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ESTIMATION IN A LINEAR MODEL WITH SERIALLY CORRELATED ERRORS WHEN
OBSERVATIONS ARE MISSING

Abstract

Time series data may be obtained at irregular intervals or observations may
be missing. This paper deals with the estimation of the linear regression
model with AR(1) errors on the basis of such data. The etructure of the
error covariance matrix is analyzed, and a simplifying transformation of
the model is derived, which allows for OLS estimation. The MLE of the para-
meters is given and its asymptotic covariance matrix is established. The
performance of ML vis-à-vis various two-stage estimation methods is
assessed using both real and simulated data.
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1. Introduction

There exists an extensive literature on estimation and testing in linear
regression models with first order serially correlated errors. For the case
where a string of consecutive observations is missing there have appeared
a number of recent articles dealing with various tests of autocorrelation
(cf. Savin and White, 1978, Richardson and Whíte, 1979, Honohan and
McCarthy, 1982). Obviously, many time series suffer from missing observa-
tions, like long annual series from which observations on war years are
missing, or daily series that are not observed during weekends.

The purpose of this paper is to develop the ML estimator for a linear

regression model with serially correlated errors when observations are
missing. The results derived are generalizations of those by Beach and

McKinnon (1978). Using both actual and simulated data we compare computa-

tional and statistical aspects of the ML estimator to those of some 'intui-
tive' estímators based on adaptations of suggestions by Cochrane and Orcutt

(1949), Prais and Winsten (1954) and Maeshiro (1976, 1979).

In section 2 we present the model. In section 3 we present some results
on the structure of the error covariance matrix and develop a convenient

matrix notation which facilitates the algebraic derivations. Section 4
presents the ML estimator and the information matrix. In section 5 some
alternative two-stage estimators are defined. In section 6 we present

results of experiments designed to compare the computational and statis-

tical properties of the ML and two-stage estimators. Section 7 concludes.

2. The model

Consider the single-equation regression model:

y-xste, (1)

where e is an nxl-vector of disturbances et (t-1,...,n), X is an nxk-matrix
of explanatory variables, B is a kxl-vector of parameters to be estimated,
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and y is an nxl-vector of dependent variables. Wíth respect to e the
following assumptions are made:

Et - PEt-1 } ut ' ~PI ~ 1 , t-1,...,n

where the vector us(ul,...,un)' is distributed as

ut s N(O,QUIn) .

Moreover, we postulate

2a
EO s N(0, u2) ,

1-p

i.e., the process is stationary.

(Z)

(3)

(4)

So far, the model is standard. In this paper we consider the case where
observations are missing. This may arise for instance when the data on y
and X are gathered at irregular time-intervals. Let there be m actual obser-
vations out of the n possible observations (mtn). So (n-m) observations are
missing. We identify the m actual observations in terms of the n possible
observations as follows. Let the rank number of the i-th actual observation
ín the original set of observations be ni. By assumption, n1-1 and nm-n. We
then define the mxn deletion matrix D as the matríx that is obtained by
deleting from the unit matrix of order n those rows that correspond to the
missing observations. Hence the (i,ni) elements of D are unity, the remai-
ning elements being zero.

The model with missing observations can be written in terms of the origi-
nal model (1) as:

Dy - DXB f De . (5)

We call (5) the missing observations model. Model (1) will be referred to
as the 'standard model'. In the sequel we shall denote vectors and matrices
that only refer to non-missing observations by a star subscript. For exam-
ple (5) can be rewritten as
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y~ - x,~ a t E,~ .

3. Some properties of the missing observations model

(6)

It is well-known that the disturbances in the model (1) follow a multivari-
ate normal distribution:

E s N(O,OEV) ,

with

V -

2a -E

1 P P2 ... Pn-1

P 1 P ... Pn-2

P2 P 1 ... Pn-3

I Pn-1 Pn-2 Pn-3 ... 1

2au
1-P2

.

See, e.g., Theil (1971, p. 252). It follows immediately that

E~ - DE ~` N(O,QÉDVD') .

The mxm-matrix V~-DVD' has the following structure:

1

V~ -

Pn2-nl

n2-nl n3-nl mm~l
P P ... P

1 Pn3-n2 ... Pmm ~2

n3-nl n3-n2 nIDn3
P P

~ mm ~l~ P

1

n~n2 mm~3
P P

... P

1

(7)

(8)

(9)

(10)
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For what follows, it is useful to introduce some more notation. Let
ti-ni-ni-1 (i-2,...,m), so when no observations are missing, all ti are
equal to one. Then we define

1

Q -

t
-P 2 1

t
-P 3 1

(12)

2t 2t
~ - diag(1,1-p 2,...,1-p m) .

Hence:

Q 1 -

1 0 0 0
n2-nl

P

Pn3-nl pn3-n2 1 0

1 0 0

(13)

(14)

nm-nl mm~2 ' .
P P ............ 1

e - Q~ } Q - QQ~ (15)

v~ - Q-1 f .(Q-1)' - I~

as is easily verified. As a result of (15) and (16);

(16)

~~ - Q 1 f(Q 1)' - Im - Q 1(Q' } Q- QQ')(Q')-1 - Q le(Q')-1 . (17)
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So

~~,~~ - ~Q 1~ ~~~ ~(Q~)-1~ - II(1 - P2ti)
ia 2

and

~~1 - Q,é1Q s (ó~Q)~(o-~Q) .

where the matrix Á1`Q has the structure

0 0 ... 0
t

- P 2 1 0
(1-p2t2)1` (1-pZt2)~

0

é ~q -

0 0

0 0

0

0

1

(1-P2tm-1)}
tm

P... -
(1-p2tm)~`

(18)

(19)

0

0

0

0

1

(1-p2tm)~

(20)

When p is known, applying OLS to the transformed model

ó~Qy~ ~ é~Qx~e t é~QE~

... 0

t

p 3 1 .. 0

( 1-PZt3)~ ( 1-pt3) Z .

(21)

amounts to applying GLS to (6). The transformation leaves the first obser-
vation as it is. The other observations (i- 2,...,m) are transformed as
follows:
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(1-P2ti)-~(Y,~i-PtiY~i-1) -

t
- (1-P ti)-~ { E B.(X -PtiX ) t E -P iE } (22)3 ~ij ~i-l,j ~i ~i-1 'j-1

in obvious notation. For the case of a single gap in the data, this trans-
formation (apart from a minor error) is also given by Dhrymes (1978). If
there are no missing observations (all ti are equal to one), (21) and (22)
reduce to the familiar transformation due to Prais and Winsten (1954) (see,
e.g., Park and Mitchell, 1980).

There is a interesting interpretation of (22).1) An error E~i in the set
of actual observations satisfies

ti ti-1 ti-2
- En - p En f P un tl } P un t2

f... f
i i-1 i-1 i-1

} puni-1}(ti-1) } uni-1}ti
(23)

Transformation (22) accomplishes two adjustments; autocorrelation adjust-
ment and heteroskedasticity adjustment. The autocorrelation adjustment is

t t t -1i 1 i
e~i - p E~i-1 - Eni - p Eni-1

- P
uni-1}1

f .. . f uni .

The heteroskedasticity adjustment stems from the fact that

2(t -1)

E(E~i - P iE~i-1)2 - Qu(1-Fp2fp4i....-Fp i )-

(24)

02 2t
u2 (1-P i) . (25)

1-p

2ti }
So, dividing the i-th observation by (1-p ), for all i~2, yields homo-
skedastic error terms with variance au~(1-p2). This is also the variance of
E1.
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4. ML estimation

The log-likelihood corresponding to the model given in section ?. is given
by

m 2t
1nL --Zm in(2na2) - } E ln(1-p i) -

E i-2
m 2t t

12 {E~1 t E(1-P i)-1(E.~í- p 1E~i-1)2} . (26)
2a is2

E

with e~-y~-X~6 (cf. (6)). Using results obtained by Magnus (1978), we show
in appendix A that the first order conditions for a maximum of 1nL with
respect to B, aé and p are given by:

~ - (X~V~1X~)-1X~V~lY

m 2t t
áé - m el -H E (1-P i)-1(ei-P iei-1)Z}

i~2

(27)

(28)

a2 ~ 2ti -1 2ti-1 - m 2ti -2 ti 1 ti tiE (1-P ) tiP E(1-P ) CiP (ei-p ei-1)(P ei- ei-1) .
i-2 i-2

(29)

where carets denote ML-estimates and e-y~-X~~. (Consistent notation would

have e~ rather than e, but this would unnecessarily complicate the various

expressions.) If (27)-(29) yield multiple roots, the roots that maximize
1nL have to be chosen. For values of p, B and o2 satísfying the first order

E
conditions, the last term of (26) becomes a constant.

The information matrix I, of ~, p and áÉ is derived in appendix B as

~2 X~V~ X~
a

E

0

0

0

m 1}p2ti 2 2ti-2
E 2t tip

i-2 (1-P i)Z

2ti-1
1 m tiP

- - E

QE i-2 1-P2ti

0

2ti-1
1 m tiP

- E

ae iL2 1-p2ti
.(30)

m
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As usual, the inverse of this matrix can be taken as an approximation of
the covariance matrix of the ML-estimators of the parameters B, p and a2.e

5. Discussion

In this section we make some general comments on the atructure of the first
order conditions and their usefulness for computing a maximum of the like-
lihood. We also define some alternative 'intuitive' estimators. In section
6 we will compare the statistical and computational properties of these
estimators.

To obtain some more insight into the structure of (29) we rewrite it
somewhat. Define

T - max {ti} ,
i

Denote the set {2ti~mlti-j} by Ij, and pj, qj and rj by

-1
pj - nj

iEI.eiei-1
J

-1 2qj - nj
ieI ei-1

J

r. - n.l E e2 ,J J iEI i

J
j-1,...,T

(31)

(32)

(33)

(34)

where nj is the number of elements of Ij. Obviously, pj, qj and rj are
sample moments of residuals corresponding to equal values of ti. Using the
definitíons, (29) can be written as

á E nj(1-P2j)-ljp2j-1 -
E j-1

T 2j -2.,,j-1 j 2j j- E nj(1-P ) JP (P rj-pj-P PjfP qj) , (35)
j-1
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or

T 2j -2 j-1 2~3j 2j 2- jE nj(1-P ) jp I-áEP t pjP f(~E rj - qj)P f pj] - o. (36)
jal

As an example, consider daíly data that are collected on all days except
Saturdays and Sundays. Let the first observation be made on a Monday. Then
we have t2-t3-t4-t5-1, t6-3, t7-t8-t9-t10-1, t11-3, etc. (It is implicitly
assumed here that the data generation process does work on Saturdays and
Sundays, but that the data are not observed.) If we collect data for 52
weeks, ( 36) becomes (n1~4x52-208, n3-51):

208 2 ~-QEp3 ~ plp2 } (Q~ - rl - ql)p ~ pl] ~
(1-P )

t 153622 ~-Qep9 t p3pó }(Qe - r3 - q3)p3 t p3] s 0. (37)
( 1-p )

After multiplication by (1-p2)2(1-P6)2 this becomes a polynomial equation

of degree 15. If, for instance, data are only collected on Mondays, Tues-

days, Thursdays and Fridays, the degree of the polynomial is 23.

In general, the degree of (36) is at most equal to 2T(Ttl)-1. For given

Q2, ~, it is a polynomial equation in a single variable. If one has a compu-
e

ter program available which generates all roots in the (-1,1) interval, the

following iterative procedure can be used to find a maximum of the likeli-

hood. For gíven starting values of ~ and áé calculate the roots of (36) in

the (-1,1) interval. If there are multiple roots, pick the one that gives

the highest value of the likelihood (cf. (26)). Use this value of p to
calculate a new ~ and áÉ from (27) and (28) and solve (36) again, and so

forth until convergence. As in the standard model wíthout missíng observa-
tions, the value of the likelihood increases at each step, so eventually it

will come arbitrarily close to a maximum (cf. Oberhofer and Kmenta, 1974,

Sargan, 1964). This maximum need not be a global maximum, however.

It appears that a computer program which generates all roots of a poly-
nomial in a given interval is not generally available. Programs that cal-

culate all roots of a polynomial are more widely available. This, of



- 10 -

course, may lead to function evaluatíons outside the (-1,1) interval. If
the degree of (36) is high, overflow in the computer may be the result.

Still another possibility is to use a general purpose computer program
to find a maximum of a function in a given interval. This, of course,
ignores the information contained in the first order conditions (27)-(29).
As an alternative, one can do a grid search for p in the (-1,1) interval
and compute ~, QÉ and the value of the likelihood for each p value. If the
grid is fine enough one can be almost certain that a global maximum of the
likelihood is obtained. Finally, one can solve (29) by using a general
purpose computer program to fínd a root of nonlinear equations in a given
interval. Computing this root for given values of ~ and á2 and next updatinge
~ and áÉ gives an iterative procedure which, upon convergence, provides a
solution of (27)-(29). In section 6 we report our computational experience
with the various procedures described here, except the first one since we
do not have an adequate computer program to find roots of a polynomial in a
given interval.

Although the favorable asymptotic properties of ML are well enough
known, it is important to compare its finite sample properties to those of
other estimators. To the extent that ML does better in finite samples tlian
other estimators, it is important to know whether the difference is worth
the extra computational complexity of ML. In section 6 we shall compare ML
to seven two-step estimators. For each of the seven estimators the first
step consists of OLS in model (6). Next, an estimate of p is obtained from
these residuals. Finally, this p is used to transform the model so that OLS
is appropriate. Some more details follow:

1. p is estimated as the OLS-estimate of the coefficient of the regression
of éi on éi-1 for those 1~2 where ti-1 (i.e. there is no gap between
observations i and i-1), and where éi,éi-1 are OLS-residuals. This is a
straightforward generalization of the Cochrane-Orcutt procedure. Using
the estimate of p, the data is transformed accordíng to (22), but only
those observations for which ti-1. The other observatíons, the first one
and the first observation after each gap, are omitted. Then B and a2 are
estimated by OLS on the transformed data. This is, once again, a
straightforward generalization of the Cochrane-Orcutt procedure. We call
this estimator COCO.
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2. The second estimation method uses the same estimate of p, but transforms
all data, except the first observation, according to (22). Then B and a2e
are estimated by OLS on the transformed data (includíng the first obser-

vation). Since the transformation (21)-(22) is a generalization of the
Prais-Winsten procedure we denote this estimator as COPW.

3. p is estimated analogous to the procedure in 1 but in the denominator of
the least squares formula we omit the first term. This estimation method
generalizes Prais-Winsten (cf. Park and Mitchell, 1980, eq. (9b)). This

estimate of p is used to transform the data as with the first estimator.
We call the estimator PWCO.

4. p is estimated as under 3 and the data is transformed as with the second
estimator. This estimator ís denoted by PWPW.

5. A two-step ML method: First, p is set at zero and B is estimated by OLS.

Next a2 is estimated from (28) with p-0 and (29) is used to estimate p.
E

With this estimate of p, B in (27) and a2 in (28) are reestimated. This
method, which produces asymptotically efficient estimators for S en a2,
ís denoted as ML2.

6. As the COCO-method, but the first observation is retained when esti-
mating S and a2. So only the first observation after a gap is omitted.

Since this method focuses on the importance of retaining the first
observation, a point made repeatedly by Maeshiro (1976, 1979), we denote

this method by COMA.
7. Analogously we also employed the PWMA method, whose description is clear

from its name.

6. The experiments and the results

Three sets of experiments have been performed. Within each set, experiments

have been performed 27 times: both on a'complete' data set (i.e. with no

missing observatíons), and on data that are obtained from the complete set

by deleting observations according to 26 different patterns. These patterns

are defined in figure 1.

The first set of experiments deals with real-life data, consisting of
ten sets of tíme-series for twenty years. This set has been mainly used to
assess the computational burden of the various methods for the different
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Fígure 1. Patterns of deleted observations

Rank number of deleted observations
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A O~ O O O O O O O O O O O O O O O O O O 19B O O O O~ O O O O O O O O O O O O O O O 19C O O O O O O O O O~ O O O O O O O O O O 19D O O O O O O O O O O O O O O O O O O~ O 19
E O~~ O O O O O O O O O O O O O O O O O 18F O O O O~~ O O O O O O O O O O O O O O 18G O O O O O O O O O~~ O O O O O O O O O 18H O O O O O O O O O O O O O O O O O~~ O 18I O~ O O~ O O O O O O O O O O O O O O O 18J O~ O O O O O O O~ O O O O O O O O O O 18K O~ O O O O O O O O O O O O O O O O~ O 18
L O~~~ O O O O O O O O O O O O O O O O 17M O O O O O O O O O~~~ O O O O O O O O 17N O O O O O O O O O O O O O O O O~~~ O 17O O~ O O O O O O O~ O O O O~ O O O O O 17P O~ O O O O O O O~ O O O O O O O O~ O 17
Q O~~ O O O O O O O O ~~ O O O O O O O 16R O O O O O O O O O~~ O O O O O O~~ O 16S O~~~~ O O O O O O O O O O O O O O O 16T O O O O O O O O O~~~~ O O O O O O O 16
U O~~~~~ O O O O O U O O O O O O O O 15V O O O O O O O O O~~~~~ O O O O O O 15W O~~ O O O O O O O O ~~~ O O O O O O 15
X O O O O O O O ~~~~~~ O O O O O O O 14
Y O~ O ~ O~ O~ O~ O~ O~ O~ O~ O O 11
Z O~ O~ O~ O~ O~ O~ O~ O~ O~ O~ 10
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patterns of missing observations. The second set deals with simulated data.

Here we pay explicit attention to the differences in result between trended

and non-trended data. The third set further explores properties of estima-

tors in the context of trended data, employing a real-life trended indepen-

dent variable and a simulated dependent variable.

6.1. Computational burden

The first set of experiments concerns the so-called Grunfeld data (Maddala
(1977), table 10-4). These data consist of annual observations from 1935
through 1954 for 10 large U.S. companies of the following variables: Gross
investment (It), Value of the firm (Ft) and Stock of plant and equipment
(Ct). Annual investment of a firm is explained by the following model:

lt - s0 } S1Ft-1 } B2Ct-1 } Et
(38)

We allow for serial correlation in the et according to equation (2). Model

(38) is estimated for each of the ten companies by means of ML and the two-

step estimation methods defined at the end of section 5. The estimations

were repeated for 26 different patterns of missing observations, apart from

COMA and PWMA.2)

Table 1 gives an overview of the computational burden of the various

methods for the different patterns. Comparing the methods, the five two-

step methods are about four times faster than the cheapest ML-method, opti-

mization using the first-order conditions. As to ML, using the first order

conditions saves roughly a third in computer time compared to direct opti-

mization. Grid search is many times more expensive, although it can of

course be sped up by requiring less than the four-decimal accuracy used

here.

Over the patterns, the two-step estimators become gradually somewhat

cheaper as the number of 'holes' increases, i.e. as the amount of data to

be proceased decreases. The same holds for grid search ML. ML2 tends to

become somewhat more expensive as the polynomial equation becomes more com-

plicated. The cost of the remaining two ML approaches does not show a clear

relation with the patterns.
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Table 1. Comparison of inethods

Pattern Computational burdena)

~b) ~c) ~d) COCO COPW PWCO PWPW ML2

complete 690 74 49 15 15 15 15 15A 653 63 45 14 14 14 15 16B 655 64 45 14 15 14 15 15C 658 65 47 14 14 14 15 16D 656 70 49 14 15 14 14 15E 625 62 45 13 14 13 14 17F 629 61 47 13 14 13 14 16G 621 70 49 13 14 14 14 17H 621 68 49 14 14 13 14 16I 634 54 39 13 14 13 14 15J 634 58 42 13 14 13 14 16K 631 67 45 13 14 13 14 15L 600 62 45 13 13 13 13 17M 600 69 49 13 14 13 14 17N 603 62 45 13 14 13 13 170 608 56 40 12 14 12 13 15P 604 63 45 12 13 12 13 15Q 581 59 43 12 13 12 13 16R 577 69 48 12 13 12 13 16S 576 59 46 12 13 13 13 18T 577 91 64 12 13 12 13 18U 550 66 49 12 13 12 13 20V 550 71 49 12 12 12 13 20W 538 54 42 11 12 11 12 17X 527 147 101 11 12 11 12 20Y 442 43 31 e) e) e) e) 13Z 415 - - e) e) e) e) -

a) Measured in tens of milli-seconds on an ICL 2966. All programs are
written in ALGOL 68. The entries are averages over the 10 companies.

b) Grid search method; p is increased in steps of 0.1 from -0.95 to 0.95and for each value of p the value of the likelihood is computed. Let rbe the value which gives the highest likelihood, a new search is then
started in the interval [r-O.l0,rf0.10] etc. until an accuracy of 4
decimal places is obtained.

c) Direct maximization of the likelihood. We used the E04 ABF routinefrom NAG, adapted for use in ALGOL 68, which employs the 'safeguarded
quadratic-interpolation method' of Gill and Murray (1973).

d) Maximization of the likelihood using first-order conditions. The C05ADF routine from NAG (adapted for use in ALGOL 68) was used to find asolution for (36) in the interval (-1,1). This routine is based on aprocedure due to Bus and Dekker (1975).
e) These estimation methods are not defined for pattern Z. PWCO and pWPWare not defined for pattern Y either, whereas COCO and COPW wouldestimate p on the basis of one observation. Thus we do not report

results for any of these four methods for patterns Y and Z.
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6.2. Simulated data

To provide more insight into the finite sample statistical properties of
the estimators we present results of simulations, which are variations on
the simulations carried out by Beach and MacKinnon (1978). The model con-

sidered is the following:

yt - al f 62xt t
Et , Et - pEt-1 f ut, ut ,r NID(0,0.0036) .

Two kinds of xt-series are generated. One is a trending series generated
according to

xt - exp(0.04t) f wt, wt s NID(0,0.0009) .

The second one is a non-trending series generated according to

xt s NID(0,0.0625) .

We consider three values of p: 0.8, 0.6 and -0.8, and two sample sizes: 20
and 60. For sample size 20 we delete observations according to the patterns
defined in table 1. For sample size 60 we consider two cases. In the first
case the patterns defined in table 1 are repeated three times. In the second
case the patterns of table 1 are 'stretched' by a factor of 3. So a gap of
two becomes a gap of six, a string of 5 consecutive observations becomes a
stríng of 15 consecutive observations, etc.

Some results for N~20 are given in table 2 for p, and in table 3 for 62.

To save space we only present some selected patterns, and only means and

RMSE's.3) Each number presented is based on 100 replications.4) The main

impression from table 2 is that the different estimators for p have very

similar small sample properties. Generally, ML exhibits the smallest RMSE
very closely followed by the PW-estimator. Next comes ML2 and finally CO.
All estimators are biased towards zero, especially for positive p and tren-

ding xt, with the PW-estimator usually showing the smallest bias and CO the

largest one. The smaller bias of PW is due to the omission of the first
term in the denominator of the least squares formula (see the description



Table 2. RMSE's and means of estimators for p(x 100), N-20

Pattern Trending Non-trending Number of
observa-

ML COCO PWCO ML2 ML COCO PWCO ML2 tions
COPW PWPW COPW PWPW missing
COMA PWMA COMA PWMA

mean RMSE mean RMSE mean RMSE mean RMSE mean RMSE mean RMSE mean RMSE mean RMSE

complete 49 38 46 40 51 38 47 39 64 25 60 28 64 26 60 27 0
C 48 40 45 42 49 39 45 41 63 26 60 28 65 26 59 29 1
G 47 41 43 44 48 41 45 42 63 27 59 30 64 28 60 29 2
J 46 43 43 44 46 42 44 43 62 27 58 30 63 28 57 30 2

p-0.8 M 45 43 42 45 47 43 43 45 62 28 59 31 65 29 58 31 3
P 45 46 41 46 45 44 43 45 59 35 54 36 59 34 54 36 3
Q 44 45 39 48 42 47 40 47 60 31 55 35 60 33 55 34 4
T 42 47 38 49 43 47 39 49 61 29 57 32 63 30 57 31 4
V 40 50 36 52 42 50 37 51 60 30 57 33 63 31 57 32 5
W 43 47 38 50 41 49 39 49 60 33 54 37 60 35 55 35 5

complete 36 33 34 33 37 32 35 33 48 23 45 24 48 24 45 24 0
C 34 34 32 35 35 34 33 35 48 23 45 25 48 24 45 25 1
G 33 37 30 37 33 37 31 37 48 24 44 27 48 26 45 26 2
J 32 37 31 37 33 37 31 38 47 25 43 27 47 26 43 26 2

p-0.6 M 32 38 30 39 33 38 30 39 47 26 45 27 48 27 44 27 3
P 30 42 30 39 32 39 29 40 43 34 41 32 44 31 40 33 3
Q 29 43 27 42 29 42 28 42 44 31 39 34 43 33 40 32 4
T 28 42 26 43 29 42 27 42 45 27 42 29 46 29 42 29 4
V 26 43 25 44 28 43 25 43 45 28 42 30 47 29 42 29 5
W 29 43 27 43 28 43 27 43 44 32 40 34 44 34 40 32 5

complete -76 12 -75 13 -79 12 -75 13 -75 13 -66 22 -70 20 -66 21 0
C-76 12 -75 14 -80 13 -75 13 -74 15 -67 22 -71 19 -66 21 1
G-77 13 -75 14 -81 13 -75 13 -75 15 -67 21 -72 19 -67 21 2
J-76 13 -72 19 -75 17 -71 17 -75 15 -66 24 -69 22 -65 22 2

p--0.8 M-77 12 -74 15 -79 14 -75 13 -74 16 -68 22 -72 19 -67 21 3
P-75 17 -65 26 -69 24 -64 24 -74 17 -61 29 -64 28 -61 26 3
Q-76 14 -72 20 -77 19 -72 16 -73 21 -65 26 -70 24 -65 24 4
T-76 13 -75 15 -80 14 -74 14 -73 20 -67 24 -72 21 -66 23 4
V-76 14 -74 16 -80 16 -74 15 -73 21 -67 26 -72 24 -66 24 5
W-76 15 -71 22 -77 21 -72 18 -74 21 -64 27 -70 26 -64 25 5



Table 3. RMSE's of estimators for 62 (x1000), N-20a)

Pattern Trending Non-trending Number of
observations

ML COCO COPW COMA PWCO PWPW PWMA ML2 ML COCO COPW COMA PCO PWPW PWMA ML2 missing

complete 108 136 109 109 147 109 109 109 37 38 37 37 38 37 37 38 0
C 108 133 109 110 142 109 ill 109 39 40 40 39 39 40 39 40 1

p-0.8 M 109 134 110 111 146 110 112 110 40 41 41 40 40 41 40 41 3
W 110 187 114 113 196 115 112 112 61 72 62 72 69 61 F9 62 5

complete 77 93 77 77 97 77 77 77 42 43 43 43 43 43 43 43 0
C 77 91 77 77 94 77 77 77 44 45 44 44 44 44 44 45 1

ps0.6 M 77 91 77 78 95 77 78 77 44 45 45 45 45 45 45 45 3W 78 116 79 80 118 79 81 78 66 78 66 78 76 66 76 68 5
complete 25 25 25 25 25 25 25 25 67 74 76 76 73 74 74 75 0C 25 25 25 25 25 25 25 25 75 79 81 81 78 79 80 81 1
pz-0.8 M 25 25 25 25 25 25 25 25 71 78 84 81 77 82 79 83 3

W 29 29 28 29 29 29 30 28 76 84 76 82 81 76 84 75 5

a) Since all estimators are unbiased, the RMSE's are also standard errors. Given that the entries of the table are
based on 100 replications we can approximate their standard
is the entry we are concerned with. This equals ~2~10 times

errors by the square root
(s.e.)2-0.14x(s.e.)2. For

west entry 108, the associated standard error (x1000)-1000x0.14x(0.108)2-1.6; for the
0.1.

of 2x(s.e.)4~100, if s.e.
example, for the north-
south-west entry 29 it ís
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of the PW-estimator in the preceding section), which increases i ts magni-
tude in absolute value. At the same time this also increasea its variance.
As a result ML tends to have a slightly smaller RMSE.

Bias and RMSE are largest for positive p and trending xt. The case of a
negative p and a non-trending xt is the only instance where ML is markedly
better than the other estimators. There is no discernable relation between
the relative performance of the estimators and the pattern of missing obser-
vations. Of course, both bias and RMSE tend to increase when the number of
observations left decreases.

The results for N-60 are very similar to the ones reported here and will
therefore not be presented. Naturally, for N-60 RMSE and bias are substan-
tially smaller. For example, for the patterns considered in table 2, the
bias in p is now generally 0.10 or less.

Table 3 makes it clear that for trended data and positive p it is very
important to exploit the first observation, confirming Maeshiro's findings.
The reason is that the first observation is treated differently from the
other observations, which stretches the scatter of points through which the
regression line is fitted. This ís especially important when xt is trending
because the autoregressive transformation tends to reduce the variability
of the other xt (cf. Maeshiro, 1980). Maintaining the first observation is
more important in this case than maintaining the first observation after
each gap, so that for trendíng xt and p-0.8 or p-0.6, ML, COPW, PWPW, PWMA,
ML2 have a similar performance. For p--0.8 and trending data, the data are
stretched very thinly after the autoregressive transformation so that all
estimators of 62 are quite accurate (cf. Maeshiro, 1976).

For non-trending data, it is not the transformation that is very impor-
tant but rather the number of observations used. The performance of COCO,
PWCO, COMA and PWMA relative to the other estimators gets worse with an
increase in the number of gaps, because these estimators neglect the infor-
mation contained in the observation after each gap.
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Some further insight can be gained by considering table 4, where RMSE's

of estimators of 62 are given of four selec[ed estimators for p-0.8 and all

patterns of missing observations. Notice that PWCO, PWPW and PWMA all use

the same estimator for p; ML has been added as a bench-mark.

Let us first consider the case of trending xt. Obviously, PWCO is

inferior to the other estimators, but its efficiency loss varies over

patterns. For patterns A, B, C, D(one observation missing) the loss is

smallest for C, where the tenth observation is missing. The reason why

gaps at the end of the data series cause a greater efficiency loss for PWCO
than gaps in the middle can be seen as follows. Let the data be trended

Table 4. RMSE's of selected estimators of 62 (X1000) p-0.8, N-20

pattern trending non-trending number number
of of

ML PWCO PWPW PWMA ML PWCO PWPW PWMA observ. gaps
missing

complete 108 147 109 109 37 38 37 37 0 0
A 110 154 111 109 43 44 43 44 1 1
B 109 151 109 110 37 39 38 39 1 1
C 108 142 109 111 39 39 40 39 1 1
D 108 148 110 116 37 37 37 37 1 1
E 109 176 110 110 51 55 51 55 2 1
F 108 151 108 110 39 39 39 40 2 1
G 109 143 109 113 39 40 39 40 2 1
H 108 150 108 122 37 38 38 38 2 1
I 110 150 109 110 43 49 45 49 2 2
J 110 150 111 110 46 47 47 46 2 2
K 111 160 112 116 44 45 44 45 2 2
L 108 184 110 107 62 62 65 63 3 1
M 109 146 110 112 40 40 41 40 3 1
N 108 147 109 129 38 39 39 39 3 1
0 111 150 115 114 47 46 48 46 3 3
P 111 157 111 118 46 48 47 48 3 3
Q 110 196 114 112 59 67 60 68 4 2
R 109 150 108 129 40 41 40 41 4 2
S 107 180 108 109 61 60 64 62 4 1
T 109 147 109 112 41 42 41 42 4 1
U 106 200 108 110 61 62 64 64 5 1
V 109 148 111 114 42 42 42 42 5 1
W 110 196 115 112 6] 69 61 69 5 2
X 110 153 110 113 45 46 45 45 6 1
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according to xt-exp(at). Then transformation ( 22) carríes xt over into
xt(1-p~exp(a))~(1-p2)~ if there i s no gap between xt and xt-1; if there is
a gap of one, then xt becomes xt(1-p2lexp(2a))~(1-p4)~. The ratio of these
two expressions equals (ltp~exp(a))~(1fp2)~ or, for p close to 1 and small
a, roughly ~2. When, for instance for pattern D(a gap at t-19) PWCO and
PWPW are compared, an observation is neglected that is - after transforma-
tion - sizeably larger than the neighboring ones. This leads to a loss in
efficiency. Of course, the same reasoning applies to a gap at t-2, but then
we have in addition that ML, PWPW and PWMA treat the first observation
differently, so that it moves even further away from the other observations.

This intuitive argument makes it also easier to understand why, of the
patterns E, F, G and H, the efficiency loss of PWCO is large for E and H
and smaller for G; why of I, J, K, the loss is largest for K; of L, M, N
the smallest loss is for M; of 0, P the largest loss is for P; of Q, R, S,
T the smallest loss is for T; of U, V, W the smallest loss is for V.

Regarding PWMA, the preceding argument makes it clear that it will per-
form relatievely bad if there are gaps at the end, i .e. for patterns D, H,
K, N, P, R.

The case of non-trending xt does not show much variation across estima-
tors although the estimators that use all observations (ML, PWPW) have a
slight edge over the estimators that ignore one or more observations. For
the case of trending xt it is noteworthy that the RMSE's of the efficient
methods (ML, PWPW) do not vary appreciably with the number of observations
that remain. Evidently, it is not the number of data point that matters
most, but rather their dispersion.

From the results so far it appears that ML and PWPW are performing very
well in all cases, with ML2 and COPW following closely behind. For all
other estimators (COCO, PWCO, COMA, PWMA) there are certain cases in which
they are doing rather badly (COCO, PWCO) or not so good (COMA, PWMA). The
COCO and PWCO estimators suffer from an extra problem. Sometimes the esti-
mate of p does not lie in the interval (-1,1). The standard approach taken
for that event is to set p equal to -0.99999 or 0.99999. In the case where
p is equal to 0.99999, the Cochran-Orcutt transformation turns the ones
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corresponding to the constant term practically into zeros. Consequently, B1

is (almost) unidentified and its estimate may be (almost) any real number.

As a result, the RMSE's of the COCO and PWCO estimates of B1 are very large

(between 102 and 103) for some patterns. In practice, this does not have to

be too serious a problem as long as one is not interested in B1, since one
can simply apply the first difference transformation.

Finally it is of importance to know whether the information matrix

provides a useful approximation of the true standard errors of the estima-

tes. It turns out that the approximation of the standard error of the esti-

mates of p is generally very good: the means (over 100 replications) of the

standard errors computed from the information matrix usually differ no more

than l0i from the true standard errors. Of course, this is not too helpful,

because the estimators of p are heavily biased. The approximations of the

standard errors of 82 are substantially worse: computed and true standard

error may differ as much as 100~. Of course, this is a consequence of the

often poor estimates of p, which are used to compute n.

6.3. Combined real life-símulated data

Given the importance of trending variables, a third set of experiments has
been performed focusing on this type of data. The model is

yt - SO } 81xt ' ct - pEt-1 } ut , ut s NID(0,0.0036) .

For xt the U.S. GNP data are taken, as in Maeshiro (1976, 1979) and in Park

and Mitchell (1981) (t-1950,...,1969). Again, 100 experiments were per-

formed for all patterns and p-0.8, 0.6 and -0.8. The results turn out to be

very similar to those obtained with the simulated xt where xt is trending.

7. Conclusions

Of the eight estimators considered here (ML and the seven two-step estima-

tors defined at the end of section 5), ML is the most complicated one, but

also the most efficient one. However, the performance of PWPW is so close
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to that of ML that this simple two-step estimator will presumably be the
preferred estimator for practical work.

As is shown most clearly in table 4, in the common situation where exoge-
nous variables are trending and errors are positively correlated, missing
data generally have a very minor effect on the efficiency of estimators.
The information matrix appears to give a good approximation of the standard
error of the estimate of p(but not of its RMSE) and a rather poor one of
the standard error of the slope coefficient. These fíndings apply equally
well to complete data as to data with some observations missing.

In conclusion, missing observations in a linear model with serially
correlated errors do not create any great difficulties in addition to those
already present in models for a complete set of observations.
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APPENDIX A. FIRST ORDER CONDITIONS FOR ML

We derive (27)-(29). A general treatment of ML estimation of the GLS model
was gíven by Magnus (1978). From his results it follows that the first-
order condítions for ML are:

~ - (X~~ 1X~)-1X~.~ lY

-1 -1
tr(2A2 ~) 2 2- e~(aR2 ) 2 2 e2a a -á 8a a -á

e E E e e E

-1 -1
tr(aaP n) - e'(aaP ) e ,

P-P P-P

with e-y~-X~~ and t2saéV~. Of course, (27) follows immediately from (A.1).

(A.1)

(A.2)

(A.3)

First consider (A.2). Since

aá 1
- -a4~ 1

e ~ ' (A.4)
ea2E

(A.2) reduces to

tr(-áE4V~1QÉV~) - e'(-áE4V~1)e .

Using

el

t2
e2 - P el

(A.5)

Qe - . , (A.6)

' tm
em - P em-1
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we can rewrite (A.5) as

Qe - m e'V~le - ID e'Q'A 1Qe -

1 2 m 2ti -1 ti 2- m{el f E( 1-P )(ei-P ei-1) 1'1-2

which is (28).

Now consider (A.3). As

-1 aV~l
aaP n' aE2 aP QeV,~ ~

(A.3) reduces to

av,~ 1 av 1~tr( aP V~) - Qe e'( aP ) e.
P-P P-P

In view of (19), there holds

-1aV~, - ~ -1 , ae-1 , -1 ag
aP aP e QtQ aP QtQ o aP,

so

av~l av~l
tr( aP V~) - tr( aP Q-lA(Q~)-1) -

, -1
- tr(~ (Q')-1 f aáP A f~ Q-1) -

-1
- 2 tr(~ Q-1) t tr(aaP e) .

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

T he first of these two terms equals zero, because Q-1 is lower triangular,
and aQ~aP has a zero diagonal and a zero upper triangle. The second term is
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-1
tr(ae e) --tr(é 1 ae ó le) --tr(é 1 ae) -

ap áp ap

m 2t. 2t -1
- 2 E(1-P 1)-1 tip i

i-2

Putting p-p in this expression gives the LHS of (A.9) and hence of (A.3).

We next evaluate the RHS of ( A.3) and ( A.9). There holds, in view of

(A.10):

av~ 1
e' aP e

Since:

an - -2áp

-1
2e'Q'e-1 ~ e f e'Q' aap Qe -

2e'Q'e-1 ~ e- e'Q'e 1 áp e-1Qe .

0
t2-1

t2P el

t -1m
~ tmP em-1

0
2t2-1

t2p

2t -1mt pm

(A.13)

(A.14)

(A.15)

(A.13) can be further written as:
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2V~1 m 2ti -1 ti-1 ti
e' aP e--2 E (1-P ) tiP ei-1(ei-P ei-1)

t
i-2

m 2ti -2 2ti-1 ti 2t 2 E(1-P ) tiP (ei-P
ei-1) -i-2

m 2tí -2 ti-1 ti tí
- 2 E(1-P ) tíP íeí-P e i-1)(P ei-ei-1) . (A.16)

i-2

Putting p-p in thís expression gives the RHS of (A.9) and hence of (A.3),
apart from the factor áÉ. Combining (A.3), (A.9), (A.12) and (A.16) gives
(29).
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APPENDIX B. THE INFORMATION MATRIX

Let ~1-P and ~2-a~, and let Y'(2x2) be a matrix with typical element

-1 -1
yi j- tr( am R am . ~) 'i ~

The information matrix I corresponding with the likelihood functíon is

0

(B.1)

(B.2)

(Magnus (1978), p. 288). It remains to evaluate Y'. First, let 1-j-2. Then

-1 -1
y22 - tr(a~2 R aR2 n) -

aa aae e

- tr{a~4V~1 x aéV~ x oE4V~1 x aÉV~} - mae4 .

Next, let i-2, j-1. Then

-1 -1 aV~l
v~21 - tr(a~2 n aáP n) --tr(aE4V~1 x QEv~x aP x v~) -

aa e

-2 aV~l -2 m 2ti -1
2ti-1

--a~ tr( aP V,~) --2aE E (1-P ) tiP
i-2

using ( A.11) and (A.12). Finally, consider the case i-j-1:

(B.3)

(B.4)

-1 -1 av~l av~l
yll - tr(aáP n aáP n) - tr( aP v~ aP v~) . (B.5)
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Inser[ion of aV~1~2p as given in (A.10) into (B.5) yields an expression
which is the trace of a sum of nine matrices. Using the well-known proper-

ties tr(P)-tr(P') and tr(AB)-tr(BA), one easily obtains

~11 - 2 tr(áP Q 1 áP Q 1) - 4 tr(~ Q-1 áp A-1) t

t 2 tr(S v~ ~ d-1) f tr(ap ó 1 áp n-1) . (B.6)

Of these four terms, the first two vanísh since all elements of aQ~ap are
zero apart from those directly below its main diagonal, and since Q-1 is
lower-triangular; hence their product is lower-triangular with zero elements
on the main diagonal.

It remains to evaluate the third and fourth term. Let ei denote an mxl-
vector with a unit element in position i , the other elements being zero.
Denote an mxl-vector of zero elements by Om. Then:

t -1
~ - -(Om, tZP Z x el, .

tID 1
x.. tmP em-1 ' (B.7)

and so:

r a a ' 1 2 2ti-2 Z 2ti-2
i~ V~ ~ J - tiP x eiV~ei - tiPLLL ii

(B.8)

for i-2,...,m; for i-1 the expression evidently vanishes. So the third term
on the RHS of (B.6) equals:

m 2t 2t -2
2 E (1-p i)-ltip 1 .

i-2

The fourth term equals

m 2t 4t -2
4 E (1-P i)-2tiP i

i-2

(B.9)

(B.10)
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because ae~ap ís a diagonal matrix with i-th diagonal element equal to
2t.-1

-2t.p 1 for i-2,...,m (and equal to zero for i-1). Collecting (B.9) and
i

(B.10) one gets:

m 2t. 2t -2 2t 2t
yll - 2 E(1-P 1)-2tiP i{(1-P i) t 2p i} -

i-2

m 2t 2t 2t -2
- 2 E(1-P i)-2(1tP i)tiP 1 .

i~2
(B.11)

Together, (B.3), (B.4) and (B.11) give the elements of Y', the lower right
part of the information matrix.
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Notes

1) Due to a referee.

2) These estimators were added later on suggestion of a referee. To save
computer costs, we did not repeat all simulations wíth these estimators.
For the present experiment, for example, it is clear that the computa-
tional burdens of COMA and PWMA will be similar to these of COCO and
PWPW.

3) A full set of tables with simulation results is available on request.

4) Since the means reported here are based on the rather small number of
100 replications, the reported means are subject to some sample variabil-
ity. The standard error associated with the means in table 2 are 0.02 or
less. For the standard errors associated with the entries in table 2,
see the footnote of that table.
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