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1. Introduction.

In this paper we analyse an inventory model having as lead time demanddistribution a Schmeiser-Deutsch distribution (S.D. distribution) [4].We demonstrate that this type of distribution is very suitable as itcan have many different shapes.
After developing a new method for estimating the parameters of thisdistribution, we derive the explicit cost function of the model asfunction of the order quantity and the reorder level. Properties ofthis function are given together with a global algorithm to find tlleoptimal order quantity and reorder point.

2. A static inventory model with stochastic lead time demand.

We analyse a model under the following assumptions :
a. ~he system is of the continuous review type,
b. Zhe order quantity is not restricted.
c. T}~e purchase cost b(q) is a continuous differentiable function ofthe order quantity q.
d. Zhe lead time of an order, also called the delivery lag, hasdistribution function L(h).
e. Zhe order quantities are assumed to be delivered in the order inwhich they are purchased.
f. ~Yie demand per unit of time has an arbitrary distribution function.The expectation of the demand per unit of time is r.
g. ~he holding cost per unit inventory per unit of time is c1.
h. Unfilled demand during the lead time is backlogged. The shortagecost per shortage unit per unit of time is c2.
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The criterion used is minimization of the average cost per unitordered. 7Yie cost fUnction looks as follows :

q xfY(2.1) K(x,q) - (c1I(r.q)).! L j (xty-z)f(z)dz]dy t
0 0

~
(c2I(r.q)).~ ~ f (z-x-Y)f(z)dz]dy t b(q)Iq.0 xty

where :
f(x) : the density function of the demand during the lead time;x : the order quantity expressed in terms of units of economicinventory.
b(q) : the ordering cost. We assume that b(q) - c0 t q.a(q), with a(q)a two times differentiable function.
The cost function for this model can be derived in the followingmanner. Let us look at a cycle starting at the moment of delivery ofan order and ending just before the next delivery. TYie inventory atthe beginning of this cycle equals xfy-z if we assume that the demandduring the lead time is z, the reorder level is x and the orderquantity is q. The order quantity at the erx3 of a cycle is x-z.~Graphically this looks as follows :

t without backsales ~ with backsales
xtq-z

tq-z

xfy-z

x-z
0

X-Z------ -- ----

~------------------------~ ~------------------------~cycle cycle
Figure 2.1 : Zhe inventory level during a cycle.

The average time that there is a certain inventory level is equal tothe average time between two successive demands, 1Ir. If the demand ata specific moment is more then one unit this is considered as demands
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with time between successive demands of zero. The cost of an inventory
level of xty-z is equal to :

(c1~r).(xty-z), if xty-z Z 0

and
(c2~r).(z-x-y), if xty-z C 0.

When z, the demand during the lead time, is a stochastic variable and
the order quantity is considered as a continuous variable, ti~en the
total costs per cycle are :

q xfy 4
J[(c1~r) j( xty-z)f(z)dz t(c2~r) j(z-x-y)f(z)dz]dy t b(q) .
0 0 xty

The average costs per unit ordered are then equal to (2.1).
Kriens and de Leve [1], have studied a model with the same cost
function. However, the assumptions they rrade are more severe : they
assume a Poisson distribution for the demand during a fixed period of
time, with an average demand per unit of time of r units. In our
concept this is superfluous. Zhe end equations they have to solve to
determine the optimal order quantity and reorder level are :

~ q ~r
(2.2) (1~q ) S F(x fY)dY - c1~(c1tc2)

0

(2.3) c1~(2.r) - [(c1fc2) I (r.(q~)2)]. ~Y.(1-F(x ty))ày
0

~ 2
- co~(q ) t ~b(q)I óq - ~,~

where
q-q

(2.4) F(x~ t Y) - xf yf(z)dz.

In solving the equations (2.2) and (2.3) two causes can lead to
difficulties :

1. In choosing a specific form for the density function f(z), it is
advisable to choose one that has an explicit expression for its
distribution function F(z), because this simplifies numerical matters
considerably.
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2. The total cost function K(x,q) should behave well otherwise thesolution of the equations is not necessarily the solution of theproblem. In other words, only in the situation that K(x,q) fulfils thenormal conditions for the second derivatives, the equations (2.2) and(2.3) give, sufficient and necessary conditions for the minimizingproblem.

Distribution functions of the demand during the lead time that fulfilsthese conditions should also fit the real world distributions ofdemand reasonably well.
We have chosen the four parameter S.D. distribution [4], whoseproporties are summarized in the next section. ~iis distributionsatisfies in many ways the above remarks. Zhe S.D. distribution is canassume many shapes. ~,ro families of distributions which do alsoinclude a complete range of shapes are due to Pearson [3] arid Johnson[2]. However, those systems are not well suited because in general anexplicit form of their conditional expectations is missing.

3. Properties of the Schmeiser-Deutsch distribution.

Schmeiser and Deutsch [4] have recently developed a versatile systemof four parameter distributions. Zhe distribution's versatility in
assuming a wide variety of shapes makes it a reasonable model for awide range of processes. Shapes ranging from U-shaped distributions tothe uniform distribution, also heavier tailed and skewed distributions
are attainable.
The density is defined as follows

(3.1) f(x) - 1~(12.13) I (11-x)~12 I
(1-13)~13

13 13where, t- 11-12.14 , p- 11t12.(1-14) , x E[ t,p ],
12 , 13 ~ 0;- aoC 11 ~4 ; Os 14 C 1 .
The distribution function looks as follows :

(3.2) F(x) -

The inverse distribution function is :
13

11 - 12.(14-w) ,
-1

(3.3) x - F (w) - 13
11 t 12.(w-14) ,

1~13
14 - [ (11-x)~12 ] , t ~ x ! 11 ,

1~13
14t [ (x-11)~12] , 11~x~p,

a -

w C 14,

w ~ 14.
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In figure 3.1 some characteristic shapes are illustrated.

fíx~ - f(x)
4
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.05

.04
11-100; 12-20
13-1.2; 14-.7

~ 91 94 97 101 104 107
skew to the left

f(x)

.04 ~ ~ .0211-100; 12-20
13z1.2; 14-.5n ~

93 9 99 102 1 08 1 90 93 9 99 102 105 108
synmetric with mode syrmietric with antimode

Figure 3.1 Some characteristic shapes ofthe Schmeiser-Deutsch distribution.
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The central moments of x are as follows:
~.1. - 11 t E(x ~ 11 ~0) ,

2 2 2
~ - E[x ~ 11~0] - E[x ~ 11~] ,

~d, - E[x3 ~ 11~] - 3.E[x2~ 11~].E[x ~ 11~] t 2.E[x ~ 11-0]3,
3 - - - -

~- E[x4 ~ 11~] - 4.E[x3~ 11~].E[x ~ 11~] t
4

t 6.E[x2~ 11-0].E[x ~ 11-0]2 - 3.E[x ~ 11-0]4,
where,

k k k k.13t1 k.13t1E[x ~ 11-0] - (12 )~(k.13 t 1).[ (-1) .14 t ( 1 - 14 ) ] .

The third and fourth standardized moments are:
3 4

(3. 4) ol : -~ ~ Q- and a-~ ~~,
3 3 4 4which are measures of skewness and kurtosis respectively.

TYie location and the spread of the distribution are determined by 11and 12 respectively. The shape of the distribution is determined by :
13

-( 14-p ) , ifpil4,
(3.5) g(13,14) -

13
( p-14 ) , ifp~ 14.

S~mmetric distributions correspond to 14 -.5. For 13 ~ 1 and 14 ~.5the distribution is skew to the right; for 13 ~ 1 and 14 ~.5 it isskew to the left. For 13 ~ 1 the direction of skewness is reversed.For 13 ~ 1 the unique mode i s at x- 11, 13 - 1 gives a uniformdistribution and for 13 E(0,1) the unique antimode is at x- 11.M important property of the S.D. distribution is :
Gíven k- k and f(z) is a S.D. density function , x can be determinedfran

x 13
ó f(z)dz - k , for 11 - 12.14 - 0,
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as follows
13

-1 (11 - 12.(14 - k) , k s, 14,
x - F (k) - 13 ~

11 t 12.(k - 14) , k~ 14.

4. Fitting a Schmeiser-Deutsch distribution function.

Schmeiser and Deutsch [4] propose a modified method of moments to
estimate the parameters of the distribution function. 7fiey use a two
stage procedure where in the first stage the parameters 13 and 14 are
estimated via a least squares fit on the standardized third and fourth
moment . In the second stage the parameters 11 and 12 are calculated
from equalization of the sample mean and variance to their population
counterparts expressions in terms of the parameters.
This method has two severe disadvantages :

first, this criterion is based on a good fit of the first four moments
and not on a fit of the total distribution;
second, the proposed procedure is a graphically one and so not very
suitable for a computer decision model.

Therefore we propose another way to fit the distribution fluzction to
the actual data.
Suppose we have a set of observations x1,....,xn, which are ordered as
an increasing sequence . x(1),....,x(n).We want to fit the
distribution function to the observations so we can use a least
squares method or a chi-square method.
At first sight the l.s. method is not as complex as the chi-square
one, so we develop a method to solve the first problem. Zhis leads to
the following problem:

minimize
n 2

z - ~(F[x(i)] - i~n)
i-1

subject to the constraints on the parameters.

F[x(i)] is the S.D. distribution function in the ordered point x(i).
The main difficulty of this problem is caused by the fact that the
S.D, distribution function is not continuous differentiable, so the
parameters are difficult to calculate. The precise problem to solve
is:
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minimize
m 1~13 2

z - ~ ( 14 - [ (11-x(i))~12 J - i~n ) t
i-1

n 1~13 2
~ ( 14 t [ (x(i)-11)~12 ] - i~n )
i-mt1

subject to

and

12 ~ ~, 13 ~ ~ , ~ ~ 14 i1,

m- max [ i ~ x(i) ~ 11 ],
i

13
x(1) ~ 11 - 12.14 ~

13
x(n) s 11 t 12.14 .

The methods to solve this kind of problems are mostly based on
Newton-like algorithms.The difficulty arise through the occurence of
parameters in the summation borders. In fact m is a function of 11.
A method to solve the above problem, is the following two stage
iterative procedure :
1. Start with an estimate for 11, 11, e.g. the sample mode; and thus

m- max [ i~ x(i) ~ 11].i
2. Solve the problem : minimize z under the given constraints for the
given value of m. ~is gives an approximation of the optimal values of
11, 12, 13 and 14 :

11, 12, 13 en 14.

3. If x(m) C 11 ~ x(mt1), then the solution is optimal and the minimum
is reached . If not, then if :

11 - x(m), then m:- m-1, and return to step two;
11 - x(mt1), then m- mt1, and return to step two.

In step two we have to solve a convex optimization problem. This is
possible with well-known methods, using first and second derivatives.
In a next paper we will describe an algorithm as well as a computer
implementation to solve this problem.
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5. Analysing the total cost function and the derived fl.u~ctional
equations.

5.1 Introduction.
Kriens and de Leve give in their study as result two functional
equations (see (2.2) and (2.3)). Solving these equations leads to the
optimal order quantity and reorder level. However, by using the S.D.
distribution as lead time demand diatribution, we had to solve
non-linear functional equations under constraints on the decision
variables x arid q. Zhis causes a lot of nu~nerical problems in which
evaluation of the total cost function on certain boundary points was
neccesary. 7hen we decided to consider the possibility of solving the
problem directly by minimizing the total cost fl~nction. As we shall
see in the following sections, thís leads to a usable method.
5.2 ~aluation of the total cost function with a S.D. distribution

function.
In the total cost function ( 2.1) an integral of the following typeplays an important role:

(5.2.1) xjy (xty-z)f(z) ~ (xty)F(xty) - x}~ zf(z)dz .
0 0

In evaluating this integral the boundaries of the S.D, distribution
are important as well as the mode. Zhis is illustrated in figure
5.2.1, where

13 13
(5.2.2) t- 11 - 12.14 and p- 11 t 12(1-14) .

f-------------------f----------------------------------f
t 11 p

Figure 5.2.1. Zhe boundaries of the S.D. distribution.

Given this property of the S.D. distribution the following intervals
will be distinguished to evaluate the above integral:
I: xfy E(O,t]; II : xfy E(t,11];
ITI : xty E(11,P]; IV : xfy E(P,oo).

Defining the integral (5.2.1) as g(i,x,y) for the four intervals, thus
i- I,II,III, N and evaluating t3~is functions with the S.D.
distribution the results are:
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g(I,x,Y) - 0
b4

g(II,x,y) - 14(xty) t b3((11-x-y)~12) -b1
(5.2.3) b4g(III,x,y) - 14(xty) t b3((xty-11)~12) -b1

g(IV,x,y) ~ x t y- b2
where

13t1
b1 - 11.14 - ( 12.14) ~ (13t1),

13t1 13t1
b2 - 11 t (12~(13t1)).( (1-14) - 14 ),

b3 - (12.13)I(13t1),

b4 - (1t13)I13.
The next step in the evaluation of the total cost function is theevaluation of the integrals:

q
h(i,x,q) - f g(j(i),x,y)dy,

0
where the indices i and j(i) are determined by the definition regions
of the fl~nctions g(i,x,y) and the integration regions of y. We
distinguish ten intervals, see table 5.2.1..

region

xtq E(O,t] and x E(O,t]
xtq E (t,11 ] arxi x E(O,t]
xtq E(t,11 ] and x E(t,11 ]
xtqE(11,p] and xE (O,t]
xtq E(11,p] and xE (t,11]
xtq E (11,p] and xE (11, P~ ]
xtq e ( P,ao ) and x E(O,tJ
xt9E (p,oo) arid xE (t,11]
xtqE ( P,oo) and xE (11,P]
xtq E(P, or ) and x E(P. m]

1 I
2 II
3 II
4 III
5 III
6 III
7 IV
8 N
9 IV
10 IV

Table 5.2.1 The integration regions of the cost
function.

Zl~e results of this calculus are:

h(1,x,q) - 0,
2 2

h(2,x,q) - (14.x-b1).(qtx-t) t (1~2).14.(q - (t-x) ) t b5.b7,
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2
h(3,x,q) - (14.x-b1).q t (1~2).14.q t b5.b8,

2 2h(4,x,q) - (14.x-b1).(qtx-t) t (1~2).14.(q - (t-x) ) tb6 b6
t b5.[(11-t) f (xfq-11) ],

2 b6 b6h(5,x,q) -(14.x-b1).q t(1~2).14.q t b5.[(11-x) f(xtq-11) ],
2 b6 b6h(6,x,q) - (14.x-b1).q t (1~2).14.q } b5.[-(x-11) t (xfq-11) ],

2 2h(7,x,q) - (14.x-b1).(p-t) f (1~2).14.[(p-x) - (t-x) ] t
b6 b6

t b5.[(11-t) t(p-11) ] t(x-b2).(qtx-p) t2 2
t (1~2).Lq - (P-x) ],

2 b6 b6h(8,x,q) - (14.x-b1).(p-x) t (1~2).14.(p-x) tb5.[(11-x) t(p-11) )
2 2

f (x-b2).(qtx-P) f (1~2).Lq - (P-x) ],
2 b( ~h(9,x,q) - (14.x-b1).(p-x) t (1~2).14.(p-x) tb5.[-(x-11) t(p-11) ]

2 2
} (x-b2).(q}x-P) t (1~2).Lq - (P-x) ],

2
h(10,x,q) - (x-b2).q t (1~2).q ,
where

-(1~13) 2
b5 - ( 12 .13 ) ~ (1t13).(1t2.13),
b6 - (1t2.13) ~ 13,

b6 b6
b7 - (11-t) - ( 11-x-q) ,

b6 b6
b8 - (11-x) - (11-x-q) .
The double integral in the second term in the total cost function(2.1) is evaluated analoguously to the evaluation of h(i,x,q) and isdefined over the same regions. The results can be summarized asfollows:

2
H(1,x,q) - (b2-x).q - (1I2).q ,
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2
H(2,x,q) L (b2-x).(t-x) - (1~2).(t-x) f (b~} (1-14).x).(qtx-t) -

2 2
(1~2).(1-14).(q -(t-x) ) t b5.b7 ,

2
H(3~x~Q) - (b9-(1-14).x).q - (1~2).(1-14).q t b5.b8 ,

2
H(4,x,q) - (b2-x).(t-x) -(1~2).(t-x) t (b9-(1-14).x).(qtx-t) -

2 2 b6 b5
(1~2).(1-14).(q -(t-x) ) t b5.[(11-t) t (xtq-11) ] ,

2 b6 b6
H(5~x~q) - (b9-(1-14).x).q-(1~2).(1-14).q tb5.[(11-x) t(xtq-11) ].

2 b6 b6
H(6,x,q) - (b9-(1-14).x)q-(1~2).(1-14).Q tb5.[-(x-11) t(xtq-11) ],

2
H(7rxrQ) - (b2-x).(t-x) - (1~2).(t-x) f (b9-(1-14).x).(P-t) -

2 2 b6 b6
(1~2).(1-14).[(P-x) -(t-x) ] t b5.[(11-t) t (P-11) ]~

2
H(B,x,Q) - (b9-(1-14).x).(P-x) - (1~2).(1-14).(P-x) t

b6 b6
b5.[(11-x) t (p-11) ] ,

2
H(9~x.Q) - (b9-(1-14).x).(P-x) - (1~2).(1-14).(P-x) t

b6 b6
b5.[-(x-11) } (P-11) ] ~

H(10,x,q) - 0 ,

where
13t1

b9 - 11.(1-14) f [12.(1-14) ] ~ (13t1).

10 10
Let's call h(x,q) - v h(i,x,q) and H(x,q) - U H(i,x,q).

i-1 i-1

The evaluation of the total cost function K(x,q) i s very easy now,
because:

(5.2.4) K(x~Q) -(1~(r.q)).[c1.h(xrQ) t c2.H(x.Q)] t b(Q)~Q .
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5.3. Properties of the total cost function K(x,q).

After some calculations it can be shown that the functions h(x,q) andH(x,q) are two times continuoua differentiable. In the appendix it isshown by way of example that the functions h(x,q) and H(x,q) are twotimes continuous differentiable on the border of the regions 3 and 5.Generalisation of this proof over the total region is not difficult.If the function b(q) is also two times continuous differentiable it iseasy to see that the total cost function K(x,q) is also a two timescontiuous differentiable function.

5.4. Some global ideas for an algorithm.
In this section we give some general ideas of an algorithm to find theoptimal x and q. In a next paper these ideas will be worked out in acomputer algorithm.
Globally this algorithm works as follows:
1. Initialise the cost parameters as well as the parameters of thelead time distribution.
2. Determine starting values of x and q.
3. Determine the necessary íl,inction evaluations of K(x,q), p(K(x,q))and ~ (K(x,q)).

4. Use an iterative procedure, e.g. a Newton-like one, to improve thevalues of x and q.

6. Summary remarks.

In this paper the following results are reached:
- the cost function of a specific inventory model is derived undermore simple assumptions then elsewhere;
- a new parameter estimation procedure for the S.D. distribution isderived;

- the total cost í~anction of the inventory problem considered isevaluated using a S.D. distribution as lead time demand distribution;
- properties of the total cost function are analysed;
- a global algorithm for solving the optimal reorder point and orderquantity is considered.
In the next paper the following topics will be analysed further:
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- the new parameter estimation technique for the S.D. distributionwill be implemented and evaluated;
- an implementation of an algorithm to find the optimal order quantityand reorder point will be given as well as a comparison with othermethods.

Appendix. EScample of the calculations necessary to prove the twotimes continuous differentiability of K(x,q).

To prove that the function K(x,q) is two times continuousdifferentiable it is sufficient to prove that the functions h(x,q),H(x,q) and b(q) are two times continuous differentiable. We haveassumed that the function b(q) is continuous differentiable. FY~om thedefinitions of the other functions it is directly clear that insidethe regions all functions are continuous differentiable. So it issufficient to prove continuit of h(x,q), D(h(x,q)), ~(h(x,q)),H(x,q), Q(H(x,q)) and ~(H(x,q~) on the borders of the regions. Toillustrate the tedious and boring arithmatic we only give as examplethe proof for the border of the regions 3 and S.This border is theplane :

x t q- 11 for x E(t,11].
As we can see from the definitfon of the functions :

h(3,x,11-x) - h(5,x,11-x) - b5.[b8-(11-x)~-(xtq-11)~] - p,
so the function h(x (xtq-11),q) is continuous on the border of the regionsand 5.

The gradients are:

~(h(3,x,q)) -

~(h(5,x,q)) -

b6-1 b6-114.q t b5.b6.((11-x-q) - (11-x) )

14.x t 14.q - b1 t b5.b6.(11-x-q)

b6-1 b6-1
14.q f b5.b6.((xtq-11) - (11-x) )

14.x t 14.q - b1 t b5.b6.(xtq-11)

b6-1

b6-1

3
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For xtq-11 these both gradients are equal, so there only rests toprove that this is also true for the Hessians. ~e Hessian of thefLnction h(3,x,q) equals:
1~13 1~13 1~13((11-x)~12) -((11-x-q)~12) 14-((11-x-q)~12)

1~13 1~13
14-((11-x-q)~12) 14-((11-x-q)~12)

The Hessian of the function h(5,x,q) equals:
1~13 1~13 1~13

((11-x)~12) t((xtq-11)~12) 14t((xtq-11)~12)

1~13 1~13
14f((xtq-11)~12) 14t((xtq-11)~12)

For xfq-11 both these Hessians are equal and so we have proved that onthe border of the regions 3 and 5 the function h(x,q) is two timescontinuous differentiable. ZT7e proof over the total definition region
for the functions h(x,q) and H(x,q) is analoguous to the above .
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