knowledge, a
comparison between direct grouping and indirect grouping
strategies has never been made.
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In section three we presented a simulation atudy toanalyse the differences of both indirect groupinq anddirect grouping strategies with respect to some factorsthat were expected to be important. The performance ofthe strategies was measured as the percentage costsavings of using a joint replenishment strategy relativeto an independent strategy.
Instead of blindly incorporatinq all factors of the jointreplenishment problem in the experiments, these factorswere examined. We concluded that only two factors had beincluded in the metamodel, namely: (i) the ratio of themajor set-up cost (A) to the mean minor set-up cost (a),and (ii) the number of items in the family (N).
A full factorial design was used with six levels of (A~a)(ranging between the values 1 and 16) and four levels ofN (ranging between the values 10 and 60). 500deterministic inventory situations were generated foreach factor combination (A~a,N). The response for thatfactor combination was measured by the cost savings (in~) of joint replenishment strategy averaged over the 500replications. For the direct grouping strategy we usedthe algorithm of Bastian; for the indirect groupingstrategy we used the combined approach, mainly based onGoyal.

Regression analysis was used to model the input-outputbehaviour of the simulation experiments. A logarithmicmodel fitted and predicted the experimental data wellwithin the range over which the variables were varied. Wedid also some extra simulation experiments outside theobserved range.
The simulation yielded the following conclusions:
a) Over the observed range of the experiments theindirect grouping strategy always outperform the

direct grouping strategy did. However, the differencesbetween the responses were very small. The better
performance of the indirect grouping strategy is dueto the effect of the number of items in the family.

b) The cost savings increase only slightly when the ratiobecomes greater than fifty. If the ratio is higherthan seventy-five the direct grouping and indirect
qrouping strategy are identical, because only one
group is created.



16

c) Simulation showed that for very amall values of theset-up cost ratio, direct qrouping strategiesoutperform indirect grouping strateqies. However, inthis situation a joint replenishment strategy does notmake much sense.
d) A joint replenishment strateqy yields hiqh percentagecost savings, when the cost set-up ratio exceeds ahalf.

So when it makes sense to replenish items jointly, werecommend an indirect grouping strategy, since
1) the indirect grouping strategies outperform the directgrouping strategies slightly;
2) the indirect grouping algorithms need less computertime than the direct grouping algorithms do.
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]~ppendiaes

l~.i. The aombined hourietia ror indireat qroupinq.

Step 1: Determination of the startinq point with Silver'ssingle iteration algorithm ( 1976) (with themodification of Goyal and Belton ( 1979)):1': Determine the item with the maximum value ofDLh,~ ( Afa~) and define this item as item r(reference-item).
ib: Determine the integer value kiL from

(a~D~h1)
L(L-1) ~

(Atar) ~ ( Drhr)
~ L(~1) - (A.1)

Step 2:Use the integer values, obtained in step ib, asstartinq point in the iterative heuristic of Goyal
(1974b).

2': Determine the replenishment frequencies k,-L fromBi a1
L(L-1) 5 - ~ 5 L(Ltl). (A.2)
where :

Ai D,hi

N
A~ -(A f E a~k~ )- a~k~,

j-1
and,

N
B1 - E k~Dih~ - k~DLhl.

j-1

(A.3)

(A.4)

Repeat this iteration until all the integer valuesof k~ remain unchanged fn two successiveiterations.

2e: Determine the basic cycle (T) from

2( A t E a,~k~ )
i

TZ(ki) - (A.5)
E k1Dlh1
i
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71.Z. Bastian~s alqoritha for direot qroupiaq.

Step 1: Rank the items in ascending order of D~h,~a~.
Step 2: Create N groupe with S!- { j}, A~:za~fA, H~:-D~h~.Determine ~~, the marqinal cost of combininq qroupj and jtl, for j-1 to N-1:

~j-[2~(A~fAj.i A)~`(H~fH~.~]~ - [2~A~~H~]~ - [2~A~ii~H~ti7~
(A.6)
AI (number of created groups) is N.

Step 3: Repeat the following procedure until the number of
created groups (AI) is equal to M:
Determine k - min ~~.

j
Combine groups k and kfi: Sk: ~{ SkfSktl} , Ar: -A,~fAy~~i A,

Hk: -HktHkf1.
Rank the groups (j-1,..,AI-1).
Determine ~a,~ en ~k.l (the other ~~ have already been
calculated).
AI:-AI-l.

Step 4: Determine the replenishment cycles for each group

Ti - (2~A~rH~)~ (A.7)

Note:In our experiments we adjusted this algorithm a
little. Instead of repeating step 3 until the number
of groups AI is equal to M, we repeated the
procedure in step 3 until p~~0 for all groups. In
this case the objective function can not decrease
when combining any two neighbouring groups. In our
experiments, however, we restricted the number of
qroups formed to less than ten.

B.1. 71 proof fors~~a different combination of major set-up cost ( 7~) and minor set-up cost ( a) Mith an equalset-up ratio l1~a yields the aame value of thereaponae variable yi~.

Assume the following situation:

combination major set-up cost minor set-up cost
1
2

A
t.A

a[iJ (i-1,..N)
t~a[i](i-1,..,N)
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We want to prove that y11-Y1z, where yl~ denotes the cost
savings for strategy i and combination j. y,~ is defined
in section 3 as: yi~ - 100~ (TRC~,q,~TRCL~) ~TRC~,q,~.

The total cost of the independent strategy is
E~[ (Afa~)D~h~ ]~.
So, TRC~,y.z - E1 [t(Atai)Dlhi j~` ~,~t-TRC~oq 1. Hence, Y~~YL~when TRC~~ft~ TRCil.

Proof for Bastian's direct group,~q algorithm
Step la: The ranking scheme of combination 2 is the sameas that of combination 1, since the ratio DLh,~a1 ismultiplied by a constant factor for all i.Step lb: Hence, the groups of the combinations 1 and 2are the same in the first iteration. The only differenceis that (A~) z-t. ( A~)„ where ( A~) z is the value A~ of groupj for input combination 2. It is simple to derive that
(~~)z-ft. ( ~~)1 for all groups j.
Step 2: The group with the minimal value of ~~ is thesame for both combinations; so the groups of combinations1 and 2 remain the same after the first iteration.
The total cost ( TRCb.) is E~ [ 2. A~ . H~ ]~. Using
(A~)z-t. ( Aj)1, it is obvious that TRCb~ft-TRCbl (b denotes
Bastian's algorithm), Q.E.D.

Proof for Goval's indirect groupina alaorithm fcombined
heuristic)

It will be shown that TRC`z-ftTRC~1 (g denotes Goyal'scombined algorithm) in the same way we díd for Bastian's
algorithm:

Step la: The reference item of combination 2 is the sameas that of combination 1, since the ratio D~h,~ (Afal) ismultiplied by a constant factor t for all items i.
Step lb: In the first computation of the replenishmentfrequencies, ( kl)1 and ( k~)z are the same as forcombination 2 the factor t appears both in the numeratorand the denumerator.
Step 2: It follows that (B,) z-(B1) 1 and (A~) z-t ~ (AL) ~; so
(kL)z-(k~)1 in all iterations.

a,
The total cost is TRC~. ~[ (A f E ). E k1tDlhi ]~ ;

i kL i
so TRC~z-f tTRC~l, Q. E. D.
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8.2. Broo! lors "an inar~as~ o! laator Dh !or all itsmsxith a laator t do~s not a!l~at th~ r~spons~
variabls pi~~

Assume the following situation:

combination factor Dh
1
2

D[i]h[i] (i-1,..,N)
t.D[i]h[i] (i- 1,..,N)

The proof runs along similar lines as for result b. The
total cost of the independent strategy is: Ei [(Afa~) DLhi

~ ; so TRCa,] a, z.~t . TRC~,q, l.

Since yl~ is defined as 100. ( TRC~oq, jTRCi~)~TRC~oq, j we have
again to prove that TRCiZ-ft- TRCiI.

Proof for Bastian's direct grouping alqorithm
Analogue to result b it can be shown that:
step la): the ranking scheme of combination 2 is the same
as that of combination 1; step lb): in the first
iteration the groups S~ of combination 1 and 2 are thesame with (H~) Z-t. (H~) 1 and (A~) 2- (A~) 1; (~~) 2-,~t. (~~)1 for all
groups j; step 2): the groups of combinations 1 and 2
remain the same after the first iteration, so
TRCb~~t . TRCbl.

~oof for Goyal's indirect urouping alQOrit m
step la): the reference-item of combination 2 is the same
as that of combination 1; step lb): (k~)1-(k1) the first
computation of the replenishment frequencies, step 2):
(A~)z-(A~)~ and (Bi)z-t' (B~)~; so (k~)s-(k,)1 in all
iterat ions ; so TRCsr-ft- TRC~l .
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