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Abstract

'I'his paper presents a rnodel of a finite collection of socially related economic agents.

We assume that an agent in an economy is part of some social struc,ture in which he

might dominate some agents while he himself is dominated by other agents. We con-

sider structures in which these social relations between the agents have some special

features. Such a social structure is called a hierarchically structured population. We

identify two types of social differences between economic agents in a hierarchically

structured population. Firstly we show that the agents can be subdivided into groups

that can be ordered such that agents in `higher' groups dominate agents in `lower'

groups. Secondly we show that the communication structure between the agents, in

general, will be incomplete.

These social differences lead to different potential influences agents have on

economic processes. We introduce an index that measures this potential infiuence.

Such an index will be called a social power index because it measures power resulting

frorn the agent's social positions. We also give an characteriration of this social

power index. Furthermore, wc derive the rather striking result tliat under a general

uniformity condition this social power index can be viewed as the representation of

the subjective expectations of the economic agents in the hierarchy with respect to

their influence on economic processes.
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1 Introduction

Economic agents are subjects that participate in some economic organization. There-

fore, when analyzing their behaviour, we should not look at each agent isolated from

the other agents but should take account of their social relations with one another.

In many economic models, such as for examplc in Debreu (1959) or Ichiishi (1983),

econonric agents are modelled as subjects that differ from each other only with re-

spect to certain individually detcnnined characteristicw such as income, preferences,

wealth, and so on. No account is taken of the social positions of the economic agents

in the economic organizat,ion.

In this paper we are primarily interested in the description of social features

of economic agents. We present a model in which economic agents have different

influences on economic processes within the organization. To illustrate this point, in

a model of a perfectly competitive market organization it is assumed that no agent

has influence on the marketprices and therefore all agents take these prices as given.

In other models, such as for example the monopoly or oligopoly model, not all agents

are powerless with respecL to the prices. For arbitrary economic processes we now

assume that the agents have different direct inf}uences on these economic processes.

With this direct influence we mean the possibility to set conditions under which the

economic processes will Lake place such as, for example, the power to set the prices

under which trade with other agents will take place.

We íntroduce social or relational power as the potential influence that eco-

nomic agcnts have on economic processes resulLing frorn Lheir tiocial relations with

one another within a hierarchícal economic organization. Much work has been done

with respect to the measurement of `power' of agents in social situations. Next we

discuss some of the literature on this problem.

Talking about the `power' of economic agents in socíal situations is useless if

we do not specify what is meant with `power'. In different situations the definition

of the notion of power can differ considerably. Stippose, for example, that a group of

agents has to choose one out of several alternatíves. We can talk about the power of

an agerit as being his influence on the final decision that is taken by the group.

In cooperative game theory a situation in which a group of agents just has

to decide whether to accept or reject a certain alternative, can be represented by a

simple game. A simple game is a function that assigns to each subgroup or coalítion
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of agents the value one if this coalition can guarantee that the alternative will he

accepted ( such a coalition is called a winning coalition) and the value zero if this is

not the case. We can talk about the (voting) power of an agent participating in a

simple game as being his possibilities to turn losing coalitions into winning ones by

cooperating with these coalitions. This power can be measured by a power index.

The most famous axiomatic power indices for simple games are the .Shapley-ShuLik

index and the Banzhaf index. Axiomatizations of the Shapley-Shubik index and the

Banzhaf index respectively can be found in Dubey ( 1975) and Dubey and Shapley

(1979). Another axiomatic power index for simple games is the one introduced in

Dcegan and Packel ( 1978) or its generalization in Packel and Deegan (1980).

Simple games form a subclass of the more general collection of cooperative

games with transferable utilities or simply TU-games. A TU-game on a set of agents

is a function that assigns a real vaIue to every coalition of agents. For a particular

coalition this value represents the pay-off this coalition can attain if the agents in

the coalition cooperate. We can talk about the coalitional power of an agent in a

TU-game as being his possibilities to let coalitions earn more by cooperating with

him. Axiomatic power indices for these more general TU-games are the Shaplcy

value (Shapley ( 1953)) of which the Shapley-Shubik index is a restriction for simple

games, and the Banzhajualue for TU-games which is the generalization of the Banzhaf

index. ( An axiomatization of the Banzhaf value for TU-games can be found in Lehrer

(1988).)

In this paper we introduce a power index that measures the potential influence

of economic agents resulting from their social relations. We present a model of a rudi-

mental social organization. Such a rudimental organization is called a hierarchically

structured population, a concept that has been introduced in Cilles ( 1990b). We w-il]

distinguish two social features of economic agents in a hierarchically structured pop-

ulation. First of all we derive an ordered subdivision of the agents into groups such

that agents in `higher' groups set the conditions under which economic processes with

agents in `lower' groups will take place, i.e., agents in higher groups dominate agents

in lower groups. Such an ordered hierarchical subdivision of the agents is called an

echelon partition. It can be seen as a special kind of coalition structure as developed

and analyzed in e.g. Aumann and Drèze ( 1974), Owen ( 1977), and Winter ( 19S9).

Each group in an echelon partition is called an echelon.

The second social feature that we distinguish in our model deals with the
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communication possibilities of economic agents. In our model of a social organízation

the possibilities of communication between the agents, in general, not all pairs of

agents are able to communicate directly with one another. Thís means that there can

be pairs of agents that need other agents in order to engage in some binary economic

process. Such a limited communication structure can be represented by a graph whose

nodes represent the agents and whose edges represent these binary economic relations.

Such communication graphs are considered in, for example, Myerson (1977), Kalai,

Postlewaite and Roberts (1978), Owen (1986), and Borm, Owen and Tíjs (1990).

Both social features that we discussed above lead separately to a di(ferent type

of social power. The first source of social power of an agent is his possibility to set

the conditions under which economic processes with lower echelon agents will take

place. The second source of social power results from the limited communication

structure. Consider two agents who are not able to communicate directly with one

another. When it is possible for these two agents to communicate with each other

with the help of one or more other agents then these intermediary agents will have

some influence on the economic process that takes place between these two agents.

We will see that within the setting of a hierarchically structured population both

sources of social power of an agent are related.

We assume that the trade processes in a hierarchically structured population is con-

sisting of two subsequent stagcs. In the first stage an agent chooscs onc of his dom-

inating agents as the one with whom he is engaging into a binary economic (trade)

process. Secondly, he actually starts this economic process. This means that an

agent only uses a selection of the communica,tion lines with these dominating agents.

Which communication lines actually will be used, is described by a special kind of hi-

erarchically structured population indicated as an echelon tree. In general there exist

more than one echelon tree in a particular hierarchically structured population from

which eventually only one emerges. The social power of an agent clearly depends

on which situation eventually will occur. Because, given a particular hieracchically

structured population, we do not know which echelon tree eventually will occur, the

social power in a hierarchically structured population is in fact a potential feature of

the agents in the population.

We introduce a social power index as a function that mcasures the potential

social power that economic agents in a hierarchically structured population have over
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the economic relations on which they set the conditions.' Aíter the introduction of

a social power index we give a specific example, that we indicate as the BG-index.

This BG-index has seminally been introduced in Gilles (1988). We show that the

BG-index can be interpreted as a social power index which measures the social power

in a situation in which each echelon tree is given equal probability of occurrence. '1'his

can be regarded as an oójective interpretation or characterization of the BG-index.

Additionally we give a subjective characterization of the BG-index. Before

giving this subjective analysis we introduce some descriptive concepts, indicating

how the economic agents focus at the social or hierarchical power structure in the

population. For each agent we derive a probability distribution over the echelon trees

representing the agent's expectation about which echelon tree will occur. Given such

a probability distribution for an agent we introduce a subjective social power indea

that measures the social power as it is expected by this agent. We derive that under

some uniformity condition the average of the subjective social power indices over all

agents is equal to the BG-index. This is a generalization of a result as stated in

van den Brink (1989). It shows that social power indices, which can be regarded

as "objective" distribution rules of soc,ial power, can be founded on "subjective"

considerations.

This paper is organized as follows. In Section 2 we introduce and analyze the

notion of a hierarchically structured population. In particular we identify the two

social features of the agents in such a hierarchical organization and discuss the two

sources of social power that arise from these social features. Furthermore we describe

how the echelon trees in a hierarchically structured population can be constructed.

In Section 3 the concept of a social power index as a measure of social power is

introduced and we present the I3G-index as a specific examplc~ of such a sucial fiower

inclc~x. Wc also givc~ an objc~cl.ivc intc~rprctal,ion of thc~ II(~-in~lc,x.

In Section 4 we introduce the concepts which describe the subject.ive views of

the agents with respect to the power structure in a hierarchically structured popula-

tion. Furthermore we give a subjective interpretation of the BG-iudex.

Finally, in Section 5 we give an exarnple that illustrates the object,ive and

subjective intcrpretations of the 13G-index.

We emphasize that in this paper we only consider the social features of eco-

'We remark that this number does not have to be an integer. The main reason for this is that

many agents are potentially dominated by more than one agents in the population.
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nomic agents. A next step will be to model economic agents that have individual as

well as social features. In t.his respect we refer to, for example, Cilles, Owen and van

den Brink (1990) where a hierarchical social structure like the one considered in this

paper limits the cooperation possibilities of agents endowed with individual abilities.

For a study of the BG-index in a more general setting we refer to van den Brink and

Cilles (1990).

2 Hierarchically structured populations

First we introduce some notational conventions. [n the sequel N-{ 1, ..., n} denotes

a finite set of econornic. agents. For every i E N and every correspondence S: N~ 2N

we define

so :- {i}

and, recursively, for every k E N, where N-{ 1, 2, ...} denotes the set of natural

numbers, we define

Sk([) -- U S(7) -~
Sk i(7)-

)ESk-~(i) )ES(i)

Note that Sl - S. The main tool in the decription of a hierarchically structured

population is a correspondence S: N~ 2N, which assigns to every agent i E N a

collection S(i) C N of agents, who are dominated directly by agent i. The agents in

Sk(i), k 1 2 then are dominated indirectly by i. Formally this is done as follows.

Definition 2.1 A correspondence S: N--~ 2N is a successor mapping orc N ij it

satisfies the jollowing two conditions.

(i) S is acyclic, i.e., jor every agent i E N it holds that:

~
i ~ .S`(2) :- ~ Sk(2).

k-1

(ii) For every pair oj agents i, j E N there is some h E N such that

{i, j} C [S(h) U {h}].

7'he collection oj all successor mappings on N is denoted by SN.
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The first condition stated in Definition 2.1 requires that an agent cannot dominate

himself (neither directly nor indirectly). The second condition says that for each pair

of agents it holds that either one of the two dominates the other, or there is another

agent that domínates both.

In this paper we interpret the "domination" of economic agents as follows.

If i E N and j E S(i), then agent i sets the conditions under which some binary

economic process between agent j and himself has to take place. (For example, i sets

the prices under which he and j can exchange commodities.) The agents in S(ij are

called the potential successors of i according to S. If agent j is a potential successor

of i t,hen j is called a potential predecessor of i according to S. The collection of

all potential predecessors of i acc,ording to S is denoted by S-1(i), i.e., S-1(i) :-

{j E N ~ i E S(j)}. A pair (N,S), where N is a finite set of economic agents and

S is a successor mapping on N is called a hierarchically structured population on N.

The remainder of this section is devoted to the analysis of hierarchically structured

populations.

Recursively we can introduce the sets I,k, k E N U{0}, as follows

Lo -- ~

and for every k E N

I,k:-SiEN`ULv~S(i)C ULn 1 . (1)
l n-1 v-i

We now can prove the following theorem.

Theorem 2.2 Let S E SN. There exists a number M E N such that { I,1, ..., L,~~ } is

a partition of N consisting of non-empty sets only. Furthermoi~e, hn~ is a singlefon.

'I'he proof of this t.heorem can be found in section 6. 1'he number M is called the

length of the hierarchically structured population ( N, S) and is denoted by l(.S). The

agent io E L~y is the unique agent that is not dominated and is called the leader

in (N, S). The partition 1; -{G1i .. ., L,y} is called the echelan partiti.on of (N, S)

and can be seen as a hierarchical subdivision of the agents in N induced by S. The

elements in the echelon partition are called echelons.

I3esides this hierarchical subdivision, a successor mapping S also describes the

possihilil,ies of thc~ age~nts t,o c-ommunicate with c~a.ch othc~r, i.e., thc~ir CfO~lo77L2c rcla-

lions. These communication possibilities are given by the commu~aication structure

R, which is defined by
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R:- {{i, j} ~ i E N, j E S(i)}.

We have distinguished two social features of economic agents in a hierarchically struc-

tured population, namely their position in the echelon partition and their commu-

nication possibilities. These two social characteristics are related in the following

way.

Theorem 2.3 Let S E SN with l(S) - M, and let ~-{L1i...,LM} and R respec-

tively be the echelon partition and lhe com~nunication structure of (N, S).

1. For every 1 G k,1 C M and every pair of agents i E Lk, j E L~ it holds that:

i E S(j) if and only if {i, j} E R and k G 1;

2. For every 2 G k G M and every agent i E Lk there exists an agent j E Lk-1

such that {i, j} E R;

~. For every 1 G k G M- 1 and every agent i E Lk there exists an agent j E

~JMk~I L~ such that {i, j} E R.

The proof of this theorem can also be found in section 6. Condition 1 in Theorem

2.3 says that if two agents are directly related to each other, then they must be

part of different echelons and the agent in the higher echelon dominates the lower

echelon agent. In this way the economic relations in R also can be seen as dominance

relations. Together with this condition, condition 2 says that if an agent is not part

of the lowest echelon, then there must be an agent in the echelon right below him

that he dominates. Together with condition 1, condition 3 says that if an agent is

not part of the highest echelon, then he must be dominated by another agent. The

following example illustrates the concepts introduced so far.

Example 2.4 Consider the hierarchically structured population (N, S), where N-

{ 1, ..., 6} and the successor mapping S is given by:

S(1) - {2,3,4}, S(2) - {4}, S(3) - {5}, S(4) - {6}, S(5) - 0, S(6) - 0.

The echelon partition t of (N, S) is given by:

~ - {{5,6},{3,4},{2},{1}}.
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Lq

L3

I,2

L,,

Figure 1: (N, R)

The communication st,ructure R of (N, S) is given by:

R - {{1,2},{1,3},{1,4},{2,4},{3,5},{4,6}}.

The communication graph (N, R) can be drawn in a way such that, agents belonging

to the same echelon are placed on the same horizontal line (see figure 1).

Thus far we have described a special kind of social organization structure by a hierar-

chically structured population. How a particular hierarchically structured population

arises might depend on individual features, on social features, or on a combination of

both. Individual features that might determine the hierarchically structured popu-

lation are, for example, the initial endowments of the agents. An examp]e of hierar-

chically structured populations that depend on social features are the ones that are

determined by networks (See Gilles ( 1990a) or Gilles and Ruys ( 1990).) In this paper

we do not address this problem but just take a hierarchically structured population

as given.

Different positions in a hierarchically structured population lead to different

possibilities to influence economic processes. The influence that an agent has on the

economic processes resulting from his social characteristics is refered to as his social

power. It is clear that the direct influence an agent has on his relations with his

potential successors is some source of social power. As mentioned in the introduction

Lltc~n~ is a. Nc~cund sonrcv~ crf soc~ia.l trcrwc,r tlrat a.riYC~s front Lhc~ lintitc~cl t~otunnrnic'ation

sl,ructurc in a hic~rarr.hicxlly structurc~d populatiun. ~l~hcumut 2.3 dircctly yic.lcls tlu.

following result,.
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Corollary 2.5 Let S E SN. Then the pair (N, R) is a connected graph, i.e., for

every pair of agents i, j E N, with i~ j, there ezists a finite sequence cl, ..., c,,, E N

such that ei - i, c,,, - j, and {ck,cktl} E R for every 1 C k C m- I.

A sequence cl, ..., c,,, as described in Corollary 2.5 is called a communication path

between i and j. If two agents i, j E N cannot communicate directly then, according

to Corollary 2.5, i and j can communicate indirectly through one or more other

agents. These intermediary agents in the communication process between i and

j have some influence on the economic process that takes place between i and j.

This influence is the second source of social power an agent has in a hierarchically

structured population.

We argue that both sources of social power of an agent are in some sense

identical within the setting of a hierarchically structured population. This follows

Irom the following lemma.

Lemma 2.6 Let S E SN and let R 6e its communication structure. For all agents

i, j E N, i~ j, there ezísts a sequence cl, ..., c,,, and a positive integer T C m such

that:

1. c~ - i

4. ck E S(c~tl) for k- 1,...,T - 1

3. ckfl E S(ck) for k- T, ..., m- 1

4. Cm - .Í

Proof of this lemma can be found in section 6. The agent cT in a communication

path as described in Lemma 2.6 is called the tapman on that communication path.

Lemma 2.6 says that there is a communication path between each pair of agents

i, j E N such that each agent on that communication path, except the topman,

dirccts himself to one of his potential predecessors. That is, the intermediary agents

within such a communication path are dominating each other in an order such that

there is a unique agent at the top of this communication chain.

Not all communication paths between two agents in a hierarchically structured

population need to be of the form as in Lemma 2.6. However, the following discussion
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implies that communication paths other than those described in Lemma 2.6 will not

bc used.

We~ assinui~ t.hat., in ~~asi~ so~ni~ ~~~~onomic ~irocess takcs placn c~twecn Lhe ag~~nts

in N, thcu c~arh agcnt c house~s oni~ of hiy putential ~iredi~icssors as thc onc witli whoni

he is going to engage in a binary economic process. Such an organization structure

can be described by a function, the predecessor funetion.

Definition 2.7 Let S E SN and let the echelon partition of (1~', S) be given 6y F-

{Lr,...,LM}, where M - 1(S).

A function t: N`L,~,r --~ N`Lr is a predecessor function in S iffor everyi E N`L,y

it holds that t(i) E S-r(i).

A pair(N,T) is an echelon tree in (N, S) iJT E SN is such that the correspondence

t: N`L,y -a N`Lr given by t(i) - T-r(i), for a.ll i E N`L,y is a predecessorfunction

in S.

The collection of all correspondences T such that (N,T) is an echelon tree in (N, S)

is denoted by Ts.

For every hierarchically structured population (N, S) it holds that Ts C S~`. The

agent t(i) is the potential predecessor to which i E N`G,yr directs himself if t is t.he

predecessor function that describes the situation that actually occurs. This agent

t(i) is called the predecessor of i according to t. It is easy to see that if (N,T) is an

echelon tree with communication structure W, then the graph (N,W) is a tree. [n

such a tree there exists exactly one communication path between each pair of agents

and all these paths are of the form as described in Lemma 2.6. In this way the power

of an agent resulting from his possibilities to let other agents communicate with one

another also depends on which agents are his potential successors.

We remark here that the echelon partition of (N,T) with T E Ts need not

be the same as the echelon partition of (N, S) itself. This is shown in the following

example.

Example 2.8 Consider the hierarchically structured population (N, S) given in Ex-

ample 2.4.

Agent 4 is the only agent who has more than one potential predecessor, i.e., agent 4

is the only agent who can choose to which agent he is going to direct himself. There-

fore there are exactly two predecessor functions in S. These are tr: {2, 3, A, 5, 6} -.

{1, 2, 3, 4} which is given by:
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( N, W, )

L4 L4

LZ L2

L1 5 f 6~ ~ 2 Li

(N,W2)

Figure 2: communication graphs of the echelon trees in (N, S)

t,(2) - i,t,(3) - l,t,(4) - l,t,(5) - 3,t,(6) - 4

and t2: {2, 3, 4, 5, 6} --~ { 1, 2, 3, 4} which is given by:

tz(2) - 1, t~(3) - 1, t~(4) - 2, t2(5) - 3, t~(6) - 4.

The echelon partition ~1 and communica,tion structure Wl of the echelon tree belong-

ing to tl are given by:

~1 - {{2,5,6},{3,4},{1}}

W1 - {{1,2},{1,3},{1,4},{3,5},{4,6}}

and those of the echelon tree belonging to t2 are given by:

~2 - {{5,6},{3,4},{2},{1}} - f

W2 - {{1, 2}, {1, 3}, {2,4}, {3,5}, {4,6}}.

The communication graphs of these echelon trees are given in figure 2.

Note that if agent 4 chooses agent 1 as his predecessor then the echelon partition

~1 that actually occurs has one echelon less than the echelon partition ~ of (N, S).

If agent 4 chooses agent 2 as his final predecessor, then the echelon partition that

actually occurs is the same as the echelon partition of (N, S): ~2 -~.
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It is easy to see now why the members of S(i) and S-1(i) respectively are called

the potential successors and potential predecessors of i in (N, S). If a potential

successor of i has more potential predecessors besides i, then it is not known whether

this potential successor actually will direct himself to i. The social power an agent

has in a hierarchically structured population clearly depends on which echelon tree

eventually will occur.

3 Social power indices

In this section we introduce the notion of a social power index that measures the

(potential) social power of economic agents in a hierarchically structured population.

In the previous section we indicated two sources of social power within the setting

of a hierarchically structured population. We argued that, for an agent i E N, both

sources of social power depend on which agents he dominates directly. Therefore, the

social power index that we have in mind should tell us in which way tlre power over all

dominated agents is distributed over the agents in N. The fact that in a hierarchically

structured population the leader is the only agent that is not dominated leads us to

the following definition of a social power index.

Definition 3.1 A social power index on N is a function cp: N x SN ~ R~ such

that for every S E SN it holds that

~ cp(i, S) - ~N - 1.
~EN

The power over the ~N - 1 dominated economic agents can be distributed in various

ways as long as this power distribution satisfies Definition 3.1. Here we turn to the

analysis of one particular socia] power index, the BG-index.

From the discussion in the previous section it follows that the social power of

an agent i E N in a hierarchically structured population (N, S) depends on which

c,chc~lon t.rc~c~ c~vc~ntrrally will occ~rrr. 'I'hia dc~pc~ncls on whic-h onc~ of I,hcir potc.nt.ial

prc~dcawsors thc agc~nl,s in N` l,iy choosc as t.hcir tn~eclc~cc~s,or. lu Lhc 13C-inclcx

we assume that each agent (except thc topmau) chooses each oue of his potential

predecessors as his predecessor with equal probability.

Definition 3.2 The BG-index is the function BG: N x SN -a R~, which for every

S E SN and for every i E N is given by
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1
f3G(i,S) :- ~ a(7)'iES(i)

where a(j) :- ~S-~(j) for every j E N`L,tf.

The BG-index of agent i in a hierarchically structured population (N, S) counts

~s1, (i~ to the social power value of i for each potential successor j of agent i. In other

words, in the BG-index the power over a dominated agent is equally distributed over

all his potential predecessors. This expresses the fact that nothing is known about

the choices of the agents which potential predecessor they choose as their predecessor.

This leads us to the following characterization of the BG-index.

Theorem 3.3 A funetion cp: N x SN -~ R~ is equal to the f3G-index if and only íf

it satisfies the following three conditions:

(i) For every hierarchically structured population (N, S) it holds that

~ ~p(i, S) - ~N - 1.
~EN

(ii) For every hierarchically structured population (N, S) and every agent i E N

it holds that

cp(i,S) 1~{j E S(i) ~ a(j) - 1}.

(iii) For every hierarchically structured population (N, S) and every agent i E N

it holds that

1
~P(~,S) - ~Ts ~~s~P(z~T)-

From the first condition it follows that the BG-index indeed is a social power index

as introduced in Definition 3.1. The second condition says that an agent at least

has full power over all his potential successors that have to direct themselves to him

because they have no other potential predecessor. The third condition says that the

BG-index for an arbitrary hierarchically structured population (N, S) is equal to the

averagcof thesc indices over all echclon trces (N,7') in (N,S).

PROOF OF THEOREM 3.3
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h'irst we will prove that thc I3G-index satisfies the three condil.ions statcd in the

theorem.

Suppose that S E SN and let { Lr ,..., L,y } and R respectively be the echelon parti-

tion and the communication structure of (N, S). Then

1 1
(i) ~ 13G(i, S) - ~ ~ - ~ ~ - ~N - 1.

~EN iEN jES(i) ~(~) jEN`L~y iES-~(j) a(~)

This shows that the BG-indcx satisfies the first condition.

(rr) For every i E N it holds that

BG(i,S) -~ 1 1~ 1 -~{J E S(z) ~~(3) - 1}.
jES(i) ~(.7) - ~es~~~ 0(7)

v(i)-1

This shows that the BG-index satisfies the second condition.

(iii) Let T E Ts. Then

~7,-i(i) 1 for every i E N~ L~y
- 0 for the leader i- io E LM

Then it is clear that

BG(i,T) - ~ ~T~i(j) - ~T(i)
jET(i)

Let 7S(i, j) :- {T E TS ~ j E T(i)}. It is easy to see that Íor every i E N and

for every potential successor j E S(i) it holds that TTS' - o~j). Then we

may deduce that

1 1
13G(i,S) - ~ - - ~ ~Ts(i,j)

lES(i) a(,) tS jES(i)

- 1 ~ ~T(i) - 1 ~ BG(i,T),
tS TETs tS TETs

where ts :- ~75. This shows that the BG-index also satisfies the third

condition.
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Now let ep: N x SN ~ R} be a function that satisfies the three conditions. We next

show that it has to be the BG-index.

From thc first. two condit.ions it casily follows that for cach S E SN and evcry T E 7s

it holds that

cp(i,T) - ~T(z).

From the third condition it then follows that for S E SN:
1 1

~P(i,S) - - ~ ~T(i) - - ~ ~7s(i,j)
ts TETs ts iES(i)

- ~ 1 - BG(i, S)
JES(i) ~(~)

This implies that if cp: N x SN -~ Rn satisfies the three conditions, then it must be

equal to the BG-index.
Q.E.D.

It follows from this proof that the first two conditions uniquely determine the BG-

index for echelon trees. According to the third c.ondition, the BG-ind~x measures the

potential social power oí economic ageuts in a hierarchically structured population

(N, S) if we assume that each echelon tree occurs with the same probability. Therefore

we might see the BG-index as an objective power index which distributes the social

power in some "fairn way. The characterization given in Theorem 3.3 is called the

objective characterization of the BG-index.

4 A subjective approach to the BG-index

In this section we show that the BG-index also can be seen as a subjective social

power index, i.e., as an index that measures social power from the viewpoint of the

individual agents in the hierarchically structured population.

Consider a particular hierarchically structured (N, S) and an agent i E N`L~.

If a potential successor j E S(i) has more potential predecessors besides i, then it is

not known whether j actually directs himself to i. We suppose that each agetit has

certain expectations about which ones of his potential successors eventually directs

themselves to him. These subjective cxpec.tations of the agents are given by a social

expectation function.
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Definition 4.1 Let S E SN. A function tes: N x N-~ (0, 1] is a social expectation

function for (N, S) if for every i E N the following two conditions are satisf:ed:

(~) f~s(z,7) - 0 if7 ~ S(i);

(ii) ~s(i, j) - 1 if j E S(i) with a(j) - 1.

The probability agent i E N gives to the occurrence of an echelon tree such that he is

the predecessor of agent j is given by ~s(i, j). Agent i must expect that he will never

be the predecessor of an agent who is no potential successor of him. Furthermore i

must expect that he will be the predecessor of a potential successor j E S(i) with

certainty if he is the only potential predecessor of j. It is clear that if i E LI then

~S(i, j) - 0 for all j E N. If j E L,y then ~s(i, j) - 0 for all i E N.

Clearly the choicesoCpredecessors by all agents in N`!,M result in a particiilar

echelon tree. Using the social expectation function we can, for each agent in N, derive

a probability distribution over 7s. Consider a particular echelon tree (N, T) in (N, S),

and an agent i E N. It is easy to see that if T(i) ~~ then the probability agent i

gives to the occurrence of an echelon tree in which he is the predecessor of all agents

in T(i) is given by

~ ~s(z,7).
jET(i)

For each one of the agents j E S(i) `T(i), agent i gives probability 1-~s(i, j) to the

occurrence of an echelon tree in which he is not the predecessor of j. We assume that

agent i expects that all other potential predecessors of j have equal probability to be

the predecessor of j. Because in these cases j has [~S-1(j) - 1] ? 1 other potential

predecessors besides i, the probability i gives to the occurrence of an echelon tree in

which j directs himself to one particular potential predecessor h E S-1(j) `{i} is

given by

1 - tth(i,7)

~5-~(7) - 1

Finally we assume that each agent i E N expects that Cor cach agent j who is

no potential successor of i it holds that all potential preclecessors of j have equal

probability ~s~,(~) to be the predecessor of j. This results in the following functions

that yield the expectation of agent i about which echelon tree will occur.
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Definition 4.2 Lct .S' E SN, lrl tr,ti Gr n.YOr'ial crprr-Inlinn farnr.rinn jor (N, S) aiid

let i E N. The expectation distribution of agent i induced by ps is the functíon

p;:Ts -~ [0, 1] that is given by

pi(T)- ~ l~s(Z,.l ) ~ 1- l~s(Zi.7) T7 1 (`l)

jET(i) jES(i)`T(i) ~(g) - 1 jEN`[1S(li)uLb] ~(~)

for every T E Ts.

It can be verified that for each agent i E N it holds that p;(T) ~ 0 for every

T E Ts and ~ p;(T) - 1. Thus the function p;:TS -; [0, 1] describes a probability
TETs

distribution over TS. This probability distribution reflects agent i's expectation about

which echelon tree will occur.

We will illustrate the agent's expectations about the occurrence of echelon

trees by discussing three specific types of social expectation functions, namely the

cases of pessimistic, neutral, and optimistic expectations. To analyze these cases

properly we take a fixed hierarchically structured population (N, S).

We say that agent i has pessimistic expectations about his power over his potential

successors if the social expectation function ps satisfies:

1 if j E S(i) and v(j) - 1
ps(Z'~) - 0 else

From eyuation ( 2) it follows tliat in this case agent i's expectation distribution is

such that for every T E TS it holds that

0 if{jET(i)~v(j)~1}~0

~ o(j)-~ jj o(j) if {j E T(i) ~ v(j) ~ 1} - 0
jES(i)`T(~) jEN`[S(i)uLly]

This shows that if agent i has pessimistic expectations about his power over his

potential successors, then he gives zero probability to the occurrence of all eclielon

trees in which he is the predecessor of at least one of his potential successors who

have more potential predecessors besides himself. If NS(i) :- {T E Ts ~ {7 E T(i) ~

a(j) ~ 1} -~}, then we can verify that for every T E NS(i) it holds that

7, - 1 1 1
p,( )

;ES(~T(i) o(j) -1 jEN~[~)uLMI ~(j) - ~NS(i)'
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This shows that agent i gives equal positive probability to the occurrence of all echelon

trees in which he is not the predecessor of any of his potential successors who have

more than one potential predecessors.

We say that agent i has neutral expectations about his power over his potential

successors if the socia[ expectation function ~s satisfies

1
ps(t,~) - ~(~) for all j E S(i).

From equation ( 2) it follows that in this case agent i's expectation distribution is

such that for every T E Ts i t holds that

7~7 1 1Pi( ~') - 11 - -

jEN`l,,w ~(.T ) ~S ~

wherc ls :- ~Ts. 7~he e~quation above asscrts that if age~ut i has nc,utral expectatiuns,

then he gives equal probability of occurrence to each echelon tree in (N, S).

Finally, we say that agent i has optimistic expectations about his power over his

potential successors if the social expectation function ~s satisfies

~s(i, j) - 1 for all j E S(i).

h'rom equation (2) it (ollows that in this case agent i's expectation distributiou is

such that for every T E Ts it holds that

0 if T(i) ~ S(i)

Pi(T)-{ jj o(j) if T(i) - s(i).
jEN`[S(i)uLM]

This implies that in case agent i has optimistic expectations about his power over his

potential successors, then i gives zero probability to the occurrence of an echelon tree

in which he is not the predecessor of all his potential successors. If Ds(i) :- {T E

Ts ~ T(i) - S(i)}, then we can verify that for every T E Ds(i) it holds that

Pi(T) - ~ 1 - 1
jEN`[S(i)uLM] a(') ~DS(i).

'1'hus we may conclude that in case of optitnistic expectations agent i gives eyual

positive probability to the occurrence of all echelon trees in which he is the predecessor

of all his potential successors.
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Suppose that cp: N x SN -~ R} is a social power index as de,fined in Definition 3.1. For

an echelon tree (N, T) the function y~(., T): N -~ Rt can be seen as a social power

index belonging to echelon tree (N,T) which measures social power in a situation

that actually might occur. Given the social power index for all echelon trees we can

define a subjective social power index which measures social power from the agent's

point oí view.

Definition 4.3 Let S E SN, let ps 6e a social expectation funclion Jor (N, S) and

let ep: N x SN ~ Rt 6e a social powcr indez. Furthermore, lr.t ph be the expectation

distribulion of agent h E N indur.ed 6y ps. Agent h's subjective expectation of ~p

is the Junction Eh(cp): N-~ R~ which is given 6y

Eh(cp)(i) -~ pn(T)y~(i,T) for every i E N.
T ETs

Thus Eh(cp)(i) measures the social power of agent i according to agent h. With the

assurnptions as rnade in the previous definitions we in fact have constructed a model

of subjective expectation patterns with respect to social power in the setting of a

hierarchically structured organization of economic processes. With the use of this

model we are able to give an approach to the BG-index, which is based on subjective

cxpectations of the agents in t,hc orga.nization. The following rcsult rcmarkably states

that uniform expectations with respect to social power, lead to the sarne rule for

distributing social powcr, namely thc BG-index.

Theorem 4.4 The function ~: N x SN --~ R} is equal to the BG-index ij and only

if the following three conditions are satisfied:

(' )

(i

For every hierarchically structured population (N, S) it holds that

~ cp(i, S) - ~N - 1.
iEN

) I~i~r rvcry IticrarchiraUy structurrd popululiou (N,.S~ un~l rvrry agcnl i E N

it holds that

cp(i,S) ?~{j E S(i) ~ o(j) - 1}.

(iii) For every hierarchácally structured population (N, S) and every social expec-

tation function lrs such that Jor every j E N`LM and every i E S-r(j)
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~S(i, j) -~S(j), where tZS(j) is some constant in [0, I],

it holds that

~ ~'h(~P)
~('i S) -

hE ~N

whene Eh(cp) is gilvten by Defiizition 4.3.

Conditions 1 and 2 are similar to the first two conditions in the objective characteriza-

tion of the BG-index given in Theorem 3.3. So, again these two conditions determine

a social power index for each echelon tree in (N, S). The third condition then says

that if, for each agent j E N` L~y, it holds that all his potential predecessors in

(N, S) have the same subjective expectations regarding the power over him, then the

BG-index is equal to the average of the subjective expectations of this rule yo over all

agents. Therefore, Theorem 4.4 is a subjective characterization of the BG-index.

PROOF OF THEOREM 4.4

First we will prove that the BG-index satisfies the three conditions.

Because the first two conditions are the same as in Theorem 3.3, it follows that the

BG-index satisfies these conditions.

Let S E SN. Suppose that for all j E N`L,y it holds that:

!zs(z,,7) - lzs(7), for all i E S-1(~).

Consider a particular agent i E N.

First we wíll determine Eh(BG)(i), for all h E N. Let j E S(i), and let TS(i, j) :-

{T E 7s ~ j E T(i)}. Then

Eh(i,j) ~- ~ Ph(T)
TE7s(~~7)

is the probability agent h gives to the occurrence of an echelon tree in which agent

i is the predecessor of agent j. Now there have to be considered exactly three cases

with respect to agent h E N:

l. Supposc h - i.

'1'hcn it immediately follows tliat:
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Ei(i,j) - l~s(i,j) - hs(j)- (3)

2. Suppose h E S-'(j) ~{i}.

This means that h is another potential predecessor of j. Then h gives prob-

ability 1-~s(j) to the occurrence of an echelon tree in which he is not the

predecessor of j. We assumed that agent h expects that all other potential pre-

decessors of j have equal probability to be j's predecessor. Therefore ít holds

that:

Eh(z,~) - 1- hs(~) if h E S-1(~) `{i}.
~(j ) - 1

(4)

3. Suppose h E N` S-' ( j).

'I~hus h is not a potcntial predcccssor of j. We assurned t,hat,, if j is no potential

successor of h, then h expects that j will direct himself to each one of his

potential predecessors with equal probability. Therefore it holds that:

En(z,j) - Q(j)
if h E N`S-I(j)- (5)

This holds for all potential successors j of agent i, so from (3), (4), (5) and the third

conditíon the theorem it follows that for all h E N:

En(BC)(i) - ~ Pn(T)BG(z,T) - ~ ~ Pn(T)
TETs jES(i) TETs(i,j)

~ ps(j) if h - i
jES(i)

- ~ Eh(i,j) -
~. 1-l~ j ,} ~ ' ~jES(i)

jES()S(i) ~(j)-1 jES(i)`S(h) o(j)
]f Il. 2

Next we establish the following facts:

~ If j E S(h), h ~ i, then Q(j) ~ 1.

~ A potential successor j of agent i has Q(j) - 1 other potential predecessors

besides i.
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~ There are n - o(j) agents in N who are no potential predecessor of j, where

n :- ~N.

With this we can determine the following

~ Eh(BG)(i) - E;(BG)(i) ~- ~ Eh(BG)(i)
hEN hEN`{i}

- ~ f~s(j) ~ ~ I ~ 1 -~s(j) } ~
(1 IjES(i) hEN~{~} `jES(h)nS(i) ~(~) - 1 jES(i)~S(h) ~`~)

(~(7) - 1)(1 - hs(.!)) ~ n - a(7)
- ~ l~s(J) } ~ ~

jES(i) ~ES(~) (~(~) - ~) iES(i) ~(~)
o(j)~1

l- ~ ~~s(~) ~ n ~(~)~)~ ~ ,~, ~~`s(j) ~- (i - ~s(j)) -~ n a(~)j)
~ES(~)
0())-1 0(7)~1

,~

,~~ ?(7) } ,~~ ~(.l) - j~i~?(7)
o(i)-~ o(j)~~

(6)

P:quation (6) immediately implies that

~ Eh(BG)(i) - ~ 1 - BG(i, S).
hEN ~N .ÍES(i) a(') -

This holds for every agent i E N, and thus we are able to conclude that the BG-index

satisfies the third condition.

Next let cp: N x SN -f R~ be a function that satisfies the three conditions.

From the first two conditions it follows that for each S E SN and every T E Ts it

holds that:

~p(i,T) - ~T( -BGzT

) - jET(i) ~T-1(j)
- ( ~, ).

1

n

From this it íollows that
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~ ~~A(~)(Z) ~ ~ Ph(' )~(Zi ~ )
hEN hEN "I'ETs

~N - ~N

~ ~ Ph(T)RC(i~T) ~ Eh(BG)(i)
hEN TETs hEN

- ~N - ~N ~

With condition 3 it then follows that for every S E SN and for every social expectation

func-t,ion ~eti such that for every agent. j E N` I,,~r and for every i E .S-t(j) it holds

that Eis(i, j) -~s(j) (Ils(J) E [~, 1]), it holds that

~ Eh(BC)(z)
hEN

cP(z, S) - ~N .

From Equation ( 6) it is easily established that cp is equal to the BG-index.
Q.E.D.

5 An example

In this section we give an example which illustrates the objective and subjective

interpretations of the BG-index.

Example 5.1 Consider the hierarchically structured population (N, S), where N-

{ 1, ..., 7} and the successor mapping S is given by:

S(1) -{2,3,4,5}, S(2) - 0, S(3) - 0, S(4) -{2,6}, S(5) -{3,7},

S(s) - 0, S(7) - 0.
'i'he echelon partition ~ and communication structure l~ of (N, S) are given by:

~ - {{2,3,6,7},{4,5},{1}}

and

R - {{1,2},{1,3},{1,4},{1,5},{2,4},{3,5},{4,6},{5,7}}.

The communication graph (N, R) belonging to (N, S) is given in figure 3 in which

the black dots are the agents in the second echelon L2 and the ringed dot is the agent

in the highest echelon L3. The BG-index of (N, S) is given by:

Bc(., s) -(a, o, o, l 2,1 z, o, o),
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4

cb b 7

Figure 3: Example 5.1

where BG(., S) :- (BG(1, S), ..., BG(7, S)). The only agents that have a choice

possibility with respect to their predecessor are the agents 2 and 3. They both have

two potential predecessors and therefore there are four echelon trees in (IV, S). These

four echelon trees (N, 7k) are given in the first column of table 1.

Consider the first echelon tree. According to condition 2 in Theorem 3.3 it

must hold that ~p(., Ti ) ~(4, 0, 0, 1, 1, 0, 0). Together with condition 1(~; i ~p(i, T~ )-

Fi) this implies that equality holds and ~p(i,Ti) - BG(i,T~), with BG(i,T~) -~T~(i).

In the second c,olurnn oí table 1 we give the values of tk(z), i E{1, 4, 5}, ~ E

{1,...,4}, where tk(i) :- ~Tk(i). (It is clear that tk(i) - 0 for all i E{2,3,6,7}.)
4

Now it is easy to verify that for every agent i E N it holds Lhat ~ ~ 4' - BG(i, S).
k-1

This illustrates Theorem 3.3.

In order to illustrate Theorem 4.4 we need to give the subjective expectations of the

agents with respect to the power structure. Because the ageuts 2, 3, 6, and 7 are

part of the lowest echelon it follows from Definitions 4.2 and 4.3 that

Eh(BG)(i) - BG(i, S) - 0 for all i E{2, 3, 6, 7} and all h E N. (7)

'I'herefore the only agents of interest are the agents 1, 9 and 5. In the last three

columns of table 1 we give the probability distributions representing the expectations

about the occurrence of echelon trees of the agents 1, 4 and 5 in the case they all

have pessimistic, neutral, or optimistic expectations.

Agent 4 has one potential successor for which it is not certain that he will

direct himself to 4, namely agent 2. In the case of pessimistic expextations therefore,

5
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probability distributions
in the case of

echelon tree ( tk(1),tk(4),tk(5)) pessimistic neutral optimistic
expectations expectations expectations

1
2 3

4 5 (l,~i, 1) ! 1
2 O 2

1 ? i
4 4 4 ~ 1 ~

Ó 7

1
2 3

4 5 (2, 3, 1) 0 0 z 4 4 4 2 0 0

6 7

1
2 3

4 5 (1, 3, 2) '- 0 02 1 '- '-4 4 4 ~ ~ '-2

6 7

1
2 3

4 5 ( 2, 2, 2 ) 0 1 0 '- '- 14 4 4 ' ~ '-2 2

Ó 7

Table 1: Example 5.1
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agent 4 gives zero probability to the occurrence of an echelon tree in which he is the

predecessor of agent 2. These are Lhe second and fourth echelon trees. The other two

echelon trees both are given probability 2 oí occurrence from agent 4.

Similarly agent 5 gives zero probability of occurrence to the first and second

echelon tree and probability 2 to the occurrence of both the third and fourth echelon

tree.

Agent I has two potential successors with more than one potential predeces-

sors, namely agents 2 and 3. Therefore agent 1 gives probability one to the occurrence

of thr fourth echelon tree, which is t,he only one in which he is not the prcdecessor of

cither 2 or 3. ~'hc ol.her echelon Lrccs are given probabilit,y zero from agenL 1.

Next we are able to give the subjective expectations of the BG-index for the

agents 1, 4 and 5 in the case of pessimistic expectations.

E, (BG) - (2, 0, 0, 2, 2, 0, 0)

l;q(l~C:) - ~(~,O,U, 1, I,0,0) ~ ~ (;},0,0, 1,'1,0,0) - (:f~ ,0,0, I, I ~ ,0,0)
l l l 'l

F,5(BG) - 2(4,0,0, ], 1,0,0) - }- 2(3,0,0,2, 1,0,0) -( 32,0,0, 12, 1,0,0)

With (7) it then follows that:

~EN
E~(BG)

11I00-BG S~N - (3,0,0,12, 2, , ) - (., )-

Thus condition 3 of Theorem 4.4 is satisfied.

In the case of neutral expectations all agents give equal probability of occurrence 4

to each echelon tree. Then

E,(BG) - Eq(BG) - Es(BG) -(3, 0, 0,12,12, 0,0) - BG(., S),

and thus the conditions of Theorern 4.4 are satisfied.

In the case of optimistic expectations the ageuts give zerv probability to the occur-

rence oí each echelon tree in which they are not the predecessors of all their potential

successors. For agent 4 and 5 this means that they give probability 2(respectively 0)

t,o the occurrence of each echelon t,ree to which they give probability zero (respectively

2) in the case of pessirnistic expectations.
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probability distributions
in the case of

echelon tree (t;(1),t;(2)) pessimistic
expectations

neutral optimistic
expectations expectations

T, (3,0) 0 1 2 ? 1 0

T2 (2,1) 1 0 2 z 0 1

Table 2: Example 5.2

The only echelon tree in whictt agent 1 is the predecessor of all his potential

successors is the first echelon tree and therefore agent 1 gives probability one to the

occurrence of this echelon tree and probability zero to the other echelon trees. The

subjective expectations of the BG-index for the agents 1, 4 and 5 in the optimistic

case are given by

Er(BG) - (4,0,0, l, l,o,o),

E,(BG) - 2(3,0,0,2, 1,0,0) -~ 2(2,0,0,2,2,0,0) -(22,0,0,2, 12,0,0),

ES(BG) - 2(3,0,0,1,2,0,0) -~ 2(2,0,0,2,2,0,0) - (22,0,0, 12,2,0,0).

Again, with (7) it then simply follows that condition 3 of Theorem 4.4 is satisfied.

To complete this paper we give the BG-index for the example used throughout section

2.

Example 5.2 Consider Lhe hierarchically structured population (N, S) given in Ex-

ample 2.4 whose echelon trees are given in Example 2.8. The BG-index of (N, S) is

given by:

BG(., s) - (22, 2,1,1, o, o).

The BG-indices of the echelon trees (N,Tr) and (N,TZ) respectively are given by:

BG(-, Tr) - (3, 0,1,1, 0, 0) and BG(., T2) - (2,1, 1, 1, 0, 0).
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The only agents that have potential successors with rnore than one potential predeces-

sor are the agents 1 and 2. In table 2 we give the values of tk(i), i E{ 1, 2}, k E{1, 2},

and the probability distributions representing the expectations about the occurrence

of the echelon trees of agents 1 and 2 in the case they have pessimistic, neutral or

optimistic expectations. Both Theorem 3.3 and Theorem 4.4 easily can be verified

using this table.

6 Proofs of the theorems of section 2

ln order to prove 'I'hcorem 2.2 we first prove some lemrna's. Let S E SN. We

introduce an auxiliary mapping H: N U{0} --. 2N, which recursively is defined as

follows

H(0) :- 0,

and for every k E N

tI(k) :- {i E N ~ S(i) C H(k - I)}.

Lemma 6.1 There ezists a finite numóer M E N such that:

1. H(k - 1) C H(k), H(k - 1) ~ H(k), for every 1 C k G M;

2. H(k) - N, for every k~ M.

PROOF

The proof of the lemma consists of a number of steps.

(a) For every k E N: H(k - 1) C tt(k).

We prove this assertion by induction. First note that by definition H(0) C

If(1).

Let k E N. Now assume LhaL 11(k - 1) C H(k).

Let i E ff(k), t.hen by definition

S(i) C ll(k - 1) C ll(k).

Thus i E H(k -~ 1), and therefore H(k) C H(k ~- 1).
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(b) For every i, j E N it holds that

j E S(i) ~ ~S(j) G ~S(i).

Let i, j E N with j E S(i). Then by definition for every k E N it holds that

Sk(j) C Sktl(i). Hence,

~
S(J) C ~ Sk(i) C S(i).

(c)

k-2

But j E S(i) ~ S(j) and thus S(j) ~ S(i). This implies the assertion.

For every i E N: i E H(~S(i) -~ 1).

Let i E N. We prove the claim by induction on ~S(í).

First we suppose that ~S(i) - 0, i.e., S(i) - 0. So, 0- S(i) C H(0), which

implies that i E H(1).

Let k E N. Next assume that for all j E N with ~S(j) C k- 1 the claim is

true, i.e., j E fl(~S(j) t 1). Furt,hermore, suppose that ~.S(i) - k. Then by

(b) it holds that ~,S(j) C k- I for every j E S(i). Thus for every j E S(i) by

(a) it holds that j E H(~.S(J) f I) C ll (k) aud so S(i) C ll ( k). By definitiou

this implies that i E H(k f 1) - H(~S(i) f 1).

We introduce the function r: N--~ N, which for every i E N is given by

r(i) :- min{k ~ i E H(k)}.

By (c) it is clear that r is a well defined function, i.e., for every player i E N r(i)

exists and is a finite number. Furthermore, by definition for every k E N: H(k) -

{i E N ~ r(i) C k}.

Now we take M:- max{r(i) ~ i E N}.

l3y the statetnents as proved abovc it is obvious that for evcry I C k C M it holds

that H(k - 1) C H(k) and that for every k 1 M it holds that N(k) - N. Thereforc

it is left to prove that for every 1 C k C M it holds that H(k - 1) ~ II(k). This is

done in the following two steps.

(d) For every i, j E N with j E S(i) it holds that r(j) G r(i).

By definition i E H(r(i)). Hence, j E S(i) C H(r(i) - 1). This shows that

r(j) G r(i) - 1.
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(e) For every i E N with r(i) ) 2 there is some j E N such that j E S(i) and

r(j) - r(i) - 1.

By (d) it holds that for every j E S(i): r(j) C k- 1, where k- r(i). Suppose

by contradiction that for every j E S(i ) it holds that r(j) C k- 2.

Then S(i) C H(k-2) and so i E H(k-1), which is impossible by the definition

of the functíon r.

We complete the proof of the lemma by remarking that (e) implies that for e very

2 C k C M it holds that H(k - 1) ~ H(k).

It remains to prove that H(1) ~ H(0) - 0. Suppose, by contradiction, that H(1) - 1~.

Hence, there are no players i E N with S(i) - 0, i.e., for every i E N: S(i) ~(D.

Now we construct a sequence ( ik)kEN in N as follows. First, choose il E N arbitrarily.

Then, recursively, choose ikf~ E S(ik), k E N. We claim that this sequence is infinite.

Namely, for every m E N it holds that for every k~ m f 1: ik E S(im). By acyclicity

of the successor mapping S it is clear that therefore all elements in the sequence have

to be distinct. Hence, the sequence has to consist of an infinite number of distinct

elements, and so the set of players N has to be infinite. This contradicts the finiteness

of N.

This completes the proof of the lemma.
Q.E.D.

With Lemma 6.1 we can derive that the mapping H describes a hierarchy with a

finite number of levels. These levels are precisely the echelons Lk, 1 c k C M, as

introduced in the mairi text as the following lemma shows.

Lemma 6.2 Let S E SN. Then {L~,..., L,y} is a partition consisting of non-empty

sets only.

PROOF k-1
From (1) and the definition of the mapping H it follows that ~J I,p - H(k - 1) and

p-1

thus for all k E N

Lk -{i E N~ H(k - 1) ~ S(i) C H(k - 1)}

-{i E N~ H(k - 1) ~ i E H(k)}

- H(k) ~ H(k - 1)

Then
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i. Uk ~ Lk - UM ~ rl(k) ~ H(k -1) - H(M) ~ II(o) - N;

2. Let 1 G k~ l C Ni. Without loss of generality we assume that k C l. Then

H(k-1) C H(~) C II(l-1) C H(l). This impliesthat (H(l)`II(l-1)]nH(k) -

0. With this it follows that L,~ n L, -[H(k) `H(k - 1)] n [H(l) `H(l - 1)] - 0;

3. Because H(k) ~ H(k - 1) it holds that Lk ~ 0 for all 1 L k C M.

This proves the lemma.
Q.E.D.

Lemma 6.3 There is a unique agent io E N jor whom S-1(io) -~. This agent io is

the unique agent in N jor whom S(io) - N`{io}.

PROOF

First we remark that there is at most one player io E N for whom it holds that

S(io) - N` {io}. Furthermore, there exists at least one player j E N for whom it

holds that S-'(j) - 0.t The lemma is now proved in two subsequent steps.

(a) For io E N it holds that S(io) - N`{io} if and only if ie is the unique player

for whom it holds that S-' (io) - 0.

Only if

Suppose that íor io E N it holds that S(io) - N` {io}. Assume, by contra-

diction, that S-~(io) ~ 0. Then there is some j E N such that io E S(j).

But then S(io) C S(j). Since j ~ io we must have j E S(io) C S(j), which

contradicts acyclicity of the successor mapping S.

Suppose that there is another player j E N for whom it holcls that S-'(j) - 0.

13y assuniption it holcís that j E S(io), i.e., j E Sk(io) for some k E N. I3ut

this means that S-t(j) ~~. Contradiction.

If

Suppose that in E N is the unique player such that S-~(io) -(~. Assume,

however, that S(ie) ~ N`{io}. '1'hen the set ,tí :- N`({io} U S(in)) is not

empty. Thus we may choose j E X for whom ~.5'(j) is ~naxiinal uver X.

Ily assuniption for j it holcls that S-~(7) ~ H, and so thc~re ~nust bc sonu~

tNote that for every i E N it holds that ~tS(i) c n. Now choosc. those i E N who maximizes the

number ~S(i). Clearly these players satisfy the property.
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h E N such that j E S(ii). This implies that ~S(h) )~S(j). So, h~.X.

But this means that either io - h or h E S(io).

The first case is excluded since then j E S(h) - S(ie) and, hence, j~ X.

'1'he second case implies that S(h) C S(io). But this irnplies also that j E

S(h) C S(io).

(b) There exists a player io E N such that S(io) - N`{io}.

Suppose, by conl radiction, that there is no player who satisfies this condition.

Then by (a) Lhere exist at least two players j, h E N, with j ~ h, such

that S-'(j) - S-1(h) -~. But this property prevents the possibility of

the existence of a player i E N such that { j, h} C S(i) U {i}. This is in

contradiction with the assurnpf,ions on the successor rnapping S as macle in

Definition 2.1.

Q.F,.D.

'I'heorem 2.2 now directly follows from the lemma's 6.2 and 6.3.

PROOF OF TREOREM 2.3

1. LetiELk, jEL~,lCk,lCM.

Only if

Suppose that i E S(j). Then, by definition of H it holds that i E S(j) C

H(l -]). This implies that k C l- 1.

If
Suppose that k C l. {i, j} E R implies that either i E S(j) or j E S(i). But if

j E S(i), then I c k c l. Thus i E S(j).

2. Let, i E Lk, 2 C k C M. Suppose that S(i) fl I,k-~ - 0. But then S(i) C

ll(k -'2). 'I'hus i~ l,k. Statc~mcnt 2 then follows wit.h statc,nu~nt ].

3. I.et i E I,k, 1 c k c M- 1. From Lemma 6.3 it follows that S-'(i) ~ 0.
Statement 3 then follows with statement 1.

Q.E.D.

PROOF OF LF,MMA 2.6
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Let i; -{Lr, ..., LM } be the echelon partition of (N, S).

Suppose that i E L~, 1 C k C M- 1 and let io E Liy denote the topman within

the hierarchically structured population (N, S). From Theorem 2.3 it directly follows

that there exists at least one communication path between i and io satisfying the

condition stated in the lemma. Such a communication path can be found using the

following algorithm:

STEP 1 Let cr :- i, p:- 1. GOTO st,ep `l.

STEP 2 IF cy E Lti~ ( i.e., cp - io), THEN (cl, ..., cfl) is a communication path

between i and io satisfying the condition stated in the lemma. STOP.
M-]

ELSE there exists a cp~r E (rJ La such that cy E S(cy~~). (This follows from
a-k~r

Theorem 2.3).

GOTO step 3.

STEP 3 Let p:- p~- 1. GOTO step 2.

From the finiteness of ~ -{Ll, ..., I,,y} it follows that this algorithm always leads to

a communication path between i and io satisfying the condition stated in the lemma.

Suppose i E Lk, j E Lr, i~ j.

If {i, j} fl LM ~~ then it follows from the discussion above that there exists a

communication path between i and j satisíying the condition stated in the lemma.

Now suppose that {i, j} f1 L~y - l~. Then it follows froru thc discussion above that

thcrc cxists at lcast one communication path c-(cr - cr, . .., ch - io), 1 C h C M- k

betwcen i and io, and thc~re exists aL least one connnimication path d- (dp -

j, ..., dt - io), 1 C p C M- 1 between j and io satisfying the condition stated in

the lemma. Then it follows from 'Theorem 2.3 that at least one of the following three

situations holds:

1. There exists a communication path c- (C~ - i, ..., Ce - j, ..., ch - io) between

i and io such that j is part of that communication path and c~ E S(ckt1),

1 C k G h - 1. In this case (c~ - i, ..., c~ - j) is a communication path

between i and j satisfying the condition stated in the lemma.
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2. There exists a communication path d - (dp - j, ..., d~ - i, ... , dr - io)
between j and io such that i is part of that communication path and dkfr E

S(dk), 1 C k c p- 1. In this case ( dy - j, . .. , d~ - i) is a communication

path between i and j satisfying the condition stated in the lemma.

3. There exists an agent t E LQ, with max{k,l} G q C M such that there exist

commrmication paths ( cr - i, ..., ce - t, ..., ch - io) between i and io and

(dp - j, ..., d~ - t, ..., dr - io) between j and io such that ck E S(cr ~r ),

1 C k C h- 1 and dk~r E S(dk), 1 G k C p- 1. In this case ( cr - i, ..., ce -

t- dt, ..., dv - j) is a conununication path between i and j satisfying the

condition statc~d in the lemrna.

Q.E.D.
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