CBM R 5^{4}

7626
1988
358

LINEAR TIME-INVARIANT FILTERS OF INFINITE ORDER FOR NON-STATIONARY PROCESSES
B.B. van der Genugten

FEW 358

LINEAR TIME-INVARIANT FILTERS
 OF INFINITE ORDER
 FOR NON-STATIONARY PROCESSES

by
B.B. van der Genugten

Abstract

In dynamic linear models linear time-invariant filters of infinite order play an important rôle. E.g. an invertible AR of finite order corresponds to an MA of infinite order but not to one of finite order. To justify the formal operations of composition and inversion of filters regularity conditions concerning convergence have to be checked. This paper discusses the construction of simple classes of non-stationary processes and linear filters of infinite order that are closed under composition and inversion. For such classes the necessary regularity conditions are automatically satisfied.
Concepts as "exponentially decreasing filters" and "non-exponentially increasing processes" come up in a natural way. Some examples illustrate the applications of the concepts.

1. Introduction

Let \mathscr{L} be a class of m-vectorial stochastic processes $X=\left\{X_{t}\right.$, $t \in Z\}$ on the set of integers Z and \mathscr{F} a class of filters mapping \mathscr{L} into \mathscr{L}. So for each filter $A \in \mathscr{F}$ the input $X \in \mathscr{L}$ gives the output $Y=\left\{Y_{t}\right.$, $\mathrm{t} \in \mathrm{Z}\}=\mathrm{A}(\mathrm{X}) \in \mathscr{L}$, or shortly: $\mathrm{A}(\mathscr{L}) \subset \mathscr{L}, \mathrm{A} \in \mathscr{L}$. Hence $\mathscr{F}(\mathscr{L}) \subset \mathscr{L}$.

Let $\mathrm{A}, \mathrm{B} \in \mathscr{L}$ and $\mathrm{X} \in \mathscr{L}$. Then $\mathrm{Z}=\mathrm{B}(\mathrm{Y})$ with $\mathrm{Y}=\mathrm{A}(\mathrm{X})$ can be written as $\mathrm{Z}=\mathrm{C}(\mathrm{X})$ with $\mathrm{C}=\mathrm{B} \circ \mathrm{A}$, the composition of A and B . So the definition of \mathscr{F} implies that \mathscr{F} is closed under composition.

Let $\mathscr{G} \subset \mathscr{F}$ be a group with the composition as group-operation. Then by definition the identity I belongs to \mathscr{G} and for each $A \in \mathscr{G}$ there exists a unique $A^{-1} \in \mathscr{Y}$ such that $A^{-1} 。 A=I$, the inverse A^{-1} of A. The existence of such an \mathscr{G} implies $\mathscr{F}(\mathscr{L})=\mathscr{L}($ since $I(\mathscr{L})=\mathscr{L})$.

In this paper we look for suitable choices of \mathscr{L}, \mathcal{F} and $\mathscr{\mathscr { L }}$ such that all processes are one-sided moving averages of infinite order allowing simple mathematical operations for composition and inversion. We will formulate this more precisely.

In \mathscr{L} we do not distinguish between processes who only differ on a set of probability zero ($\mathrm{X}=\mathrm{X}^{\prime}$ a.s. $\Rightarrow \mathrm{X}=\mathrm{X}^{\prime}$). For \mathscr{F} we suppose that each $A \in \mathscr{F}$ can be represented uniquely on \mathscr{L} by a sequence $\left\{A_{k}, k \in N_{0}\right\}$ of $m \times m-$ matrices or shortly: $A=\left\{A_{k}, k \in N_{0}\right\}$. Uniqueness refers to
(1.2) $A(X)=B(X)$ for all $X \in \mathscr{L} \Leftrightarrow A_{k}=B_{k}$ for all $k \in N_{0}$.

For each $A=\left\{A_{k}, k \in N_{0}\right\} \in \mathscr{F}$ and each input $X=\left\{X_{t}, t \in Z\right\} \in \mathscr{L}$ the corresponding output $Y=\left\{\mathrm{Y}_{\mathrm{t}}, \mathrm{t} \in \mathrm{Z}\right\} \in \mathscr{L}$ is given by

$$
\begin{equation*}
Y_{t}=\sum_{0}^{\infty} A_{k} X_{t-k}, \quad t \in Z \tag{1.1}
\end{equation*}
$$

Here it is assumed that the type of convergence (in probability, $r^{\text {th }}$ mean, a.s.) is the same for all $A \in \mathscr{F}$ and $X \in \mathscr{L}$. It follows that the identity $I \in \mathscr{L}$ is represented by $I=\left\{\delta_{0 k} I_{m}, k \in N_{0}\right\}$, where I_{m} denotes the $m \times m-$ matrix. We suppose that \mathscr{L} is a linear space (with the usual componentwise
definition of addition and scalar multiplication of stochastic processes). Then $A=\left\{A_{k}, k \in N_{0}\right\} \in \mathscr{F}$ is a linear filter. We assume also that \mathcal{F} is a linear space. Then the nulfunction $0 \in \mathscr{F}$ is represented by $\left\{0, k \in N_{0}\right\}$.

The output $Z=\left\{Z_{t}, t \in Z\right\}$ of the filter $B=\left\{B_{k}, k \in N_{0}\right\} \in \mathscr{F}$ of $\left.y=y_{t}, t \in Z\right\}$, given by

$$
Z_{t}=\sum_{0}^{\infty} B_{k} Y_{t-k}, \quad t \in Z,
$$

can be written as $Z=B(Y)=B(A(X))=C(X)$ with $C=B \circ A \in \mathcal{F}$ the composition of A and B. So we can write

$$
z_{t}=\sum_{0}^{\infty} c_{k} X_{t-k} \quad, \quad t \in Z,
$$

where the composition is represented by $C=\left\{C_{k}, k \in N_{0}\right\}$. A formal substitution makes the following convolution property desirable:
(1.3) $A, B \in \mathcal{F}: C=B \circ A \Leftrightarrow C_{k}=\sum_{0}^{k} B_{j} A_{k-j}, \quad k \in N_{0}$.

The inversion property (1.3) imposes conditions on the linear spaces \mathscr{L} and \mathscr{F}.

Let $A=\left\{A_{k}, k \in N_{0}\right\} \in \mathscr{G}$. It follows from (1.3) that $B=\left\{B_{k}\right.$, $\left.\mathrm{k} \in \mathbb{N}_{0}\right\} \in \mathscr{F}$ is the inverse of A iff
(1.4) $\delta_{O k} I_{m}=\sum_{0}^{k} B_{j} A_{k-j}$.

The inversion property (1.4) imposes conditions on the choice of a group \mathscr{G} in \mathscr{F}.

The convolution property (1.3) for \mathscr{L} and \mathcal{F}, and the inversion property (1.4) for \mathscr{G} are exactly the properties that allow careless formal mathematical operations with composition and inversion. Often these properties are only needed for linear subspaces $\mathscr{L}_{0} \subset \mathscr{L}$ which are closed under composition themselves (i.e. $\mathcal{F}\left(\mathscr{L}_{0}\right)=\mathscr{L}_{0}$).

The approach in this paper is different from standard literature (see e.g. Anderson (1971), Hannan (1970) or Brockwell and Davis (1987) in
this way that composition and inversion is not considered for a specific process and a specific filter but for whole spaces of processes and filters. This seems to be the appropriate way to justify formal operations.
2. The choice of \mathscr{L}, \mathcal{F} and \mathscr{Y}

It is attractive to make the linear spaces \mathscr{L}, \mathscr{F} and the group \mathscr{G} as large as possible. However, the need for convergence in (1.1) prevents this. If \mathscr{F} is large then \mathscr{L} will be small and conversely. Furthermore, the definition (1.1) rules out also classes \mathscr{L} that are not invariant under linear filtering $(\mathrm{A}(\mathscr{L}) \neq \mathscr{L}$ for some $\mathrm{A} \in \mathscr{F})$, e.g. \mathscr{L} cannot be the class of processes $X=\left\{X_{t}, t \in Z\right\}$ with orthogonal or independent components X_{t} (except in trivial cases).

The choice $\mathscr{L}_{w}=\{X: X$ wide-stationary $\}$ is possible if we take for the corresponding class of filters the linear space
(2.1) $\quad \mathcal{F}_{a}=\left\{A: \sum_{0}^{\infty}\left\|A_{k}\right\|<\infty\right\}$

The conditions (1.1) - (1.3) are satisfied for \mathscr{L}_{w} and \mathcal{F}_{a} with convergence in mean square or absolute convergence $\mathrm{a} . \mathrm{s}$ as the type of convergence.

The space \mathscr{L}_{w} can be extended to \mathscr{L}_{a}, defined by
(2.2) $\mathscr{L}_{a}=\left\{X: E\left\|X_{t}\right\|<\infty\right.$ for all $\left.t \in Z, \limsup _{t \rightarrow-\infty} E\left\|X_{t}\right\|<\infty\right\}$.

The conditions (1.1) - (1.3) can be verified again where the type of convergence is absolute convergence a.s. The proof is based on the fact that for absolute convergence $\mathrm{a} . \mathrm{s}$ of series the convergence of the expectations of the absolute values is sufficient.

The class \mathscr{L}_{a} contains not only wide-stationary processes but also non-stationary processes with bounded expectations of the components. In particular \mathscr{L}_{a} contains bounded deterministic processes. A suitable large group \mathscr{G}_{a} in \mathscr{L}_{a} is given by
(2.3) $\mathscr{G}_{\mathrm{a}}=\left\{\mathrm{A} \in \mathcal{F}_{\mathrm{a}}: \operatorname{det}\{\mathrm{A}(\mathrm{z})\} \neq 0\right.$ if $|z| \leq 1$,

$$
\left.\sum_{0}^{\infty}\left\|B_{k}\right\|<\infty \text { where } A^{-1}(z)=\sum_{0}^{\infty} B_{k} z^{k},|z| \leq 1\right\} .
$$

Here, $A(z)=\sum_{0}^{\infty} A_{k} z^{k}$ denotes the matrix generating function of A. For each $A \in \mathcal{F}_{a}$ we have for the convergence radius $\rho(A)$ (defined as the minimum of the convergence radii of the components) that $\rho(A) \leq 1$. This guarantees the expansion of $A^{-1}(z)=\sum_{0}^{\infty} B_{k} z^{k}$ for $|z|<1$, and therefore the definition of $\left\{B_{k}, k \in N_{0}\right\}$ satisfying (1.4). However, the convergence of $\Sigma\left\|B_{k}\right\|$ is not guaranteed and has to be added in the definition of \mathscr{Y}_{a}.

For many applications (e.g. AR, MA, ARMA, ARMAX) the class \mathcal{F}_{a} is large, \mathscr{L}_{a} is small and \mathscr{G}_{a} is complicated. In such applications the filters are often finite or infinite with exponentially decreasing coefficients. On the other hand, the deterministic processes are often unbounded (e.g. ARMAX-models with a polynomial trend). This suggests to restrict the class \mathscr{F}_{a} further to exponentially decreasing filters $A=\left\{A_{k}, k \in N_{0}\right\}$ defined by

$$
\exists \rho>1: \rho^{n} A_{n} \rightarrow 0, n \rightarrow \infty,
$$

thereby allowing an extension to non-exponentially increasing processes $X=\left\{X_{t}, t \in Z\right\}$ defined by

$$
\forall p>1: p^{t} x_{t} \rightarrow 0, \quad t \rightarrow-\infty
$$

Here the type of convergence has to be specified further on. We consider convergence a.s. and convergence in $r^{\text {th }}$ mean. So we are led to the introduction of the linear space of filters \mathscr{F}_{e}, defined by
(2.4) $\mathscr{F}_{e}=\left\{A: \rho^{n} A_{n} \rightarrow 0\right.$ if $n \rightarrow \infty$ for some $\left.\rho>1\right\}$
and the linear space of processes \mathscr{L}_{r}, defined for $r \geq 0$ by
(2.5) $\left\{\begin{aligned} \mathscr{L}_{0}= & \left\{X: \rho^{t} X_{t} \xrightarrow{\text { a.s }} 0 \text { if } t \rightarrow-\infty \text { for all } \rho>1\right\} \\ \mathscr{L}_{r}= & \left\{X: E\left\|X_{t}\right\|^{r}<\infty \text { for all } t \in Z,\right. \\ & \left.\rho^{t} X_{t} \xrightarrow{r} 0 \text { if } t \rightarrow-\infty \text { for all } \rho>1\right\}, r>0 .\end{aligned}\right.$

The notation in (2.5) is motivated by the property (see section 3 for the proof):
$\mathscr{L}_{S} \subset \mathscr{L}_{r}$ for $0 \leq r \leq s$.
The group $\mathscr{G}_{\mathrm{e}} \subset \mathcal{F}_{\mathrm{e}}$, corresponding to (2.3), can be defined now in a simple way:

$$
\begin{equation*}
\mathscr{G}_{\mathrm{e}}=\left\{\mathrm{A} \in \mathcal{F}_{\mathrm{e}}: \operatorname{det}\{\mathrm{A}(\mathrm{z})\} \neq 0 \text { if }|\mathrm{z}| \leq 1\right\} \tag{2.7}
\end{equation*}
$$

since $A \in \mathscr{F}_{\mathrm{e}}$ is equivalent to $\rho(\mathrm{A})>1$.

Theorem ($\mathrm{r}=0$ or $\mathrm{r} \geq 1$).
The linear spaces \mathscr{F}_{e} and \mathscr{L}_{r} satisfy the conditions (1.1)-(1.3), where the type of convergence is specified by r.
Remark. No conclusion is obtained for $0<r<1$.

This theorem is the main result of the paper. As long as we restrict inputprocesses to \mathscr{L}_{r} are filters to \mathscr{F}_{e} (and/or \mathscr{L}_{e}) the usual formal operations connected with composition and inversion are automatically satisfied. Outputprocesses can again be handled as inputprocesses without any restrictions. The proof of the theorem is contained in section 3 .

Example 1.

Consider the homogeneous difference equation

$$
\sum_{0}^{\infty} A_{k} Y_{t-k}=0 \quad, \quad t \in Z
$$

and suppose that $A(z)=\sum A_{k} z^{k}$ has a radius of convergence larger than 1 with $\operatorname{det}\{A(z)\} \neq 0,|z| \leq 1$. Then $A \in \mathscr{G}$ and so from $A(Y)=0$ it follows that $Y=A^{-1}(0)=0$ for any $Y \in \mathcal{F}_{e}$. Therefore the only non-exponentially
increasing solution of this homogeneous equation is $Y_{t}=0$ ass., $t \in \mathbf{Z}$. This agrees with the standard result in the theory of finite linear diffference equations.

Example 2.
Consider the ARMAX-model of the form

$$
\sum_{0}^{\infty} A_{g} Y_{t-g}=B^{\prime} X_{t}+\sum_{0}^{\infty} C_{h} \varepsilon_{t-h} \quad, \quad t \in \mathbb{Z}
$$

with $\left(\varepsilon_{t}\right)$ white noise (i.e. $E\left\{\varepsilon_{t} \varepsilon_{s}^{\prime}\right\}=\delta_{t s} \Sigma$) and $A=\left\{A_{g}, g \in N_{0}\right\}, C=$ $\left\{C_{h}, h \in N_{0}\right\}$ exponentially decreasing. If $X=\left(X_{t}\right)$ is mean-square nonexponentially increasing, then the right hand side of the equation belongs to \mathscr{L}_{2}. Therefore the equation determines uniquely a mean-square non-exponentially increasing process $Y=\left(Y_{t}\right)$ provided that $A \in \mathscr{G}$ i.e. $\operatorname{det}\{A(z)\} \neq$ $0,|z| \leq 1$. The solution is given by

$$
Y_{t}=\sum_{0}^{\infty} \Phi_{h} B^{\prime} X_{t-h}+\sum_{0}^{\infty} \Psi_{h} \varepsilon_{t-h} \quad, \quad t \in \mathbb{Z},
$$

where $\Phi(z)=A^{-1}(z), \Psi(z)=A^{-1}(z) C(z)$.
Note that we have fixed the ARMAX-model (the solution Y) by the qualiafive restriction $Y \in \mathscr{L}_{e}$. This forms a nice alternative to the usual guantitative specification of starting conditions.

Example 3.

Let $C(\delta)$ for $\delta \geq 0$ stand for the centered Cauchy-distribution with characteristic function $\exp \{-\delta|u|\}, u \in \mathbb{R}$. Consider the (univariate) class \mathscr{C}_{0} of strict-stationary centered Cauchy-processes $X=\left\{X_{t}, t \in Z\right\}$, i.e. for some $\delta \geq 0$ we have $X_{t} \sim C(\delta), t \in Z$ and for any $m \geq 1$ and $t_{1}, \ldots, t_{m} \in \mathbf{Z}$ any linear combination of $X_{t_{1}}, \ldots, X_{t_{m}}$ has the distribution $C\left(\delta^{\prime}\right)$ for some $\delta^{\prime} \geq$ 0. (see e.g. Ferguson (1962) or Johnson and Kotz (1972)). Then $\mathscr{C}_{0} \subset \mathscr{L}_{0}$ since for any $p>1$:

$$
\sum_{-\infty}^{0} P\left\{\left|\rho^{t} X_{t}\right| \geq \varepsilon\right\} \leq(2 \delta / \pi) \sum_{0}^{\infty} \rho^{-t}<\infty,
$$

implying $\rho^{t} X_{t} \rightarrow 0$ a.s., $t \rightarrow-\infty$. So we can use the theorem for $r=0$ to conclude that $\mathscr{F}_{\mathrm{e}}\left(\mathscr{C}_{0}\right) \subset \mathscr{L}_{0}$. In fact we have $\mathscr{F}_{\mathrm{e}}\left(\mathscr{C}_{0}\right)=\mathscr{C}_{0}$ since for any $A \in \mathscr{F}_{\mathrm{e}}$ and $\mathrm{X} \in \mathscr{C}_{0}$ the output $\mathrm{Y}=\mathrm{A}(\mathrm{X})$ is also a strict-stationary centered Cauchy-process, i.e. $Y \in \mathscr{C}_{0}$.

This example shows the applicability of the theorem in time series for components with heavy tails. There is no need for the expectation to exist.

3. Proofs

Proof of (2.6)

Let $X \in \mathscr{L}_{S}$ with $s>0$. We have to proof that $X \in \mathscr{L}_{r}$ for $0 \leq r\langle s$. For $r\rangle$ 0 this follows from the fact that $\left\{E\left\|\rho^{t} X_{t}\right\|^{r}\right\}^{1 / r}$ is non-decreasing for increasing r. For $r=0$ we note that $X_{t} \in \mathscr{L}_{S}$ is equivalent to

$$
\sum_{-\infty}^{0} \rho_{1}^{t} E\left\|x_{t}\right\|^{s}\left\langle\infty \text { for all } \rho_{1}>1 .\right.
$$

Then, for any $\rho>1$ we get for $\rho_{1}=\rho^{s}$ that

$$
\sum_{-\infty}^{0} P\left\{\rho^{t}\left\|X_{t}\right\| \geq \varepsilon\right\} \leq \varepsilon^{-s} \sum_{-\infty}^{0} \rho^{t s} E\left\|X_{t}\right\|^{s}<\infty .
$$

This implies $\rho^{t} x_{t} \xrightarrow{\text { a.s. }} 0, t \rightarrow-\infty$.

Proof of the theorem

At first, we prove that Y in (1.1) is well-defined according to the type of convergence specified by r. We use

$$
\sum_{n}^{m}\left\|A_{k} X_{t-k}\right\| \leq \rho^{-t} \sum_{n}^{m}\left\|A_{k} \rho^{k}\right\|\left\|\rho^{t-k} X_{t-k}\right\| .
$$

Take $\rho \in(1, \rho(A))$. For $r=0$ this gives

$$
\sum_{n}^{m}\left\|A_{k} X_{t-k}\right\| \leq \rho^{-t} \sup _{s \leq t} \rho^{s}\left\|x_{s}\right\| \cdot \sum_{n}^{\infty}\left\|A_{k} e^{k}\right\| \rightarrow 0, n \rightarrow \infty .
$$

For $r=1$ we have

$$
\sum_{n}^{m}\left\|A_{k} X_{t-k}\right\| \leq \rho^{-t} \sup _{k \geq n}\left\|A_{k} \rho^{k}\right\| \cdot \sum_{n}^{m} \rho^{t-k}\left\|x_{t-k}\right\|
$$

implying

$$
\underset{n}{E}\left\{\sum_{n}^{m} A_{k} X_{t-k} \|\right\} \leq \rho^{-t} \sup _{k \geq n}\left\|A_{k} \rho^{k}\right\| \cdot \sum_{n}^{\infty} \rho^{t-k} E\left\|X_{t-k}\right\| \rightarrow 0
$$

Finally, for $r>1$ with $\rho>1$ determined by $1 / \rho+1 / r=1$ we have

$$
\left.\left.\sum_{n}^{m}\left\|A_{k} X_{t-k}\right\| \leq \rho^{-t} \underset{n}{m}\left\|A_{k} \rho^{k}\right\|\right)^{1 / r} \underset{n}{m}\left\|\rho^{t-k} X_{t-k}\right\|^{r}\right)^{1 / r}
$$

implying

$$
\left.E\left\|\sum_{n}^{m} A_{k} X_{t-k}\right\|^{r} \leq \rho^{-r t} \underset{n}{\left(\Sigma \| A_{k}\right.} \rho^{k} \|\right)^{r / p} \cdot \underset{n}{\infty} E\left\|\rho^{t-k} X_{t-k}\right\|^{r} \rightarrow 0, n \rightarrow \infty
$$

Now we prove that $Y \in Z$ i.e. that Y is non-exponentially increasing. Take $\rho>1$. For $r=0$ we get for $1<\rho_{0}<\min (\rho, \rho(A))$:

$$
\begin{aligned}
\left\|\rho^{t} Y_{t}\right\|= & \left\|\sum_{0}^{\infty}\left(A_{k} \rho_{0}^{k}\right)\left(\rho_{0}^{t-k} X_{t-k}\right)\left(\rho / \rho_{0}\right)^{t}\right\| \\
\leq & \sum_{0}^{\infty}\left\|A_{k}\right\| \rho_{0}{ }^{k} \cdot \sup _{j \leq 0} \rho_{0}^{j}\left\|X_{j}\right\| \cdot\left(\rho / \rho_{0}\right)^{t} \rightarrow 0, t \rightarrow-\infty .
\end{aligned}
$$

For $r \geq 1$ the proof follows the same way.
The space \mathscr{L}_{r} is large enough to guarantee (1.2). Hence, it remains to prove (1.3). A formal substitution gives

$$
\begin{aligned}
Z_{t} & =\sum_{j=0}^{\infty} B_{j}\left(\sum_{k=0}^{\infty} A_{k} X_{t-j-k}\right)=\sum_{j=0}^{\infty}\left(\sum_{k=j}^{\infty} B_{j} A_{k-j}\right) X_{t-k}= \\
& =\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} B_{j} A_{k-j}\right) X_{t-k}=\sum_{k=0}^{\infty} C_{k} X_{t-k} .
\end{aligned}
$$

For $r=0$ we have proved (1.3) if we can justify the reversal of summation. However, this follows with $\rho \in(1, \min (\rho(A), \rho(B))$ from:

$$
\begin{aligned}
& \sum_{j=0}^{\infty}\left(\sum_{k=j}^{\infty}\left\|B_{j}\right\|\left\|A_{k-j}\right\| \| x_{t-k}\right) \leq \rho^{-t} \sum_{j=0}^{\infty}\left(\sum_{k=j}^{\infty}\left\|B_{j} A_{k-j} \rho^{k}\right\|\right) \cdot \sup _{k \leq 0}\left\|\rho^{t-k} x_{t-k}\right\| \\
& =e^{-t}\left(\sum_{j=0}^{\infty}\left\|B_{j}\right\| \rho^{j}\right)\left(\sum_{k=0}^{\infty} A_{k} \rho^{k}\right) \cdot \sup _{k \leq 0}\left\|\rho^{t-k} x_{t-k}\right\|<\infty \cdot
\end{aligned}
$$

For $r \geq 1$ we get from (2.6) that Z is well-defined. Then (1.1) gives that $Z \in \mathscr{L}_{r}$. This completes the proof.

References

Anderson, T.W. (1971) - The Statistical Analysis of Time Series - Wiley, New York.

Brockwel1, P.J. and Davis, R.A. (1987) - Time Series: Theory and Methods Springer Verlag, Heidelberg.

Ferguson, T.S. (1962) - A representation of the symmetric bivariate Cauchy distribution - Ann. Math. Statist. 33, 1256-1266.

Johnson, N.L. and Kotz, S. (1972) - Distributions in Statistics: Continuous Multivariate Distributions - Wiley, New York.

Hannan, E.J. (1970) - Multiple Time Series - Wiley, New York.

IN 1987 REEDS VERSCHENEN

```
242 Gerard van den Berg
    Nonstationarity in job search theory
243 Annie Cuyt, Brigitte Verdonk
    Block-tridiagonal linear systems and branched continued fractions
244 J.C. de Vos, W. Vervaat
    Local Times of Bernoulli Walk
245 Arie Kapteyn, Peter Kooreman, Rob Willemse
    Some methodological issues in the implementation
    of subjective poverty definitions
246 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel
    Sampling for Quality Inspection and Correction: AOQL Performance
    Criteria
247 D.B.J. Schouten
    Algemene theorie van de internationale conjuncturele en strukturele
    afhankelijkheden
248 F.C. Bussemaker, W.H. Haemers, J.J. Seidel, E. Spence
    On (v,k,\lambda) graphs and designs with trivial automorphism group
249 Peter M. Kort
    The Influence of a Stochastic Environment on the Firm's Optimal Dyna-
    mic Investment Policy
250 R.H.J.M. Gradus
    Preliminary version
    The reaction of the firm on governmental policy: a game-theoretical
    approach
```

251 J.G. de Gooijer, R.M.J. Heuts
Higher order moments of bilinear time series processes with symmetri-
cally distributed errors
252 P.H. Stevers, P.A.M. Versteijne
Evaluatie van marketing-activiteiten
253 H.P.A. Mulders, A.J. van Reeken
DATAAL - een hulpmiddel voor onderhoud van gegevensverzamelingen
254 P. Kooreman, A. Kapteyn
On the identifiability of household production functions with joint
products: A comment
255 B. van Riel
Was er een profit-squeeze in de Nederlandse industrie?
256 R.P. Gilles
Economies with coalitional structures and core-like equilibrium con-
cepts

257 P.H.M. Ruys, G. van der Laan
Computation of an industrial equilibrium
258 W.H. Haemers, A.E. Brouwer
Association schemes
259 G.J.M. van den Boom
Some modifications and applications of Rubinstein's perfect equilibrium model of bargaining

260 A.W.A. Boot, A.V. Thakor, G.F. Udell
Competition, Risk Neutrality and Loan Commitments
261 A.W.A. Boot, A.V. Thakor, G.F. Udell
Collateral and Borrower Risk
262 A. Kapteyn, I. Woittiez
Preference Interdependence and Habit Formation in Family Labor Supply
263 B. Bettonvil
A formal description of discrete event dynamic systems including perturbation analysis

264 Sylvester C.W. Eijffinger
A monthly model for the monetary policy in the Netherlands
265 F. van der Ploeg, A.J. de Zeeuw
Conflict over arms accumulation in market and command economies
266 F. van der Ploeg, A.J. de Zeeuw
Perfect equilibrium in a model of competitive arms accumulation
267 Aart de Zeeuw
Inflation and reputation: comment
268 A.J. de Zeeuw, F. van der Ploeg
Difference games and policy evaluation: a conceptual framework
269 Frederick van der Ploeg
Rationing in open economy and dynamic macroeconomics: a survey
270 G. van der Laan and A.J.J. Talman
Computing economic equilibria by variable dimension algorithms: state of the art

271 C.A.J.M. Dirven and A.J.J. Talman
A simplicial algorithm for finding equilibria in economies with
linear production technologies
272 Th.E. Nijman and F.C. Palm
Consistent estimation of regression models with incompletely observed exogenous variables

273 Th.E. Nijman and F.C. Palm
Predictive accuracy gain from disaggregate sampling in arima - models
274 Raymond H.J.M. Gradus
The net present value of governmental policy: a possible way to find the Stackelberg solutions
275 Jack P.C. Kleijnen
A DSS for production planning: a case study including simulation and optimization
276 A.M.H. Gerards
A short proof of Tutte's characterization of totally unimodular matrices
277 Th. van de Klundert and F. van der Ploeg
Wage rigidity and capital mobility in an optimizing model of a small open economy
278 Peter M. Kort
The net present value in dynamic models of the firm
279 Th. van de Klundert
A Macroeconomic Two-Country Model with Price-Discriminating Monopolists
280 Arnoud Boot and Anjan V. Thakor
Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing
281 Arnoud Boot and Anjan V. Thakor
Appendix: "Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing
282 Arnoud Boot, Anjan V. Thakor and Gregory F. Udell
Credible commitments, contract enforcement problems and banks: intermediation as credibility assurance
283 Eduard Ponds
Wage bargaining and business cycles a Goodwin-Nash model
284 Prof.Dr. hab. Stefan Mynarski
The mechanism of restoring equilibrium and stability in polish market
285 P. Meulendijks
An exercise in welfare economics (II)
286 S. Jørgensen, P.M. Kort, G.J.C.Th. van Schijndel
Optimal investment, financing and dividends: a Stackelberg differential game
287 E. Nijssen, W. Reijnders
Privatisering en commercialisering; een oriëntatie ten aanzien van verzelfstandiging
C.B. Mulder
Inefficiency of automatically linking unemployment benefits to private sector wage rates

289 M.H.C. Paardekooper
A Quadratically convergent parallel Jacobi process for almost diagonal matrices with distinct eigenvalues

290 Pieter H.M. Ruys
Industries with private and public enterprises
291 J.J.A. Moors \& J.C. van Houwelingen
Estimation of linear models with inequality restrictions
292 Arthur van Soest, Peter Kooreman
Vakantiebestemming en -bestedingen
293 Rob Alessie, Raymond Gradus, Bertrand Melenberg The problem of not observing small expenditures in a consumer expenditure survey

294 F. Boekema, L. Oerlemans, A. J. Hendriks Kansrijkheid en economische potentie: Top-down en bottom-up analyses

295 Rob Alessie, Bertrand Melenberg, Guglielmo Weber Consumption, Leisure and Earnings-Related Liquidity Constraints: A Note

296 Arthur van Soest, Peter Kooreman
Estimation of the indirect translog demand system with binding nonnegativity constraints

Bert Bettonvil
Factor screening by sequential bifurcation
298 Robert P. Gilles
On perfect competition in an economy with a coalitional structure
299 Willem Selen, Ruud M. Heuts
Capacitated Lot-Size Production Planning in Process Industry
300 J. Kriens, J.Th. van Lieshout
Notes on the Markowitz portfolio selection method
301 Bert Bettonvil, Jack P.C. Kleijnen
Measurement scales and resolution IV designs: a note
302 Theo Nijman, Marno Verbeek Estimation of time dependent parameters in lineair models using cross sections, panels or both

303 Raymond H.J.M. Gradus
A differential game between government and firms: a non-cooperative approach

304 Leo W.G. Strijbosch, Ronald J.M.M. Does
Comparison of bias-reducing methods for estimating the parameter in dilution series

305 Drs. W.J. Reijnders, Drs. W.F. Verstappen
Strategische bespiegelingen betreffende het Nederlandse kwaliteitsconcept

306 J.P.C. Kleijnen, J. Kriens, H. Timmermans and H. Van den Wildenberg Regression sampling in statistical auditing

307 Isolde Woittiez, Arie Kapteyn
A Model of Job Choice, Labour Supply and Wages
308 Jack P.C. Kleijnen
Simulation and optimization in production planning: A case study
309 Robert P. Gilles and Pieter H.M. Ruys
Relational constraints in coalition formation
310 Drs. H. Leo Theuns
Determinanten van de vraag naar vakantiereizen: een verkenning van materiële en immateriële factoren

311 Peter M. Kort
Dynamic Firm Behaviour within an Uncertain Environment
312 J.P.C. Blanc
A numerical approach to cyclic-service queueing models

313 Drs. N.J. de Beer, Drs. A.M. van Nunen, Drs. M.O. Nijkamp Does Morkmon Matter?

314 Th. van de Klundert Wage differentials and employment in a two-sector model with a dual labour market

315 Aart de Zeeuw, Fons Groot, Cees Withagen On Credible Optimal Tax Rate Policies

316 Christian B. Mulder
Wage moderating effects of corporatism Decentralized versus centralized wage setting in a union, firm, government context

317 Jörg Glombowski, Michael Krüger
A short-period Goodwin growth cycle
318 Theo Nijman, Marno Verbeek, Arthur van Soest The optimal design of rotating panels in a simple analysis of variance model

319 Drs. S.V. Hannema, Drs. P.A.M. Versteijne
De toepassing en toekomst van public private partnership's bij de grote en middelgrote Nederlandse gemeenten

320 Th. van de Klundert
Wage Rigidity, Capital Accumulation and Unemployment in a Small Open Economy

321 M.H.C. Paardekooper
An upper and a lower bound for the distance of a manifold to a nearby point

322 Th. ten Raa, F. van der Ploeg
A statistical approach to the problem of negatives in input-output analysis

323 P. Kooreman
Household Labor Force Participation as a Cooperative Game; an Empirical Model

324 A.B.T.M. van Schaik
Persistent Unemployment and Long Run Growth
325 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans
De lokale produktiestructuur doorgelicht.
Bedrijfstakverkenningen ten behoeve van regionaal-economisch onderzoek

326 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel Sampling for quality inspection and correction: AOQL performance criteria

327 Theo E. Nijman, Mark F.J. Steel
Exclusion restrictions in instrumental variables equations
328 B.B. van der Genugten
Estimation in linear regression under the presence of heteroskedasticity of a completely unknown form

329 Raymond H.J.M. Gradus
The employment policy of government: to create jobs or to let them create?

330 Hans Kremers, Dolf Talman
Solving the nonlinear complementarity problem with lower and upper bounds

331 Antoon van den Elzen
Interpretation and generalization of the Lemke-Howson algorithm
332 Jack P.C. Kleijnen
Analyzing simulation experiments with common random numbers, part II: Rao's approach

333 Jacek Osiewalski
Posterior and Predictive Densities for Nonlinear Regression. A Partly Linear Model Case

334 A.H. van den Elzen, A.J.J. Talman A procedure for finding Nash equilibria in bi-matrix games

335 Arthur van Soest Minimum wage rates and unemployment in The Netherlands

336 Arthur van Soest, Peter Kooreman, Arie Kapteyn Coherent specification of demand systems with corner solutions and endogenous regimes

337 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans
De lokale produktiestruktuur doorgelicht II. Bedrijfstakverkenningen ten behoeve van regionaal-economisch onderzoek. De zeescheepsnieuwbouwindustrie

338 Gerard J. van den Berg
Search behaviour, transitions to nonparticipation and the duration of
unemployment
339 W.J.H. Groenendaal and J.W.A. Vingerhoets
The new cocoa-agreement analysed
340 Drs. F.G. van den Heuvel, Drs. M.P.H. de Vor Kwantificering van ombuigen en bezuinigen op collectieve uitgaven 1977-1990

341 Pieter J.F.G. Meulendijks An exercise in welfare economics (III)

342 W.J. Selen and R.M. Heuts
A modified priority index for Günther's lot-sizing heuristic under capacitated single stage production

343 Linda J. Mittermaier, Willem J. Selen, Jeri B. Waggoner, Wallace R. Wood
Accounting estimates as cost inputs to logistics models
344 Remy L. de Jong, Rashid I. Al Layla, Willem J. Selen Alternative water management scenarios for Saudi Arabia

345 W.J. Selen and R.M. Heuts
Capacitated Single Stage Production Planning with Storage Constraints and Sequence-Dependent Setup Times

346 Peter Kort
The Flexible Accelerator Mechanism in a Financial Adjustment Cost Model

347 W.J. Reijnders en W.F. Verstappen De toenemende importantie van het verticale marketing systeem

348 P.C. van Batenburg en J. Kriens E.O.Q.L. - A revised and improved version of A.O.Q.L.

349 Drs. W.P.C. van den Nieuwenhof Multinationalisatie en coördinatie De internationale strategie van Nederlandse ondernemingen nader beschouwd

350 K.A. Bubshait, W.J. Selen
Estimation of the relationship between project attributes and the implementation of engineering management tools

351 M.P. Tummers, I. Woittiez
A simultaneous wage and labour supply model with hours restrictions
352 Marco Versteijne
Measuring the effectiveness of advertising in a positioning context with multi dimensional scaling techniques

353 Dr. F. Boekema, Drs. L. Oerlemans Innovatie en stedelijke economische ontwikkeling

354 J.M. Schumacher
Discrete events: perspectives from system theory
355 F.C. Bussemaker, W.H. Haemers, R. Mathon and H.A. Wilbrink A $(49,16,3,6)$ strongly regular graph does not exist

356 Drs. J.C. Caanen
Tien jaar inflatieneutrale belastingheffing door middel van vermogensaftrek en voorraadaftrek: een kwantitatieve benadering

357 R.M. Heuts, M. Bronckers
A modified coordinated reorder procedure under aggregate investment and service constraints using optimal policy surfaces

Bibliotheek K. U. Brabant

17000010659614

