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Abstract.

The convergent of an ordinary continued fraction can be computed by solving a tri-
diagonal linear system for its first unknown. In this paper this approach is generalized
to branched continued fractions and it is shown how the convergent of a branched con-
tinued fraction can be considered as the first unknown of a block-tridiagonal linear
system. Hence algorithms for the solution of such systems of equations can be used for
the computation of convergents of branched continued fractions, which have applications
in approximation theory, systems theory, ... In future research special attention will be
paid to the use of parallel algorithms.



Block-tridiagonal linear systems and branched continued fractions.

In the case of ordinary continued fractions

) (.)
B; = b\ + |—Y| b(') . i=0,1,2,... (1)

forward evaluation of and determinant formulas for

o
c® =3 4 Z |_7_|

are well-known. If we denote C,(.i) = P,(.'.)/QS:‘) then P,(.i) and QS:') can be computed
by the following three-term recurrence relation 5]

{ P(‘) - b(‘)P(i)l + a'l(:)PlEizz
Q(‘) b(')Q(*)1 +a£")Q£'12
with P(i) =] = Q(i) P(‘) = b(‘) and Q(_')l = 0. Using this three-term recurrence

relation one can prove that P(') and QSf ) are also given by the following determinant
formulas [4]

) -1 o) -1
asi) bgl) -4 ag‘.) bgt) ==y
PY) = ag.') QY = agi)
-1 -1
o b SO

3)
and hence that, if Qs.') # 0, C,(.') == b((,') + zg') where zg’) is the first unknown of the
tridiagonal system

(0 \

of) b 1 A\ (o
a:(;‘) W %y, s s : (4)
—-1 z¥) 0




Let us now generalize (3) and (4) for branched continued fractions (3, 6]

By + +. (5)

5[5

where each of the B; is an ordinary continued fraction as in (1). A convergent of (3)
is denoted by

Crn,mo,..comn = C(O) Z (J) (6)

where

c§) = b +E af? |

| b(J)

If we denote Cy, m,,...,m, aS Pn,mo,...,m,./Qn.mo,....m.. then clearly Pn,mo,...,m,. and
Q@n,mo,...,m, can be computed by applying the three-term reccurence relation (2) to
the expression (6) :

{ PR = .. [ R T Y . T —— TR

k
Qk,mo,...,m‘, = Cy(ank—l,mo,...,m,,_l + aka—z,MQ,...,Mg_g

with P_; = 1 = Qo,m¢, Po,me = C’(O) and Q_; = 0. As an immediate consequence

o) -1
a; Cy(y}l) -1
Pn,mo,...,m,. = asz
-1
an Cv(v:‘,z
cl) -1
az C'(,?,) =1
Qn,mo,...,m,. = as
-1
an Cr(r'll,z

and Cp m,,....m, = C(o) + z, where z; is the first unknown of the tridiagonal system

3
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Note that in the coefficient matrix of this linear system each C,(,:z is itself a quotient
of determinants. We shall prove in the next theorem that Cp m,,...,m, is also the
first unknown of a block-tridiagonal linear system where now the partial numerators
and denominators a) and b for 7=0,...,m;and ¢t = 0,...,n of the branched
continued fraction (5) appear in the coefficient matrix of the system instead of the

<1
o 4

as

z 0(.)1
-1 Zn 0
an Cr(:,z

C,g,:z To this end we introduce the notations

-1

(m,- + 1) X (m,-+ 1)

(6§ -1
o B 1
B,(,,’) = agj)
\
(a.,- 0
i 0
L 0
\ o
(1 0
£ o 0
A 0
\ 0

so that P,(,Q’J) = det Br(yf,)

(mj+1) x (mj_1+1)

(mj +1) X (mj41+ 1)



Theorem.

If Qn,mo,...,m,. ‘7"" 0 then Cn,mo,...,m..
the block-tridiagonal linear system

(Br(nl,) =&
4, 8% -1
i

with X; = (z§,...,z8)t.

= Cr(r?z + zél) where .1:((,1) is the first unknown of

)

X1 -
0
= : (8)
“4n-—1 Xn. 0
A B

For the proof we need the following two lemmas.

Lemma 1.
r(nll) Sl Il

@

As

Az -1

An

= Qn,mo anS’l‘Z s QS'::)
_In—l
o

Proof. For n = 1 the left hand side reduces to
det B{) = P
We also know from (7) that forn =1

Ql)mo;ml =

and hence that

(1)

clt) = 2™
™ QW

Ql,mo,m.QS,l.z = P,(,,ll) = det B,(,,ll)
Suppose the lemma is valid for Q,mo,...,ms (k = 1,...,n). We shall prove it then for
Qn+1,mo,...,mns.- A Laplacian expansion [1] of

Bl —1
Aa 7("22)
A3

I

—In
B(n+l)

Mnt1

Ant1



along the last (m,41 + 1) rows reveals that the above determinant equals

L S

A2 BZ) -1,

det B{*+1). B e -
_In—l
A, B
An41 =1 '(nlx) —Jy
(n+1)
o b P
(=1)t+m ag™*? L
-1 C Y o
0 ot et A,  Z
where
- i
b{™ 0
B | Y
-1

as.':,). bsy'.? 0

This expression can immediately be simplified as

'('lll) _Il
A, 8%
PDQp . ma Q) Q)4 (—1) ™ ap 1 QINHY) .
B&Y o
Aa Z

By making a Laplacian expansion along the columns of Z and using the fact that
det Z = (—1)1+™n Qs,':,), it can further be simplified as
Py(n':t})Qn,mo,...,m..ng L QS:,Z * an+lQs::,:';l,)QSp?,).Qn—l,mo,...,m.._.l ng e Qs::_ll)
On the other hand we can write from (7)
P

Qn-}—l,mo,...,m,..,,l = WQn,no,...,m“ + an+1Qn—l,m°,...,m,._1
Mut1




from which we obtain

Qn+l,mo,...,m..+1 ng LR Qs:::,,l,) an

PHI0 i@ o Q) 4 8@ D Qg me= s DL -

Since this right hand side coincides with a Laplacian expansion for
B4 -1

A BR -1

As
-
Ant1 Br(nn..tl;)
our lemma is proved. m
Lemma 2.
r(r?o) —Io
A1 Br(nll) -1
.42 = Pn,mo,...,m..ngz QS::,Z
“In—l
A, B

Proof. For n = 0 we know from (7) that

PO
Po»mo = Cv(r?z = ’(noo)
mo

and hence
Po,moQQ) = PO = det B{O)

Q

(n)

My

The rest of the inductive proof is completely analogous to that of lemma 1 and is left

to the reader. m

Let us now try to prove our main result.



Proof of the theorem. Remark that for n = 1 (6) reduces to

Cl.mu,ml = Cv(r(l)z

a

b +

b 2]
k=1 I bkl)

where Cy mo,m, — C,(,?g is the first unknown z((,l) of the tridiagonal linear system

oY -1 \

NOIOR
af?)

=1

PO }

More generally, a Laplacian expansion of

Pn,mo,...,m..QSr(l)()) % 2 Qs:-); =

4
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G
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= gy
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2 -5
A ’
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A, B

along the first (mo + 1) rows learns us that this determinant also equals
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This expression can immediately be simplified as
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Pn R .an(O) Q$:2 =

Y -1
o 8%
P(O)Qn mo,.. ,m.Q(l) .- QS.’.‘l + QS,?,! P As
‘e _In-l
0 4, B

The value Cy m,,...,m, We are interested in is thus given by

C - Pn,mo,...,m,.
N,MQ,yeneyMp — __‘—Q
n,Mg,...,My

(0) (n)
mog -+ my
(0) (0)

Man

Qn,mo,...,m., mg + -

— Pn,mo,...,m,.

From lemma 2 and the last Laplacian expansion we know that this quotient equals

Y -I
o B
.

' _In—-l

Py 10 An B

+
&) O]

Qn,mo,...,m,.
Using lemma 1 the second term in this expression is apparently the first unknown

z((,l) of our block-tridiagonal linear system. m

If we try to describe the result of the theorem we can look upon it as follows. For-
mula (4) for ordinary continued fractions (1) generalizes to formula (8) for branched
continued fractions (5) by replacing

b(.") =5 B(f)
3 m4

ag-') — Ay

-1 - - Ij

Continuing this idea it is easy to see that for two-branched continued fractions




with y
O _ 0, o 95
B = b0+ |T(FI

k=1l %

which result by inserting an ordinary continued fraction for each denominator bs-i) in
(5), a formula similar to (8) can be proved where now within B,(,:,) each b;i) is in its
turn replaced by a block of the form

g -1

o o

This procedure can be repeated k times and so a general determinant representation
can be given for the convergent of a k-branched continued fraction. It is our purpose
to discuss parallel algorithms for the computation of (6) by introducing parallel algo-
rithms for the solution of block-tridiagonal linear systems like (8). The computation
of this type of convergents arises in approximation theory [2], systems theory, and
other applications which are under investigation [3].
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