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Abstract
In this paper a stochastic dynamic model of the firm developed by Ben-

soussan and Lesourne (1980) is extended to allow for adjustment costs. The
optimal solution is derived for different scenarios dependent on the shapes
of the expected earnings function and the adjustment cost function, and on
the different parameters of the model. It turns out that, besides pure
investment, dividend and saving policies, also mixed policies can be opti-
mal for the firm. The latter do not occur in the solution of the Bensoussan
and Lesourne model, and, therefore, the solutions derived in this papercome closer to reality.

1. INTRODUCTION AND MODEL FORMULATION

This paper deals with the influence of uncertain earnings and adjustment
costs on the optimal investment, dividend and saving policies of a firm.
The basis of the research carried out in this paper lies in two different
areas. On one hand we have the deterministic adjustment cost literature
where the influence of adjustment costs on dynamic investment behavior is
studied (see e.g. Gould (1968), Kort (1988a, 1990a)). On the other hand we
think of the application of stochastic dynamic optimization methods to
economic problems (see e.g. Lehoczky, Sethi and Shreve (1983), Pindyck
(1988) and Tapiero, Reisman and Ritchken (198~)). In the paper by Bensous-
san and Lesourne (1980) the investment~dividend~saving decision is studied
within a stochastic dynamic model of a self-financing firm (see also Kort
(1988b) and Kort (1989)). In Bensoussan and Lesourne (1981) this model was
extended to allow for borrowing, but, unfortunately, they had to rely on
numerical results in stead of analytical derivations to characterize the

1) The author thanks Raymond Gradus (Tilburg University) for his remarks.
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solution. An other related model can be found in Kort (1990b) where divi-
dend is an argument of a concave utility function.

In this paper we extend the model of Bensoussan and Lesourne (1980) by
incorporating adjustment costs with the aim to derive some analytical
results. The stochastic dynamic optímization model is as follows:

T
max EO( f D(t)exp(-it)dt)

I(t),D(t) 0

dK(t) - I(t)dt, K(0) - KO

dM(t) -(S(K(t))-I(t)-A(I(t))-D(t))dt 4 cS(K(t))dB(t), M(0) - MO

D(t) z o

I(t) z o

S{K(t)) - I(t) - A(I(t)) - D(t) 2 0

in which:

(1)

(2)

(3)

(4)

(5)

(6)

t : time
H- B(t) : a standard Wiener process with independent increments dB(t),

which are normally distributed with mean zero and variance dt
D- D(t) : dividend rate at time t
I- I(t) : investment rate at time t
K- K(t) : stock of capital goods at time t
M- M(t) : cash balance at time t
A(I(t)) : rate of adjustment costs, A(0) - 0, A'(I) ) 0, A"(I) ~ 0
S(K(t)) : usual deterministic earnings function, S(0) - 0, S'(K) ) 0,

S"(K) C 0, S'(0) ) i(1tA'(0))
i : shareholders' time preference rate (i ) 0 and constant)
T : horizon date, T- inf{t~M(t) 5 0)
a : a constant

The expressions ( 1), (2), (4) and ( 5) are the same as in the original model
of Bensoussan and Lesourne ( 1980). The firm behaves as if it maximizes the
shareholders' value of the firm which can be expressed as the mathematical
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expectation of the discounted dividend stream over the planning period. As
soon as the cash balance becomes negative the firm is bankrupt. When this
happens the horizon date is reached, which is in this way endogenously de-
termined (1). Capital stock can be increased by investment and depreciation
is left out for reasons of mathematical tractability (2). Investment is
irreversible (5).

The amount of earnings during a time period dt can be expressed as:

R(K(t))dt - S(K(t))dt t oS(K(t))dB(t) (~)

Hence the earnings consist of a deterministic (S(K)dt) and a stochastic
part (6S(K)dB). These earnings can be used for investment, which also gene-
rates adjustment costs, for dividend payments and for increasing the cash
balance. The value per unit of capital goods is fixed at one unit of money.
Taking all this into account we arrive at equation (3).

As in the model of Bensoussan and Lesourne (1980) it is also assumed
here that the firm cannot spend more money on investment and dividend than
the expected earnings. This is achieved by (6) and the difference with the
comparable constraint in Bensoussan and Lesourne (1980) is the occurrence
of adjustment costs.

2. THE OPTIMAL POLICIES

To solve the model we use dynamic programming. To do so we need a value
function which is defined by:

T
V(M(t),K(t)) - max E( f D exp(-is)ds)

I,D20 t t
ItA(I)tDSS(K)

(8)

V is the expected discounted dividend stream during a time interval that
begins at an arbitrary instant t E[O,T] and ends at the horizon date T. V
can be interpreted as the value of the firm at time t. Because the horizon
date T depends completely on the value of M, we can conclude that V depends
only on M and K, and not explicitly on t.
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Throughout the rest of the paper we assume that the partial derivatives
VM, VK, V~, V~ and V~ exist. Now, the Hamilton-Jacobi-Bellman equation
equals (see also Bensoussan and Lesourne {1980), pp. 244-245):

iV - max {D t VM(S(K)-I-A(I)-D) t VKI} t 2 62S2(K)V~ (9)
I,D20
ItA(I)tDSS(K)

Because the horizon date is determined by M becoming equal to zero, the
boundary condition can be expressed as:

V(O,K) - 0 (10)

What we have to do now is to determine the control variables I and D in
such a way that the value of the firm V is maximized, thus that within
expression (9) the part between brackets is maximized. To do so, we solve
for every fixed pair (K,M) the following static optimization problem:

max{D t VM(S(K)-I-A(I)-D) t VKI} (11)
I,D

s.t. I Z 0, D Z 0, I t A(I) t D S S(K) (12)

Figure 1 illustrates the set of feasible pairs (I,D). The optimal solution
can only lie on the corners, on the edges or in the interior, i.e. there
are seven possible cases to investigate. In Appendix 1 the Kuhn-Tucker
conditions are used to transform these cases into the optimal policies of
the firm. It turns out that the cases 6 and 7 do not lead to well defined
policies, but the conditions under which these cases occur imply that it is
also optimal to carry out two of the other policies. This derivation of the
optimal policies has strong similarities with step 1 of the so-called two-
step procedure, which can be used to solve a certain class of deterministic
optimal control models (see e.g. Hartl (1988)).
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Figure 1. The set of feasible pairs (I,D).

In Appendix 1 we show that five candidate policies have to be considered
for optimality. It turns out that one of them is optimal depending on the
relationship between:

VM : increase of the value of the firm due to one extra dollar
kept in cash

VK~(ItA'(I)) : increase of the value of the firm due to an additional
investment of one dollar corrected for the fact that this
generates additional adjustment costs

1 : the profitability of an additional dollar used to in-
crease dividend

Before presenting the optimal policies, we first define the following func-
tion:

C(I) - I t A(I)

in which:

(13)

C(I) : total cost function



6

From (4), (6) and (13) it can be concluded that the firm invests maximally
if it holds that:

I - C-1(S(K))

The five optimal policies are the following:

Investment policy: dK - C-1(S(K))dt, dM - oS(K)dB, D- 0
optimal if:

VK~{1 t A'(C-1(S(K)))} z max(1,VM)

(15) implies that for this policy it is marginally better:
- to invest maximally than to pay out dividend;
- to invest maximally than to increase cash.

Cash policy: dK - 0, dM - S(K)dt t 6S(K)dB, D- 0
optimal if:

(14)

(15)

VM Z max(1,VK~{1 t A'(0)}) (16)

Thus for this policy ít is marginally better:
- to increase cash than to pay out dividend;
- to increase cash than to invest.

Dividend policy: dK - 0, dM - oS(K)dB, D- S(K)
optimal if:

1 2 max(VM,VK~{1 . A'(0)})

Due to (1~) we can conclude that for this policy it is marginally better:
- to pay out dividend than to increase cash;
- to pay out dividend than to invest.

Investment~dividend policy: dK - Idt, dM - 6S(K)dB, D- S(K) - I- A(I)
optimal if:



VK~{1 t A'(I)} - 1 Z VM (18)

Due to (18) and the strict convexity of A(I) it is marginally better:
- to use a part of the expected earnings to invest and the rest for paying

out dividend, than to increase cash;
- to use a part of the expected earnings to invest and the rest for paying

out dividend, than to use all expected earnings for investment;
- to use a part of the expected earnings to invest and the rest for paying

out dividend, than to use all expected earnings for paying out dividend.

Investment~cash policy: dK - Zdt, dM -(S(K)-I-A(I))dt t aS(K)dB, D- 0
optimal if:

VK~Í1tA'(I)) - VM 2 1 (19)

From (19) and the strict convexity of A(I) we derive that it is marginally
better:
- to use a part of the expected earnings to invest and the rest to increase
cash, than to pay out dividend;

- to use a part of the expected earnings to invest and the rest to increase
cash, than to use all expected earnings for ínvestment;

- to use a part of the expected earnings to invest and the rest to increase
cash, than to use all expected earnings for increasing cash.

j. THE OPTIMAL SOLUTIONS FOR DIFFERENT SCENARIOS

In the previous section we have established the five policies that can
be optimal. As already stated in Section 2, the value of the firm V only
depends on M and K and not on t. Then the same holds, of course for the
partial derivatives VM and VK. Now, we can conclude from the conditions
(15) through (19) that it completely depends on the values of M and K which
of the five policies is optimal for the firm to carry out. Hence, we can
divide the M-K plane in five regions, each of them belonging to one of the
five candidates for an optimal policy, which are collections of those
values of M and K for which the corresponding policy is optimal. In this
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way we get the following regions: investment-region, cash-region, dividend-
region, investment~dividend-region, investment~cash-region. In what follows
these regions will be denoted by I-region, M-region, D-region, I~D-region
and I~M-region, respectively.

Due to the conditions (15) through (19) and the assumption that the
partial derivatives V~, VMM and V~ exist, we can establish the following
general features for the positions of the regions in the M-K plane:

(F1): The boundary between the M-region and the I-region does not exist for
K positive. This is because in the M-region it holds that VM Z VK~
{1 t A'(0)} and in the I-region we have VM 5 VK~{1 t A'(C-1(S(K)))}.
Due to the stríct convexity of A(I) we can conclude that for K posi-
tive we get A'(C-1(S(K))) ) A'(0). Hence, in the M-K plane the M-
region and the I-region can only hit eachother for K equal to zero.
Therefore for K positive there will always an I~M-region be situated
between the M-region and the I-region.

(F2): For K positive the same reasoning as in (F1) can be applied to argue
that the I~D-region must always be situated between the I-region and
the D-region.

(F3): For K positive the boundaries between the M-region and the I~M-region
(VM - VK~{1 t A'(0)} which holds on this boundary because both (16)
and (19) must be satisfied) and between the I-region and the I~D-
region (VK~{1 t A'(C-1(S(K)))} - 1) do not intersect because it can
never be optimal to pay out dividend in a region that hits this in-
tersection point (this because the two equalities imply that VM ) 1).

(F4): Following the same reasoning as in (F3) for K positive, we can argue
that the boundaries between the I~M-region and the I-region (VM -
VK~{1 t A'(C-1(S(K)))}) and between the D-region and the I~D-region
(VK~{1 t A'(0)} - 1) do not intersect.

Notice that (F1) implies that for K positive the boundary between the M-
region and the I~M-region and the boundary between the I~M-region and the
I-region do not intersect, and that the implication of (F2) is that the
boundaries between the I-region and the I~D-region and between the I~D-
region and the D-region do not intersect.
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Except that the contents and the proof of the Propositions 3 and 4 are
slightly adjusted for the presence of adjustment costs, the following pro-
positions and their proofs also hold for the original Bensoussan-Lesourne
model without adjustment costs. Therefore, here we only present the propo-
sitions and for their proofs we refer to Kort (1989).

Proposition 1
If l~i - 6~~ ) 0, only the M-region includes the K-axis.

Proposition 2
The boundary between the M-region and the D-region is given by M- pS(K),
in which:

p: a constant, which satisfies:

exP((rl-r2)p) - L1 - r2(l~i-cI~)~~C1 - rl(l~i-a~~)~ (2D)

where

rl - ~-1 t 1t2o2i~~62

r2 - ~-1 - 1t2Q2i~~o2

(21)

(22)

Proposition 3
The boundary between the I~D-region and the D-region increases in the M-K
plane and lies below a horizontal asymptote which is situated on the level
K", determined by S'(K~) - i(1tA'(0)). The D-region lies at the left-hand
side of this boundary.

At the intersection point ( M,K) of the boundary between the I~D-region
and the D-region and the boundary between the M-region and the D-region
(M - pS(K), see Proposition 2) it must hold that S'(K) (l~i-6~~-p) -
1tA'(0).
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Proposition 4
The boundary between the M-region and the M~I-region starts at the origin
and ends at the intersection point (M,K) of the boundaries between the M-
region and the D-region and between the I~D-region and the D-region.

In addition we developed the following propositions, from which the proofs
are presented in Appendix 2:

Proposition 5
The D-region and the I~M-region hit eachother at one and only one point,
namely at (M,K), which is the intersection point of the boundary between
the I~D- and D-region and the boundary between the M- and D-region (see
Proposition 3).

The same holds for the M-region and the I~D-region.

Proposition 6
If the I-region exists for M~ m then the boundary between this region and
the I~D-region is situated at a level K- K for M~ m, where K is given by:

n~S K ~1 t A,(C-1(S(K))) t C-1(S(K))A„(C-1(s(K)))7 -
i{1tA'(S(K))}

1 t A,(C-1(S(K))) (23)

From (23) we derive the following sufficient condition for K being posi-
tive:

S'(0) ~ i {1 i A'(S(K))} (Z4)

Notice that (24) is not a sufficient condition for an investment policy
being optimal when M is sufficiently large and K is below K. However due to
economic reasons it is clear that this is the preferable policy, because
the expected marginal earnings are high while there is no immediate risk
for bankruptcy. Therefore, in the sequel we take the view that the firm
invests maximally when K is small and M sufficiently high.
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From the propositions 3, 4 and 5 it is clear that the intersection point
(M,K) of the boundary between the M-region and the D-region and the boun-
dary between the I~D-region and the D-region plays a crucial role in the
optimal solution. We first pay attention to the solution for the scenarios
where this intersection point exists. From Proposition 3 we obtain that
existence is assured if the following inequality holds:

S'(o)(l~i-6~~-p) ) 1 t A'(o) (25)

The solution for this scenario is depicted in Figure 2. Notice that (25)
implies that l~i - o~~ ) 0, so according to Proposition 1 the M-region
includes the K-axis. The reader can check for him~herself that the features
(F1)-(F4) and the remaining propositions are also satisfied. Concerning
this solution it has to be remarked that we cannot prove anything about the
shape of the boundary between the I~M-region and the I~D-region, except
that it ends at (M,K) (cf. Proposition 5). In Figure 2 we assume that it
lies on the curve M- pS(K) which seems reasonable because, like on the
boundary between the M-region and the D-region, on this boundary it must
also hold that VM - 1(cf. ( 18) and (19)).

Figure 2. The optimal solution for the scenario where it holds that
S'(0)(l~i-a~~-p) ) 1 t A'(o).
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The solution depicted in Figure 2 has some similarities with the correspon-
ding solution of the original Bensoussan-Lesourne model without adjustment
costs (see Kort (1988b), Figure 4.1. Panel D), namely that the firm saves
money if the amount of equipment is high enough while the cash-situation is
poor, that the firm invests if the amount of equipment is low while there
is plenty of cash to limit the risk of bankruptcy and that the firm pays
out dividends if M and K are such that the expected marginal earnings are
too small to justify additional growth and the amount of cash available
high enough to guarantee a sufficiently safe situation. The difference is
that the present solution contains two more regions in which it is optimal
to carry out a mixed investment~saving-policy (I~M-region) and a mixed
investment~dividend-policy (I~D-region), respectively. Concerning the I~M-
region, on its boundary with the M-region it holds that I- 0, and on the
boundary with the I-region the firm invests at its maximum implying that
I t A(I) - S(K). In between investment is such that VM - VK~(1tA'(I)), so
the increase of the value of the firm due to one extra dollar in cash is
equal to the increase of the value of the firm due to one extra dollar of
capital goods, corrected for the fact that additional adjustment costs must
be paid in order to increase the stock of capital goods.
Concerning the I~D-region, on its boundary with the I-region it holds that
I t A(I) - S(K) and D- 0 and on the boundary with the D-region I- 0 and
D- S(K). In the rest of the region I and D are such that the marginal
profitability of an additional dollar used to increase dividend (- 1) is
equal to VK~(1tA'(I)).
In the evolution of the firm over time M and K are continuous (cf. (2)-
(6)). Therefore, the existence of the two intermediate regions where mixed
policies are optimal, imply that the investment level develops gradually
over time. Such an investment behavior is also concluded from the determi-
nistic adjustment cost literature (cf. Kort (1990a)), in which it is shown
that the investment rate is a continuous function of time.
In Figure 2 it can also be seen that the firm never invests when K is grea-
ter than K". The reason is that, due to the concavity of S(K), the expected
marginal earnings (S'(K)) then fall below the minimal return the sharehol-
ders demand (- i(1tA'(0))). This feature also plays an important role in
deterministic adjustment cost models.
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Next, we study the solution under the following scenario:

S'(0)(l~i-6~~-p) ~ 1 t A'(0) and l~i - 6~~ ) 0 (26)

From Proposition 1 we obtain that the M-region is still the only region
that includes the K-axis, but due to Proposition 3 we can conclude that now
the intersection point (K,M) does not exist. Hence, the general features
(F1)-(F4) and the Propositions (1)-(6) now lead to the solution, which is
depicted in Figure 3.

Figure 3. The optimal solution for the scenario where it holds that
S'(0)(l~i-6~~-p) ( 1} A'(0) and l~i - a~~ ~ 0.

The difference between this solution and the solution of Figure 2 is that
here it is optimal to pay out dívidend for some low levels of capital stock
and cash balance. The reason could be that in this solution the firm has to
deal with larger values of time preference rate i and rísk parameter a(cf.
(25, (26) and the fact that tedious calculstions show that both the signs
of the derivatives from p to i and a are not clearly positive or negative
(see also Kort (1988b), Appendix 2)). A high time preference rate implies
that the shareholders of the firm can obtain a high return through inves-
ting there money outside the firm and therefore they like to receive lots
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of dividends. A high a means that the outcome of the firm's earnings is
very uncertain (cf. (~)). Hence, for low levels of M the chance of going
bankrupt is very high. Therefore, the shareholders want to obtain dividends
as soon as possible, thus before the bankruptcy occurs.
In Figure 4 the solution is depicted, which is optimal under the following
parameter configuration:

l~i - a~~ ( 0 (27)

Hence, for this solution the values of i and a are even higher than for the
solution presented in Figure 3. Here, the outcome of the firm's earnings is
so uncertain that the shareholders believe that even increasing cash at a
maximal rate cannot prevent bankruptcy when M is small. Instead, the share-
holders want to receive dividends that they can use for investment outside
the firm in order to generate a return which equals the high time preferen-
ce rate i. The fact that only the D-region includes the K-axis follows from
the proof of Proposition 1(see Kort (1989), p. 161).

Figure 4. The optimal solution for the scenario where it holds that
l~i - a~~ ~ 0.
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4. CONCLUSIONS

In this paper the stochastic model of the firm by Bensoussan and Lesourne
(1980) is extended by incorporating adjustment costs. The influence of both
adjustment costs and uncertainty on the behavior of the firm was already
modelled by Pindyck (1982), but our approach differs in that we also take
the possibility of bankruptcy into consideration. This enabled us to ana-
lyze the firm's cash decision.
Besides pure investment, dividend and saving policies, the results obtained
in this paper show that, contrary to Bensoussan and Lesourne (1980), a
mixed investment~dividend policy and a mixed investment~saving policy can
also be optimal for the firm. Therefore, the solutions in this paper have a
richer structure and come closer to reality, compared to those resulting
from the Bensoussan and Lesourne model.
As it is now, the financial side of the model is somewhat underdeveloped.
Therefore, an interesting topic for future research could be to incorporate
external financing possibilities like borrowing and issuing new shares.

APPENDIX 1. Tf~ OPTIMAL POLICIES

In order to solve problem ( 11)-(12) we set up the Lagrangian:

L- D(1-VM) t I(VK-VM) - A(I)VM t S(K)VM f~lI t a2D f a3(S(K)-I-A(I)-D)
(A1)

The Kuhn-Tucker optimality conditions are:

LD - 1- VM t~2 - a3 - 0 (A2)

LI - VK - VM(1tA'(I)) t ~1 - ~3(1tA'(I)) - 0 (A3)

alI - o , ~1 z 0 (A4)

a2D-0 , a2Z0 (A5)

~3(S(K)-I-A(I)-D) - 0 , ~3 2 0 (A6)
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We now derive the conditions for which cases 1-7 of Figure 1 can occur.

Case 1: I) 0, D- 0, I t A(I) - S(K) ~ investment policy.

In this case we have ~1 - 0 from (A4) and I- C-1(S(K)) from (13). Now, we
obtain from (A3):

VK~{1 t A'(C-1(S(K)))} 2 VM

From (A2) and ( A3) we can derive:

a2 --1 . VK~{1 t A'(C-1(S(K)))} 2 0

(A7)

(A8)

(A~)-(A8) lead to (15).

Case 2: I- D- 0, S(K) - I- A(I) - D) 0~ cash policy.

Here ~3 - 0 because of (A6). Hence, (A2)-(A3) lead to (16).

Case : I- 0, D) 0 D- S(K) ~ dividend policy.

Here ~2 - 0(cf. A5). Hence, (A2) leads to:

VM 5 1 (A9)

From (A2)-(A3) we can conclude:

~1 - 1 t A'(0) - VK 2 0 (A10)

(A9)-(A10) lead to (1~).

Case 4: I) 0, D) 0, I t A(I) t D- S(K) ~ investment~dividend-policy.

Here al - a2 - 0 because of (A4)-(A5). Hence (A2)-(A3) lead to (18).
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Case : I~ 0, D- 0, I ~ A(I) C S(K) ~ investment~cash-policy.

Here al - ~3 - 0 because of (A4) and (A6). Now ( A2)-(A3) lead to (19).

Case 6: I- 0 D) 0, S(K) - D ~ 0.

Here a2 - a3 - 0 due to ( A5)-(A6). Now ( A2)-(A3) lead to:

1- VM 2 VK~{1 } A'(0)} (All)

Here it is not clear for the firm what to do, because the marginal value of
dividend pay out equals the marginal value of saving money. Therefore the
firm can adopt either a pure cash policy or a pure dividend policy. This is
optimal because (All) does not contradict (16) or (1~).

Case : I) 0, D~ 0, S(K) - I- A(I) - D ~ 0.

Here ~1 -~2 - X3 - 0 due to (A4)-(A~). Now (A2)-(A3) result in:

1- VM - VK~{1 t A'(I)} (A12)

Due to the same reasoning as in Case 6 it can be concluded that under (A12)
both an investment~dividend-policy as well as an investment~cash-policy are
optimal.

APPENDIX 2. THE PROOFS OF THE PROPOSITIONS 5 AND 6

Proof of Proposition 5

In the D-region it holds that D- S(K) and I- 0. If we substitute these
values into (9) we obtain:

iV - S(K) 4 2 62S2(K)Vh~f (A13)

Solving this differential equation implies:
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V- S(K)~i t cl(K)exp[M~~oS(K)] t c2(K)exp[-M~~QS(K)] (A14)

From the previous propositions we know that the D-region exists for finite
K and infinite M. Due to (8) we derive that V must always have a finite
value, so from (A14) we can conclude that cl(K) - 0. From (A14) we also
obtain:

VM - -cZ(K)~ exp[-M~~6S(K)]IQS(K) (A15)

Due to Proposition 2 we know that the boundary between the M-region and the
D-region (VM - 1(cf. (16), (1~))) is given by M- pS(K). After substitu-
tion of M- pS(K) into (A15) and equating VM to 1 we obtain the following
expression for c2(K):

c2(K) - -6S(K)exp[ 2i~a]~~

Knowing cl(K) and c2(K) we now get from (A14):

VK - S'(K){l~i - (~~~tM~S(K))exp[(p-M~S(K))~~o]}

VM - exP[(P-M~S(K))~~e]

(A16)

(A17)

(A18)

On the boundary between the D-region and the I~M-region it must hold that:

1 - VM - VK~{1 . A'(0)}

Equating VM to 1 gives that for this boundary it must hold that:

M - pS(K)

(A19)

(A20)

After substitution of (A20) into (A1~) and equating VK to 1 t A'(0) we get:

S'(K){l~i - o~~ - p} - 1 t A'(0) (A21)

Comparing these results with Proposition 3 we conclude that (A20) and (A21)
are exactly the conditions that fix (M,K).
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It is left to the reader to check that manipulating the information for the
M-region in the same way as done above for the D-region leads to the con-
clusion that (M,K) is the only point in common for the M-region and the
I~D-region too.
q.e.d.

Proof of Proposition 6

On the boundary between the I-region and the I~D-region it holds that I-
C-1(S(K)), D- 0 and VK - 1 t A'(C-1(S(K))). Combining this with (9) leads
to:

iV -{1 t A'(C-1(S(K)))}C-1(S(K)) t 2~252(K)VMM

This differential equation can be solved:

V-{1 t A'(C-1(S(K)))}C-1(S(K))~i t c3(K)exp[M~~dS(K)] ~

t c4(K)exp[-M~~~S(K)]

(A22)

(A23)

From (F2) in Section 3 we obtain that if it exists this boundary is situa-
ted below the D-I~D boundary, so it then exists for infinite M and finite
K. Therefore c3 must be equal to zero, because V must have a finite value.
After differentiating (A23) to K and equate this to 1 t A'(C-1(S(K))) we
obtain the following expression for the I-I~D boundary:

S'(K) {1 t A~(C-1(S(K))) f C-1(S(K))A~~(C-1(S(K)))} tiC'(S(K))

M~ S'(K)c4(K)
t c4(K) ' 2 exp[-M~~aS(K)] - 1 t A~(C-1(S(K)))

65 (K)
(A24)

Because c4 and c4 are finite (this follows from the assumption that Vk
exists) taking M to infinity in (A24) leads to expression (23).
q.e.d.
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