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Abstract The joint probability generating functions of local times of
Bernoulli walk at various stopping times are determined by simple
equations: The results can be interpreted by means of branching processes
with immigration satisfying the same equations. Some of the results are
obtained also by martingale methods.
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1. Introduction

Let (S )m be Bernoulli random walk starting at 0, i.e., Sn -~k-OXkn n-0
with iid Xk such that p:- P[Xk-1] - 1- P[Xk-O]. In the present paper we
investigate the ascending local time

Lr(n,Y) :- Fk-11(Y-1.Y)(Sk-1'Sk) , (1.1)
the descending local time

Ly(n,Y) .- Fk-11(Yt1,Y)(Sk-1'Sk) , (1.2)
and the local time

L(n.Y) :- Fk-11y(Sk) , (1.3)
considered as infinite random integer-valued vectorsw r

~ (n) :- (L (n.Y))y6'L '
x w

with M derroting r, l or rrothing. Rather than L(n) we will consider L(T)
for specific stopping times T. - -

The main analytic tool for this investigation is the joint probability
generating function (pgf) of infinite random vectors with nonnegative
integer components. Set

m mks- :- ~kBZsk
for infinite vectors m-(mk)k8Z with nonnegative integer components and

s-(sk)kEZ with sk 6[0,1]. We define the joint pgf of a random vector

M-(Mk)kEZ with nonnegative integer components by
M

EsM - EnkEZsk k
~rs function of s. Obviously, the joint pgf of M determines the
distribution of M.-

We establish a calculus with joint pgf's, which resembles strongly
Feller's (1971) classical treatment of Bernoulli random walk by (one-
dimensional) pgf's. As an application we identify L(T) for stopping times
T with ST - 0 or T- m as a simple functional of certain branching
processes with immigration. The branching processes themselves can be
identified as processes of ascents or processes of descents in the
seperate excursions of Bernoulli walk.

The essence of these results is already known. The purpose of this
paper is to streamline, complement and unify previous work by Dwass
(1975), Rogers (1984) and parts of Cohen 8~ Hooghiemstra (1981), Gerl
(1984) and Woess (1985).
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2. The pgf's oF the local times

As in thc introductlon, (S )m is Bernoul]i walk stnr~ting at 0, withn n-0
local l.ime I, defined hij (l.j). Recrtll Lhat p:- I'~Sn-Sn-1-1]. We wfll

take the following properties of Bernoulli walk for granted:
(a) the strong Markov property;
(b) the Bernoulli walk is recurrent if p- Z, i.e., if p- 2 then

L(m,y) :- lim L(n,y)- m wpl for all y;n~m
(c) n~m Sn - m.sgn(p-2) wpl for p x 2, so L(m,Y) ~ m wpl for p x 2.

In the introduction we defined sm and pgf's Esm for s 6[0,1]Z. Let S
be the set of s in [0,1]Z with all but finitely many components equal to
1. Then the pgf Esm restricted to S already determines all finite-
dimensional distributions of M, so in fact the distribution of M. For this
reason we will often consider pgf's only on S. We write 1 for s 6 S with
all components equal to 1. - -

The shift 8: RZ a RZ is defined by (8x)k :- xk~l for k 6 Z and

x-(xk)k6Z B RZ. Note that H maps S onto S, and that sem -(8-ls)m
From the definitions it is clear that
L(n,y) - L1(n,y) t Ly(n,y) , and that

L?(n,Y) - Ly(n,Y-1) t 1N (Sn-Y) - 1N (-Y) .
0 0

Thus we have
L(n,Y) - Ly(n.Y) } Ly(n.Y'1) ' 1N ÍSn-Y) - lp (-Y) . (2.1)

0 0
Thus L(n) is determined by (L~`(n),Sn).

We will now derive recursive relations for the pgf of (L~`(n),Sn)

Ly(n) S L1(n,y) S
yn(s,t) :- Es t n- E~y6Zsy t n'

Splitting according to the values of S1 and using the Markov property we
find, with q:- 1-p and y~(s,t) :- l,

ynÍs.t) - qs-lt-lyn-1(e-ls't) } pt`~n-1(0s,t) .
This enables us, at least in principle, to calculate the pgf' yn of

(L~`(n),Sn), but the results do not seem to allow successful analysis. We
will do much better if we consider L(T) for stopping times T that imply
fixed values for ST. -
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3. Local times up to stopping times when finite

Let Ty :- inf{n21: Sn-y}, where inf(b :- , and consider the (defective)
pgf

M
~ L (Ty)

0y(s) :- E1[Ty~m]s (3.1)
N N ~

We will see that m-1 and 01 determine 0Y for all other y.
. .F'irst, let y) 1. By the strong Markov property, L(T )- L(T1) is- y -M -1 w

independent of L(T1) and distributed as 0 L(Ty-1). Consequently,
r w r

. L (T1) L (Ty)-L (T1)
my(s) - E1[.I.l~m]s 1[Ty-Tl~m]S

L~(T1) 6-1L(Ty-1)
- E1[Tl~m]s E1[Ty-l~m]s

w .
- ~ (s)m (6s) .1 - y-1

By induction we find
my(s) - ml(s)ml(es)...ml(ay-ls) for y~ 1, (3.2)

and similarly
my(s) - m~l(s)m"1(e-ls) ...mMl(gYtls) for y ~ -1 . (3.3)

M
We can calculate m~(s) by splitting according to the values of S1,

finding
Ly(1) Ly(T )-Ly(1)

m0(s) - Es 1[T ~m]S
0

0
9-1L~`(T-1) 6Ly(T1)

- PE1[.I.-l~m]s i qs-lEl[Tl~m]s

- Pmyl(es) t qs-lml(e-ls) ,
and similarly

mó(s) - pslm?1(es) t qmi(e-15) , and
mo(s) - pSlm-1(es) t qs-lml(e-ls) .

(3.4)

(3.5)
(3.6)

x w
It remains to calculate m-1 and ml. Splitting according to the values

of S1 we find
1 e-1Li(T-2)

m-1(s) - qs-1 } pEl[T ~m]s-2
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- qs-1 } p012(6s) .
With (3.3) for y--2 this combines into my1(s) - qs-1 t pm~`1(8s)my1(s),
from which we obtain

myi(s) - gs-1 . (3.7)
i - pm`i(es)

Iterating ( 3.7) we can express 0~`i (s) into m~`1(8ns) by the continued
fraction

myi(S) - 9s-1,(1-pqs0~(1-...~(1-P9sn-2~(i-Pmyi(ens)))...)) . (3.8)

Let s 6 S. Then sk - 1 for k 2 k~(s), so ( 9ns)k - 1 for k 2-1 if

n~ kC t 1. As L~`(T-i,y) - 0 for y~-1, we see that (9ns)Ly(T-i) - 1 for

n 2 kCtl, so ~~`1(8ns) - m11(1) for these n. Hence m~`i can be calculated
explicitly on S by expanding (3.8) for sufficiently large n and using

my1(1) - 1 n P . (3.9}

(We have 011(1) - 1 or q by substituting s- 1 in (3.7) and arive at (3.9)
by properties (b) and (c)).

Although the continued fraction in (3.8) may look appealing ( similar
expressions have been observed by Gerl (1984) and Woess (1985)), it does
not seem tractable for further analysis. Considering m11 as determined by
(3.7) and (3.9) turns out to be more productive.

We will call equations like (3.7) shift equations. So 0~`i is determined
by shift equation (3.7) with boundary condition (3.9). We will see that
many other pgf's are determined this way. For example mi. It is not hard

to see that mi is determined by the shift equation

~i(s, - P (3.io)
i - qs-iml(e-1s)

with boundary condition
0i(1) - 1 n q . (3.11)
The corresponding formulas for A1 can be derived in the same way as

(3.7) and (3.9). By interchanging the roles of tl and -1, p and q, y and
T, 9 and 6-1 we can also find the formulas that determine 01, mti, and

4. Local times of finite excursions
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To allow a better interpretation of the results yet to come, we will make
use of the term 'excursion'. The first excursion is defined as the

T
sequence (Sn)nol. Depending on the value of T0, the excursion is said to
be finite or infinite. In Section 9 we will give the general definition of
the term 'excursion'. Until then we will concentrate on the first
excursion.

M
Let us consider m0, which is expressed into known functions by (3.4),

(3.5) and (3.6). To do a more pleasant analysis we will consider the terms
on the right hand side of these equations seperately. So we set.

x L (TO)
00}(s) :- E1CTO~m]1CS1~0]s ,

and
w

0~ (s) :- E1 1 sL (TO)0- - CTO~m] Cs1~0]-

(4.1)

(4.2)
.

The pgf's mOt denote the pgf's of the local times of finite excursions.
M N N

Note that ~0 - 00; } 00- .
Combining the identities mÓ~(6s) - p~~`1(82s) and

m0~(s) - Pmyl(es) - P. qs0

1 - pmyl(92s)

we find for m~t the shift equation

~~t(s) - pqs0

1 - 0~}(8s)
(4.3)

which determines my wíth boundary condition 0y (1) - pAq. (SubstitutionOt Ot -
of s- 1 in (4.3) yields m~}(1) - p or q, use properties (b) and (c)).

Combinin~; m~-(9-ls) - 9s-201(H-2s) nnd

mó-(s) - qs-imi(e-ls) - qs-i~ p
- 1 - qs-2~1(e-2S)

we find for 0Ó- the shift equation

0~-(s) - pqs-1

1 - 1~-(8-ls)
(4.4)

Lwith boundary condition m0-(1) - pAq.



In a similar way we can derive the formulas that determine 00-. By
interc}iangi~ig the roles of 41 and -1, p and q, r and .~, 9 and 9-1, we can
also find the formulas Lhat determine 0~-, m~t and 00;.

5. Applications

We now indicate some applications of the results in the previous sections.
As these results are recursive relations rather than explicit expressions,
they lead in the applications to more specific recursive relations, which
then have to be solved by adhoc methods. Applications of a different

~
character are given in Sections 10 and 11, where the structure of L(TO)
as a stochastic process is identified by its pgf.

5.1 Reobtaining the pgf of local time

Since there is a simple relation between descending local time and local
time, given by (2.1), we can derive a shift equation for m-1 directly from
(3.7).

Let s9s denote the infinite vector with ( s6s)k :- sksk~l. We can
rewrite m-1(s) as

0-1(S) - EnkEZ1LT-l~s~sk

L1(T-1'k) t Ly(T-l,k-1) - 1{0}(k)
- Enk6Z1LT-l~o~sk

L1(T-1'k) -1
- Enk8Z1LT-1~0~(sksk4l) s0
- s01~11(sBs) .

Combining this result with (3.7) yields

m-1(s) - s01. qs-1s0
1 - Pójl(6s62s)

qs-1 (5.1)1 - pslm-1(es)

Usin 0 yg 0}(s) - m0}(s6s) and (4.3) we find for 00t the shift equation

m~) - pqsls0 . (5.2)
1 - ~0}(8s)

Using the symmetry in Bernoulli walk, we also find

L(T-l,k)
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ml(s) - psl , and
1 - qs-iml(e-is)

(5.3)

pqs smo-(s) - -1 0 . (5,q)
1 - mo (e-ls)

Equations (3.2) and (3.3), together with shift equations (5.1) and (5.3).together with boundary conditions (3.9) and (3.11) (which also hold for w
instead of y) determine my(s) for all y. Furthermore, 4~- and mpt are
determined by (5.2), (5.4) and m~t(1) - p A q.

5.2 Specializing the pgf's

5.2.1 For random times T we obtain the defective ( one-dimensional) pgf of
T by

E1~TCm~(sl)L(T) - E1~TCm~s~y6ZL(T.Y) -
E1~Tw]sT '

Consequently,
T

Ay(s) :- F.1~T ~m~s y - my(sl) .
Y

S~~ac:inliring r~qunt.~ons (3.2). (3.3). (3.6). li.l) nnd (5.3) wr; reobY.nin
Lhc equrttiorrs by whlch I~ellcr (1~~1) cibttrins thc dcfecl,Ive pgf's oC T:

Y

A}y -(Atl)y for y 2 1,

A~(s) - PsA-1(s) t qsAl(s) .

A-1(s) - qs
1 - psA-1(s)

A1(s) - ps .
1 - qsAl(s)

Analogous results can of course be derived for the total number of
descents ~kFZLy(T,k) and for the total number of ascents FkEZLt(T,k).

5.2.2 For subsets A of Z Let us define the restriction operator RA: S a S
by (RAs)k :- sk if k 6 A, :- 1 else. Write Rk ~- R{k} for k 6 Z. The (one-
dimensional} pgf of L(T,y) is obtained from the pgf of L(T) by
substituting s - Rysl.

We now calculate the defective pgf
L(T~.Y)

Ay(s) :- E1~TO~m~1~S1~0~s .
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We have Ay(s) - mOt(Rysl). From (5.2) we obtain, as 9R sl - R sl,- y - y-1 -
Ay(s) - pq for y 2 2,

1 - Ay-1(s)

A1(s) - pqs .
1 - AO(s)

aiid by direct interpretation
AO(s) - sP[TO(m. 51~0] - s00}(1) -(PA9)s, and
Ay(s) - p A q for y S -1 .

We obtain explicit expressions for A by induction, or by standardY
difference equation techniques, yielding

Ay(s) - pqPy-1(s) for y 2 1,
Py(s)

where, with v:- pAq, w:- pvq,
wy-vy t(vy-2vwy)s for p x 2

Py(s) - { ,

2y(2)Y t(1-2Y)(2)Ys for p- 2

Analogous results can be derived for ascending and descending local
time.

5.2.3 Let M:- O~n~T Sn. Then [M~y] -[L(TO,y)-0] for y 2 1, so
0

P[M~y, TO~m, S1)0] - A (0) - {
y (y-1)~2y for p - 2

5.2.4 Let graphs of Bernoulli walks be represented by polYeons with slopes
tn~4 as in Feller (1971). Then 6:- ~yBZyL(TO,y) is the signed area
between this polygon and the time axis restricted to [O,TO]. The defective
pgf of e on [TOC~, S1)0] is obtained by

d(s) :- m0~((sy) )- E1 1 fl
sYL(TO,Y)

Y6z [TO~m] [sl~o] Y-o
e- E1[TO~m]1[51~0]s .

From (5.2) and 0n(sy)ysZ - sn(sy)yBZ we obtain

2n.1
mOt(sn(sy)ysZ) - pqs .

1 - m0i(sn{1(sy)ysZ)

Pq(Py-1-qy-1)~(PY-qy) for p X 2

0

Hence
8(s) - Pqs~(1 - Pqs3~(1 - pqs5~(1 - .
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From Perron (1954) we know that this infinite continued fraction
converges.

6. Local times up to stopping tiues when infinite
We define

r
Xy(s) :- E1[T -m ]sL (~) ,

y .
XM (s) :- E1 1 sL (m) , andOt [TO-~] [S1)0]-

.w L (v)XO- (s) :- E1[,I,O-v]1[51~0]s- .

(6.1)

(6.2)

(6.3)
We can calculate these pgf's by splitting according to the values of T1,
or to the values of S1, and by using symmetry.

Splitting according to Tlbeing finite or infinite yields

Xy(s) - 0~1(s)xy}1(g-ls) t xMl(s) for y~-1 .
Splitting according to S1 being 1 or -1 yields (especially for
y 6 {-1,0,1}):

(6.4)

Xy(s) - ll - 1{1}(y))pxY-1(es) t(1 - 1{-1}(y))qs-lxytl(e-ls) ,(6.5)

Xy(s) - (1 - 1{1}(y))pslxy-1(es) , (1 - 1{-1}(y))qs-lXyfl(e-ls) . (6.6)

Xy(s) - (1 - 1{1}(Y))Pslxy-1(9s) t (1 - 1{-1}(Y))qxytl(A-ls) . (6.7)
and likewise

Xót(s) - pXyl(es) , (6.8)
xot(s) - pslX-1(es) . (6.9)

Equation (6.9) also holds for Xt instead of x.
Using the symmetry in Bernoulli walk we can find similar equations for.

Xy with y~ 1 and for XO-.
From (6.4) and its counterpart for y~ 1, and From (6.5), (6.6), (6.~)

IF i! M
for y- 0, we see that X-1 and X1 determine Xy for all other y. Thus it

M A
remains to calculate x-1 and xl. Specializing (6.5) for y--1 yields

Xyl(s) - px12(6s). With (6.4) for y--2 this combines into

X~`1(s) -pm~`1(6s)X11(s) t pX11(9s), from which we find the shift equation

X1 (s) - pXyl(9s) .-1 - (6.10)
1 - p011(As)
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Similar shift equations can be found for Xi and X1. Shift equations for

x~, x~l and x-1 can then be found by the symmetry in Bernoulli walk. Here
we only mention

x 1(s) - pslx-1(es) (6.11)
1 - pslm-1(es)

The corresponding boundary conditions follow by direct interpretation:

X~1(1) - P~T-1-m~ - 1- m~l(1) - 0 v(1 - P) . (6.12)

X1(1) - P[T1-v] - 1- ml(1) - 0 v(1 - q) .

~. Branching processes

(6.13)

In Sections 10 and 11 we are going to compare local times of Bernoulli
walk with branching processes. To this end we study here the joint pgf's
of branching processes on the whole time domain.

A branching process with or without immigration is denoted by (Zn)n-0'
where Zn is the number of individuals in the nth generation. The (ntl)st
generation consists of the total progeny of the nth generation, the sum of
Zn iid random variables with pgf n, together with the immigrants at time
(ntl), whose number is an independent random variable with pgf S. The pgf
of the zeroth generation or 'patriarchate' ZO is denoted by a.

The distribution of (Zn)n-0' or equivalently, the joint pgf ~(s) :- EsZ

(with Zn :- 0 for n( 0) is determined by the pgf's a, ~ and n. When a and

~ or a, ~ and n vary, we will write ~a ~ or n~a~s. Fundamental choises for

a and ~ are a- 1 and a- t with L(s) :- s corresponding to empty and unit
patriarchate, and ~- 1 corresponding to no immigration. So ~t~l is the

joint pgf of the monopatriarchal branching process without immigrati.on,
and ~1 ~ that of the branching process with immigration starting with

empty population.
The ~a~~ are determined by the mutual relations
Ca 1(s) - a(~t~l(s)) . (7-1)

~a,~(s) - ~a 1(s)~1.~(s) . (7.2)
the shift equations

~ti 1(s) - so~n~l(6s) - s~n(~t 1(es)) . (7.3)
~1,~(s) - ~~,~(es) - ~~,1(es)~1,~(es) . (7.4)

and the boundary condition
~a.~(1) - 1 . (7.5)

The first four relations are obtained by the following observations:
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(7.1): the Z~ patriarchs generate Z~ independent monopatriarchal branching
processes without immigration;
(7.2): split the process into the process of descendants of the patriarchsand the independent process of descendants of immigrants;
Í7.3): Z~ - 1 and AZ is a branching process with patriarchate Z1 (with pgf
n) without immigration; apply (~.1);
(~.4): Z~ - 0 and 9Z is a branching process with patriarchate Z1 (with pgf
~) and immigration generating function ~; apply (~.2).

We see that ~t 1 is determined on S by (7.3) and (~.5), as

{t,l(9ns) - 1 for all sufficiently large n. After this, ~a~l is determined
bY (7.1), ~l,s bY (7.4) and (7.5). and finally {a,~ bY (7.2).

8. Conditioning on extinction

We concentrate on ~:- ~1,1, beint determined by the shift equation
~(s) - sCn(~(8s)) (8.1)

plus boundary condition ~(1) - 1. Other boundary conditions ~(1) - x
combine with (8.1) iff x- n(x). It is well-known that other solutions
than x- 1 exist in [0,1] iff n- ti or the average progeny n'(1) ~ 1, and
that the smallest solution (of at most two in case n Y ti) is the
probability of extinction, the event t:- nUl[Zn-O]. Define the defective
pgf ~t as

~t(s) :- EltsZ .

It is not hard to see that also ~t satisfies (8.1), with boundary
condition ~t(1) - Pt. Furthermore, if Pt ) 0 then

t
~ (s) - g(sZ~ t)
Pt

is the (nondefective) pgf of the branchin~ process conditioned on
extinction.
One easily verifies from ~t satisfying (8.1) that

~t(S) - s nt~~t(9s))
Pt ~ Pt

with
nt(s) :- n(sPt) (8.2)

Pt
So ~t~Pt satisfies ( 8.1) with n replaced by nt. We have obtained the
following lemma in the monopatriarchal case, which easily extends to
processes with more general Z.0
Lemma
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The branching process without immigration with pro~eny generating function
n conditioned on extinction is a branching process without immigration
with progeny generating function nt given by (8.2), provided that Pt ~ 0.

Example. Consider the pgf of the geometric distribution

Yp(s) :- q for s 6[0,1) , (8.3)
1 - ps

and define 7p(1) :- S?t~Yp(s). With n- 7p the above specializes to

Pt - 1 A q and 7t - Y . To limit the complexity of our notations weP P PA9
often denote YpAQ by Y.

9- Decomposition of the randoa walk

In the last four sections we discussed only defective pgf's of the local
times. In fact, we have only calculated the pgf's of the local times in
the first excursion. To extend the calculations to the whole time domain
we also have to consider the other excursions, if any.

Define T~0) :- 0 and, for k~ 0, T~k) .- inf{n2T~k-1)tl: Sn-O}. For

k) 0 T~k) denotes the waiting time for the kth return to zero. For i 8 N,
T(1)-T(i-1)

the ith excursion Ei is defined by Ei '- (ST(i-1)} )jol O if
0 ~

T~i-1) ~ m, Ei :- ~ else. Nonempty excursions Ei we will call positive or
negative, depending on S being 1 or -1. Depending on the value ofT(i-1)}1

0
T~1) these excursions are said to be finite or infinite. From property (a)
we know that these excursions are independent, and that the finite
excursions are even iid. The random walk (Sn)n-0 thus can be decomposed

into a sequence (Fi)i-1 of independent excursions.
This decomposition allows us to calculate the pgf's of local times up

to infinity. From property (b) we have Lx(o) - o if p- 1, so let us- - 2
define for p X Zw

ym(s) :- ES~ (m) -
~

By splitting ym according to TD - m or T~ ~ v we find
~r w r r

v~m(s) - xC(s) f mC(s)yv(s) .

(9.1)

so
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w
V~m(s) -

x0(s}
.

1 - 00(s)

10. Ascents, descents and branchinó processes

(9.2)

In this and the next section we will compare local times with branching
processes by means of the relations that exist between the respective
pgf's. To avoid trivialities we will asume that pAq z 0.

Consider shift equations (4.3) and (8.1). From (4.3) we have
1

00t(S) - s . pvq .0pAq y (es)1 - (pAq).mot
pAq

By substituting Y for n in (8.1) we see that Y{t 1 and 0Ó}~(pAq) satisfy

the same shift equation. Furthermore, both Y{L'1(1) and 0~t(1)~(pAq) are
equal to 1. So we have

~Ot(S) - { 1(s) .
pAq Y t, (10.1)

L1(T )
Note that m~}(s)~(PAq) -,~;(S)IP[TO~~, S1)0] - E(s 0 ~TO~m. S1)0). We
have obtained the following theorem.

Theorem 1
The conditional joint distribution of descending local time Ly(TO), given
that the first excursion is positive and finite, is equal to the joint
distribution of the monopatriarchal branching process without immigration
with progeny generating function Y.

With 'positive' replaced by 'negative', this theorem also holds for
ascending local time.

Descending and ascending local time in an infinite excursion can also
be described in terms of a branching process. For this purpose, consider
Y{1,Y'
Using successively equations (~.4), (~.1), ( 10.1) and the definition of Y,
we find

Y{1,Y(s) - Y{Y,1(9s)'Y{1,Y(9s)
- Y(Y{t,l(0s)).Y{1.Y(9s)

mo~(es)
- Y~ pAq ~.YC1~Y(Bs)
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pvq

1 - mot(es)
Before comparing this with the shift equation for X~}, we note that

X~} - 0 if p~ 2. So we asume p~ 2. As X~}(1) - pXyl(1) - p-q and

7~1,7(1) - 1, consider the shift equation for X~t(s)~(p-q)

- .7~1,7(9s) .

p X~}(8s)
xÓ}(s) - p-q

P-q 1 - m~t(9s)
which follows easily from equations (6.8) and (6.10). So

XOt(s) - 7C1 7(s)
P-q

(10.2)

Note that x~t(s)~(p-q) - xÓt(s)~P[TO-~, S1)0] - E(sLy(~)~TO-~, S1)0). We
have obtained the following theorem.
Theorem 2

If p) Z, then the conditional joint distribution of descending local time

Ly (TO), given that the first excursion is positive and infinite, is equal
to the joint distribution of the branching process with empty
patriarchate, progeny generating function 7 and immigration generating
function 7.

With 'positive' replaced by 'negative', and 'p ) 2' by 'p ~ 2', Theorem 2
also holds for ascending local time.

Theorems 1 and 2 generalize similar results found by Dwass (1975).
il. Local time as a branchint process

Also local time can be described as a branching process. In the case of
symmetric Bernoulli random walk (p - 2), this has already been done by

Rogers (1984). Because of the simple relationship (2.1) between descending
Local time and local time, we can extend Rogers's theorem to the general
case p 8 (0,1).

Combination of (2.1) and Theorem 1 gives us

Corollary 1
The conditional distribution of the sequence (L(TO,k))k-0, given that the
first excursion is positive and finite, is equal to the distribution of
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the sequence (Zk } Zk-1)k-0' where (Zn)n-0 is the monopatriarchal
branching process without immigration with progeny generating function T.

This corollary also holds for L((T0,-k))k-0 instead of ((TO,k))k-0, if
'positive' is replaced by 'negative'.

From (2.1) and Theorem 2 we find

Corollary 2
If p~ z, then the conditional distríbution of the sequence ((TO,k))k-f,
givun LhaL Lhe f'Irst excursion is posiLive and Int'inttc, is equnl to thc
distribution of the sequence ((1 t Zk } Zk-1))k-1' where (Zn)n-0 is the
branching process with empty patriarchate, progeny generating function T
and immigration generating function Y.

Corollary 2 also holds for (L(T0,-k))k-1 instead of (L(TO,k))k-1, if

'positive' is replaced by 'negative', and 'p ~ 1' by 'p ~ 1'2 2 '

12. Another derivation via martineales

Inspired by the proof of Rogers (1984) for p- 2 we rederive some of the
results of Sections 10 and 11 by martingale arguments. Let Fn be the
o-field generated by X1,X2,...,Xn, and let f: Z~ R be a function with
f(0) - 1, to be determined further below. Define for s 6 S

Ly(nATO) -
Mn '- f(SnATO)S 1[S1~0] '

Then we have
M1 - f(1)1[51~0]

and
pf(S tl) t qf(S -1)sE(Mn}1IFn) - n n Sn-1.Mn .

f(Sn)
So, if we pick f such that

pf(ktl) t qf(k-1)sk-1 - f(k) for k 6 N, (12.1)

then (Mn)n-1 (not (Mn)n-0) is a martingale relative to (Fn)n-1' Note that
all functions f satisfying the previous conditions form a one-dimensional
affine space. The extra condition f(k) - f(ktl) for k 2 k0 (with
k0 satisfying sk - 1 for k 2 k0) determines f completely, and makes
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~Mn)n-1 a bounded martingale. In this case, M~ :- lim M exists wpl, andna~ n
we have

E(MmIFl) - M1 .

L1(TC) ~y(m)
As Mm- f(o)s 1~S1~C TO~~~ t f(kC)s 1~S1~C TO-~~, the previous

identity is equivalent to

Ly(TC) Ly(m)
1[S1)0]~Es 1~TO~m~ t f(kC)Es 1~TO-0~~ - 1[g1~0]f(1) .

This equation is not particularly tractable in case there are two nonzero
terms on the left-hand side, but in case p~ 1(so T~ m w 1 it2 0 p )
simpifies to

Ly(T )
El~sl~o~s o - l~sl~o~f(1) ~ (12.2)

In order to calculate f(1) we define pk :- f(ktl)~f(k), so that pk - 1 for
k 2 k~ and p~ - f(1). We now can rewrite the recursive relation ( 12.1) as

ppkpk-1 } qsk-1 - pk-1 '
or equivalently,

pk-1 - sk-17(Pk) .
Iterating (12.3) we find

f(1) - P~
- s~7(s17(...sk -27(sk -1)" '))

0 0

(12.3)

- 7~t,1(3) ~ (12.4)
Combining (12.2) and (12.4) we reobtain Theorem 1 and Corollary 1, this
time restricted to the special case p 5 12'

A similar martingale argument proves the version of Theorem 1 and
Corollary 1 for ascending local time in a negative first excursion, in
case p 2 2.
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