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Abstract. This paper introduces two extensions of the r-value for TU-games towards NTU-
games: the compromise value and the NTU 7-value.

The compromise value is based upon upper and lower bounds for the core and coincides with
the Kalai-Smorodinsky solution for two-person bargaining games. The NTU 7-value is defined
in analogy to the NTU (Shapley)-value and coincides with the Nash solution for two-person
bargaining games.

Both values are computed for the Roth-Schafer examples. For special classes of NTU-games

existence is shown and an axiomatic characterization of the compromise value is provided.
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I. INTRODUCTION

The Shapley value of TU (=Transferable Utility)-games, introduced by Shapley (1953), has
been generalized towards NTU (=Non Transferable Utility)-games in various ways. Shapley
(1969) defined the NTU-value, Harsanyi (1959, 1963), Owen (1971) and Imai (1983) considered
other possible extensions. For the NTU-value an axiomatic characterization has been provided
by Aumann (1985a) and Kern (1985), for the Harsanyi solution by Hart (1985a) and for mono-
tonic solutions by Kalai and Samet (1985).

This paper introduces two extensions of the 7-value of Tjs (1981) for quasi-balanced TU-
games towards special subclasses of NTU-games: the compromise value and the NTU 7-value.
The compromise value is defined in section 3 for the class of compromise admissible NTU-games.
It is a one-point solution concept that is based upon the upper and lower bounds for the core of
an NTU-game that are given in section 2. An axiomatic characterization is provided and it is
shown that the compromise value coincides with the solution of Kalai and Smorodinsky (1975)
for the special case of two-person bargaining games.

Section 4 introduces the NTU 7-value as a multi-valued solution concept that is defined
by means of the r-value of corresponding (quasi-balanced) A-transfer games. The procedure is
analogous to the definition of the NTU-value with respect to the Shapley value. Also similar
to the NTU-value, we show existence of the NTU r-value for a class of compactly generated
NTU-games.

Roth (1980) and Shafer (1980) introduced two special classes of games for which, in their
opinion, the NTU-value leads to a strange and counterintuitive outcome. This led to an interest-
ing discussion of the NTU-value in the papers of Aumann (1985b, 1986), Roth (1986) and Hart
(1985b). In the present paper the Roth-Shafer examples are discussed in detail and it is seen
that the alternative outcomes of Roth and Shafer come forward if one applies the compromise
value or the NTU 7-value.

Notations. For z,y € R*, let = >(>) v if and only if z; >(>) w for all i € {1,...,n},
Ty = f: z;yi € Rand z +y := (z191,...,2Zn¥Yn) € R™. R} := {z € R*|z > 0}.
For C.i?)l C R™ the algebraic sum C+D C R™ is given by
C+D:={c+deR*|ce C,d € D},
and Afi(C) (Conv(C)) denotes the affine (convex) hull of C'.
Finally, with N := {1,...,n}, S C N and z € R*, 5 := (Zi)ies € RS and z is identified with

(zs,ZN\S)-



2. NTU-GAMES: BOUNDS FOR THE CORE

Aun NT'lU-game is a pair (N, V) where N = {1,2,...,n} is the set of players and V ois a
set-valued function that assigns to each coalition § € 2N \{@} a non-empty set V(5) C R® of
attainable payofl vectors. For cach player 1 € N we assume there is a individual rational payoff
v(i) € R such that V({i}) = {a € R| a < v(¢)} while, for each § € 2N\{2},

(i) V(S) is closed and comprehensive (i.e. if a € V(S) and b € RS is such that b < a, then
beV(S5)).
(ii) V(S)N{a € R | a > (v(j)),¢s} is bounded.
An NTU-game (N, V') will be often identified with V. The core C(V') consists of those attainable

payoff vectors for the grand coalition N which are stable with respect to (strict) domination.

More specifically, with
Dom (V(§)) := {a € R® | Jvev(s) : b > a} (1)
representing the set of dominated payoff vectors for a coalition S € 2V\{2},

C(V):={a€ V(N)| ~3se2v\{g} : as € Dom (V(S5))}- (2)

Let ¢ € N. Assuming that the coalition N\{i} will never agree with a payoff vector
a € R\ with @ € Dom (V(N\{i})) or a; < v(j) for some j € N\{i}, the highest possible
marginal contribution of player i by joining the coalition N\{i} is given by
K(V):=sup{t € R| I, eqnv) (a,t) € V(N),a ¢ Dom (V(N\{i})) i
and a > (v(j))jen\qir}- “
Ki(V)is called the utopia payoff of player i. By assumption (ii) in the definition of an NTU-game
we have that IK;(V) < co. However, K;(V) = —oo might occur.
Assume K;(V) € Rfor all j € N and consider a coalition § to which player ¢ belongs. The
formation of such a coalition is attractive for a player j € S\{i} if he gets (slightly) more that
the utopia payoff K;(V'). Thus, player i can lay a rightful claim on the remainder p? (V) which
is given by

pS (V) :=sup{t € R| I epsvi»y : (t,a) € V(S) and a > K\ (i3(V)} (4)

Among the 2"~ possible coalitions with i € §, player ¢ can choose one where this remainder is

maximal. Let
(V7Y = Sv
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denote the minimal right of player . Clearly k;(V') > »(2), but it might occur that k;(V) = oo.
In this paper we concentrate on NTU-games for which all utopia payoffs and minimal rights
for the various players are real numbers. In particular, this is the case for NTU-games with a
non-empty core: theorem 1 shows that N(V) = (K;(V));en and k(V) = (k;(V));en establish

an upper and lower bound for the core, respectively.
THEOREM 1. Let (N,V) be an NTU-game with z € C'(V'). Then

k(V) <z < K(V).

Proof. Obviously, (2) and (3) imply
I\-j(V) > sup{t €ER | BGERN\(’) 5 (a,t) € C(V)} > z;

for all j € N. Hence, z < K (V).

Let i € N and choose a coalition T 3 i such that k;(V) = pT(V) = gl'gpis(V).

Suppose k;(V) > z;. Then we can choose ¢ > 0 such that k;(V') > z; + €. Further, by (4), there
exists a vector a € RT\M?} such that (z; + £,a) € V(T) and a > K3 (V).

However, this would imply that
zr < (2, K\(ip(V)) < (zi + €,a) € V(T),
which contradicts the fact that z € C(V). Hence, k(V) < z. O

The vectors k(V) and K (V') induce familar bounds for TU-games and two-person bargaining
games.
(a) TU-games. A TU-game is a pair (N,v) where v is a function that assigns to each coalition
S a real number v(S) with v(@) = 0. The core C(v) is defined by

C(v):={a € RV | > ai=v(N), 3 a;2v(S)forall § C N ¥
For a TU-game (N,v), lﬂe"gs (1981) intrioejuced a utopia vector M(v) € RV and a minimal right

vector m(v) € RV as follows. Fori € N,

Mi(v) := o(N) = o(N\{i}) and mi(V) := max(v(S) = D M;(v)). (6)
JES\{i}

For z € C(v), it was shown that m(v) < z < M(v).
Associating an NTU-game (N,V) to a TU-game (N,v) by defining

V(S):={a eRY| le.' < v(9)} (7)

1ES



for all § € 2V\{D}, it is straighforward to verify that C(v) = C(V), and that M(v) = K (V)

and m(v) = k(V) if v is such that o(N\{7}) > 3 wv(j)forallie N.
JEN\{i}
(b) Bargaining games. In a two-person person bargaining game (C,d) the non-empty set

C C R? represents the set of feasible outcomes and d € C' is the disagreement point. Moreover,
we assume that the following properties are satisfied:

(i) C is closed, convex and comprehensive.

(ii) There is an z° € C with z° > d.
(iii) Cq:={z € C | z > d} is bounded.

For each bargaining game (C,d), Kalai and Smorodinsky (1975) introduced the utopia point
u(C,d) € R? by defining u,(C,d) := max{a € R | Jper : (a,b) € C4}; us(C,d) is defined
analogously. Associating an NTU-game ({1,2},V) to a bargaining game (C,d) by setting
V({i}) = {a € R|a < d;} for i € {1,2} and V({1,2}) := C, one obtains that «(C,d) = K(V)
and d = k(V).

The class of games we consider in the following example was first introduced by Roth (1980).

EXAMPLE 1. Let N = {1,2,3}. For a parameter p with 0 < p < %, the NTU-game (N,V,) is

defined by (the subscripts denote players):
Vo({i}) = {ai € R|a; <0} (i€ N)

Vo{1,2}) = {(a1,02) € R® | (@1,00) < (5, 3))
Vo({1,3)) = {(a1,05) € R | (@1,3) < (3,1 - p))
VP({273}) = {(a27a3) € R2 I (02,0,3) S (p11 "P)}

1 3
V,({1,2,3}) = {a=(a1,a2,a3)ER?|a<b for some b € Conv{(i, 5,0),(1),0, 1-p),(0,p,1-p)}}
Ifo<p< %,then

1
C(Vy) = Conv{(3 3,00 (3:,0)} U Convi(3, 5,0),(p, 3,00},

. 1 1
{K(V) = {5,500} and K(Vy) = (p,,0).
Further, (N,V%) is a symmetric game with

1 1 | | .
5’0, 5)5(07 ia E)}’l‘(vi) = (

—

1

15) and k(Vy) = (0,0,0).

| —

1 1
(V. = _»_’0 ] a9
C(Vy) = (530, ( ;
The class of games in example 1 provoked an interesting discussion between A. Roth and
R. Aumann about the credibility and interpretation of the NTU-value as introduced by Shapley
(1953, 1969). Roth (1980 , 1986) argued that the (unique) NTU-value (%, -3;,%) for all games V,,
with 0 < p < % seems rather counterintuitive and that the only reasonable outcome for these

games is the core-element (%, %,0). Roth’s arguments were countered by Aumann (1985b, 1986 ).
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One of Aumann’s arguments involves the role of safety (of accepting an offer from player 3 by
player 1 or 2) as opposed to coordination (between player 1 and 2).

For a detailed discussion we refer to the papers of Aumann and Roth and also to Hart (1985a).

3. THE COMPROMISE VALUE

In this section the compromise value is introduced as an extension of the 7-value for quasi-
balanced TU-games (cf. Tys (1981)) towards compromise admissible NT'U-games.
Here, an NTU-game (N, V) is called compromise admissible if the utopia vector K'(V) and the
minimal right vector (V') of section 2 satisfy the following two properties:
(i) k(V) < K(V).
(ii) k(V) e V(N), K(V) ¢ Dom(V(N)).
By CV we denote the does of all compromise admissible NTU-games with player set N. Clearly,

we have

LEMMA 2. Every NTU-game with a non-empty core is compromise admissible.

Proof. Let (N,V) be an NTU-game with 2 € C(V). Then, using theorem 1, k(V) < z < K (V).
In particular, since z € V(V), comprehensiveness implies that k&(V) € V(N).

Suppose I'(V)) € Dom(V(N)). Then there is an y € V(N) such that y > K (V) > z. However,
this contradicts the fact that z € C(V). We may conclude that the conditions (i) and (ii) are
satisfied. |

For V € CN the compromise value T(V) € RV is defined as the unique vector on the line
segment between k(V') and K (V') which lies in V() and is closest to the utopia vector K (V).
More specifically,

T(V):=AvK(V)+ (1= Av)k(V), (8)

where
Ay := max{A € [0,1] | AK(V) + (1=X)k(V) € V(N)}. 9)

Note that Ay is well-defined because k(V') € V(N) and V(N) is closed and comprehensive.

EXAMPLE 2. For the games V, of example 1 with 0 < p < % it follows that the compromise

value T(V;) equals the core element K (V)= (1, 3,0). Further, one finds that '\V\}

p= %, the compromise value equals the (unique) NTU-value (%, %, %)

= % So, for

Using the notations of section 2, a TU-game (N, v) is called quasi-balanced if m(v) < M(v)

and 3 m;(v) < v(N) < 3 M;(v). For a quasi-balanced TU-game (N, v) the 7-value 7(v) € RN
iEN 1EN



is defined as the unique vector lying on the line segment between m(v) and M(v) which is
efficient, i.e. Y mi(v) = v(N).
1EN
Assume v(N\{i}) > 3> o(j)foralli € N and let V be the NTU-game corresponding to v
JEN\{i}
(cf. (7)). One easily verifies that v is quasi-balanced if and only if V is compromise admissible,

and that the 7-value of v coincides with the compromise value of V.

For a two-person bargaining game (C,d) one finds that the compromise value of the corre-
sponding NTU-game V is the unique undominated feasible outcome lying on the line segment
between the disagreement point d and the utopia point u(C,d). By definition, this outcome

corresponds to the Kalai-Smorodinsky solution for the bargaining game (C,d).

We now provide an axiomatic characterization fo the (compromise) rule 7': C¥ — RM i la
Tis (1987).
Let F :CN — RN. The rule F is said to have the minimal right property if

F(V)=kV)+ F(V —k(V)) forall VecV, (10)
where the (minimal right reduced) game (N,V — k(V')) is defined by
(V = k(V))S):={a—-ks(V)|a€eV(S)} forall §e2V\{2} (11)

One casily checks that V € CN implies that V —k(V) € CN, while K(V —k(V)) = K(V)=k(V)
and k(V = k(V)) = 0.
Further, the rule F is called efficient if

F(V) € V(N)\Dom(V(N)) forall V € CN (12)

and F has the restricted proportionality property if F(V) is a multiple of the utopia vector K'(V)
for all V € CN with k(V) = 0. These three properties characterize the compromise value.

THEOREM 3. The compromise value T is the unique rule on CV that satisfies the minimal right

property, efficiency and the restricted proportionality property.

Proof. (a) We first show that the compromise value T : CV — RV satisfies the three properties.
The minimal right property and the restricted proportionality property are obvious. Let V € CV.
We show efficiency by proving that T'(V) € V(N )\Dom(V(N)). By definition T(V)) € V(N).
Suppose T(V) € Dom(V(N)). Then there is an y € V(N) such that y > T'(V). Comprehen-
siveness and the definition of T(V) imply that (V) = K (V). Choose : € N with y; > K;(V).
By comprehensiveness, (K ny\(i}(V),4:) € V(N). Since Ky} (V) > kny i1 (V) 2 (v(5))jen\ii
and y; > K;(V), the definition of K;(V) (cf. (3)) implies that Kn\(ij(V) € Dom (V(N\{i})).
Let z € V(N\{z}) be such that 2 > K'ny\(3(V). Then, however,

ki (V) 2 i M V) > 25 > (V)
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for all j € N\{z}, which contradicts the fact that V' is compromise admissible.

(b) Let F : CN¥ — RN satisfy the three properties stated in the theorem. Let V € CN. We prove
that F(V) = T(V).

Using the minimal right property we have that F(V) = k(V) 4 F(V — k(V)).

Since k(V — k(V)) = 0, the restricted propertionality property implies there is a A € R such
that F(V) = k(V)+ AR (V —k(V)) = AN (V) + (1 = Mk(V).

By efficiency of F, it is clear that A = Ay with Av as in (9). Hence, F(V) = T(V). &

Some further properties of the compromise value T' are summarized below.
Clearly, T : CN — RN is individual rational because T(V) > k(V) > (v(4))jen for all V e CV.
Two players i,j € N are called symmetric in the game V € CV if the following two assertions
hold:
(i) for all & € N\{i,5}, « € R® and { € R we have that (a,t) € V(S U {7}) if and only if
(a,t) € V(SU{J})
(ii) ifa € V(N) and b € RN is given by by = ay for k € N\{#,j}, b, = a; and b; = a;, then
be V(N).
Obviously, if the players ¢ and j are symmetric in V, then K;(V) = K;j(V), ki(V) = k;(V) and,
consequently, T3(V') = T;(V).
Finally, according the compromise value, each dummy player gets his individual rational payoff.
More specifically, if V € CV and i € N are such that V(S U {i}) = V(5) x V({i}) for all
S € 2N\{D} with i ¢ S, we have that Ti(V) = v(s).

4. THE NTU 7-VALUE

In Shapley (1969) each NTU-game is associated to so-called A-transfer TU-games and the
NTU (Shapley)-value is obtained from the Shapley value of these games. Analogously, this
section introduces the NTU 7-value by means of the 7-value of quasi-balanced A-transfer games.

Let (N,V) be an NTU-game. Define Ay := {A € RV | A > 0, Z Ai = 1}. A vector
A € Ap is called V-feasible if sup{z Aia; | a € V(S)} < oo for all S' € 2N\{@}. For each
V -feasible vector A € Anx the NTU- gamo (N,vy) with

(D) =0, BS) 2= sup{z Aa, |a € V(S)} for S e 2N\{@}} (13)
tes

is called a A-transfer game corresponding to V.
If for all V-feasible A the corresponding A-transfer games are quasi-balanced, then the game V

is called 7-admissible. By AN we denote the class of all r-admissible NTU-games with player

8



set N. For V € AN the NTU t-value 7(V) € R is defined by

7(V):= {z € V(N) | there is a V-feasible A € Ay such that 7(vy) = A * z} (14)

A special class of r-admissible NTU-games is given by the class QV of quasi-balanced
NTU-games. Here, an NTU-game (N,V') is called quasi-balanced if the following two properties
hold:

(i) VO(S)+ X VUN\{i}) C ISIVO(N) for all § € 2V\{@}.

fES
(i) Y[VUSH+ X VUN\GH C (1 =n+ X [S:))VO(N) for all (51,S2,...,5,) with
iEN J€S\{i} iEN
S;ie2Nandi€ S; (i€ N).

where VO(S) := {z € RN | 5 € V(S5) and vy = 0}, § € 2N\ {@}, corresponds to the
zero-representation of the game V.

This notion of a quasi-balanced NTU-game was suggested in a private correspondence by
Kern (1983). It may be noted that the properties (i) and (ii) are direct extensions of the
conditions provided in the characterization of quasi-balanced TU-games given in T4js (1981).
Moreover, (i) and (ii) are special balancedness conditions. For this, recall that an NTU-game is
cardinally balanced if for each balanced map v : 2V\{D} — R, (i.e. such that 3" v(S5)eS = eV)

S

it holds that 3= 4(S)V°(S) c VO(N).
Se2N\{2}

Summarizing, it is straightforward to prove

LEMMA 4. (i) LEvery cardinally balanced NTU-game is quasi-balanced.

(ii) Every quasi-balanced NTU-game is T-admissible.

As an illustration we consider a modified version of the example of Shafer (1980) due to
Hart and Kurz (1983).
EXAMPLE 3. Consider an exchange market with three traders and two commodities, where the
initial endowment w; € Ri and the utility function u; : RZ+ — R of trader ¢ € {1,2,3} are given
by

w; =(1-¢,0), wy =(0,1—¢), wa=(c,¢)

i |
uy(cy,c2) = uz(er,cz) = min{ey, e} and uz(ey,c) = 5(c1 + ¢;) for all (¢1,¢2) € Ri.

for some 0 < € < %.
This exchange market corresponds to an NTU-game (N,V) with N = {1,2,3} and

V(S):= {a € RS | p.s—peVies : wi(f(1) > a;, »_ f(j) = Y _w;} for all § € 2¥\{2}.
JES JES



So, in particular, with subscripts representing players,

V({1}) = {ay € R|a; <0}, V({2}) = {a2 € R|ay L0}, V({3}) = {az ER| a3 < €},

V({1,2}) = {(a1,a2) ER? |ay +a2 <1 -6, 4, < 1 —¢,a; < 1 — ¢}
; ; ; 1 1 1
V({1,3}) = {(a1,a3) € R2|u| + ay < 3 + E‘ ay <€, a3 < E+ ;:):E},
) I I
V({2,3}) = {(az,a3) ER" | az + a3 < gtye@<e 0 < 5t 25},

V({11273}) = {(alva2va3) € R3 ' ay + a; + a3 S 11 ay _<_ 11 az S 1! as S l}'
One easily checks that each A € Ay is V-feasible and that V' is cardinally balanced. Further,
C(V)={(a1,a2,a3) ER® |a; +az + a3 =1, a; > €,a2 > £,a3 = €}.

Let A € Ay and = € V(N ) be such that A x z = 7(vy).

Suppose there exists a player 1 € N such that A; < §n€a.A),( Aj. Since vyx(N) = I_,I};aj\);( A; and
Z 7;(vy) = v(N), one finds that z; = 0 and, consequently 7;,(vy) = 0. Distinguishing cases,
;:i:le calculation shows that M;(vy) > 0, m;(vy) > 0 and z mj(vx) # va(N). However, since
this should imply that 7;(vy) > 0, we arrive at a contradic]t‘isc?rll.

We may conclude that A = (%, %, %) Then vy is given by

(@) = 0, 1)\({1})_1)\({2})_() UN {l})——e ua ({1, 2})-

oa({1,3}) = 1({2,3}) = g 4 65 and vx({1,2,3}) = %

1
35

|-

Hence, 7(va) = M(vy) = m(va) = (3 — Le,2 — e, 3e) and (V) = {(5 - 36,3 - 3e,0))

It may be noted that, since the utopia vector K (V') also equals (3 — 3¢, 3 — 3€,€), the compromise

value and the (unique) NTU 7-value of V coincide.

The (unique) NTU-value of the game in example 3 is given by (—532— - -575 % %5,% - %5).

So, according to the NTU-value, player 3 who enters the market with an initial endowment

of (¢,¢), should end up with a utility of at least §, no matter how small ¢ is. Shafer (1980)

assails this outcome and argues in favour of the symmetric core element (— - -e, 2 25,6): this
outcome is prefered to the NTU-value by both player 1 and player 2 and can be accomplished

without the help of player 3.

For TU-games the NTU 7-value coincides with the r-value. Consider an NTU-game (N,V)

that arises from a quasi-balanced TU-game (N,v). Obviously, A = (+ S5 1;) is the unique

n n"'

V -feasible vector in An. Further, since vA(§) = 2v(S) forall § € 2V, 7(vy) = L7(v) = Ax7(v).
Hence, (V) = {7(v)}.



For two-person bargaining games, the NTU 7-value and the Nash bargaining solution (cf.
Nash (1950)) coincide. Let ({1,2},V') correspond to a bargaining game (C,d). Obviously, V is
T-admissible. Since for each (quasi-balanced) two-person TU-game, the Shapley value and the
T-value coincide, it follows that the NT'U-value and the NTU 7-value are the same for each (two-
person) bargaining game. Morcover, since the NTU-value coincides with the Nash bargaining

solution (cf. Shapley (1969)), this also holds for the NTU r-value.

We now show existence of the NTU 7 value for the class of (7-admissible) zero-adjusted
compactly generated NTU-games.
An NTU-game (N,V) is called zero-adjusted if v(i) > 0 for all : € N and compactly generated
if, for each § € 2V\{@} there exists a compact set C(S) C RS such that

V($)={a € R® | 3eecsy:a < e} (15)

The Shafer game of example 3 satisfies these two properties.

The proof of theorem 5 follows the same line of argument as the existence proof of the
NTU-value given by Shapley (1969).

THEOREM 5. Let the NTU-game (N,V) be 7-admissible, zero-adjusted and compactly gener-
ated. Then 7(V) # @.

Proof. Clearly, since V is compactly generated, each A € An is V-feasible. So it suffices to
prove that thereis a A € Ay and an 2 € V(N) such that A x z = 7(vy).
For each § € 2V\{@} and A € Ap, let C(S) be as in (15) and define

C(S5,A):={y € C(5) | Y_ Aiwi = va(S))
1€ES
Obviously, C(S,A) is non-empty, convex and compact. For fixed S € 2V\{@}, using a maximum
theorem (cf. theorem 9.2.1. in Klein and Thompson (1984)), it follows that the multifunction
A C(8,A) is upper semicontinuous and that the function A — vy(S) is continuous. Consider
the multifunction /Il : Ay — Aff(An) defined by

H(A) == {A+ 7(va)} = A+ C(N, X))

where A« (T:= {Asxc|e€ (!} for (! C RV,

Using the corresponding properties of the set (N, A) it follows that /1(A) is non empty, convex
and compact for all A € An. Further, since A v C'(N,A) is upper semicontinuous and A +— T(vy)
is continuous, we have that H is upper semicontinuous. If we can prove that I/ has a fixed point
A € Ay such that A € H(;\), we are finished because this implies there is an £ € C(N) such

that \ * 7 = T(vyg).

11



Since H is upper semicontinuous and compact-valued, we have that H(Ay) is compact.
Consequently, we can choose a simplex Ay such that H(Ax) C An C Aff(An). One can
extend the multifunction H to An by defining

H(p) = H(f(p)) for all p€ Ay,

where the continuous mapping f : Ay — Ay is defined by

fl), 1= mxdw0)

—m fOl'S.UlEN.
JEN

The multifunction H satisfies all conditions of Kakutani’s fixed point theorem, so there exists
a fi € Ay such that i € H(j). Let A= f(i) € An. Suppose A # . Then there is a player
t € N such that g; < 0 and A = 0. Since o e H(;\), there is a z € RV such that i = A + z and
z € {r(v;)} - by C(N,;\). However, since V is zero-adjusted and 7-value is individual rational,
this would imply that

0> i; = z; = i(v3) > v5({i}) > 0.

Hence A = o € H() = H(A) and A is a fixed point of H. 0O
Let (N,V) be an NTU-game. So far the NTU r-value is defined only if for all V-feasible
A € Apn the corresponding A-transfer games are quasi-balanced. However, the definition can be

extended to a larger class of games by requiring that only some feasible A € Ay give rise to

quasi-balanced A-transfer games. More specifically, we introduce

(V) := {z € V(N) |there is a V-feasible A € Ay such that v, is (16)

quasi-balanced and A * z = 7(v)}

Obviously, if V' is r-admissible, then *(V) = (V). Using this extended definition, the NTU

7-value can be calculated for the Roth games V, of example 1.

EXAMPLE 4. For 0 < p < %, let (N,V;) be as in example 1. Since V}, is compactly generated,
each A € Ay is V-feasible. The corresponding A-transfer games v,  are given by v, x({i}) = 0
forallz e N,

vpa({1,2}) = %(»\1+/\2)yvp,x({l,3}) = pAi+(1-p)A3,95,0({2,3}) = pA2+(1-p)As and
ppa(N) = max{5 (A + 22),ph + (1=p)Aa, P2 + (1-p)Aa).
Note that V, is not r-admissible because for X = ({5, 75, 75) we have that
Mi(2,5) = 0 < 75 = mi(s,3),
12



which implies that g is not quasi-balanced.
Define (A, V,) C V,(N) by

8\, V,) = { {z € Vi(N)| Az =7(vp2)} if vy is quasi-balanced
B %] otherwise

For calculating 7*(Vp) = | 6(A,V,) we distinguish between two cases.
A€EAN

(a) Let 0<p< % We show that
. 13
(V)= {(3:5:0}U{z €RY | 3 2, <1, 21 <p, 73 <p, 73 = 1-p)
JEN

It is straightforward to verify that v,y is (quasi)-balanced if and only if A = (0,0,1) or it holds
that

2 -2 1
Mtds 2 g and SO04A) > max{phiH(1-p)As, pAa+(1-p)Ao). (18)
o=

If A =(0,0,1), then 7(vpx) = (0,0,1—p). Hence, {z € V(N) | z3 = 1-p} C 7*(V).

Let A € Ay satisfy (18). We prove that 8(,V;,) C {(%, %,0)}. First note that by choosing
A= (%a(p), la(p), 1—a(p)) with a(p) := ﬁ, we have that -r(vp'j‘) = (%a(p),%a(p),O) and,
consequently, 8(X,V,) = {(3,3,0)}.

e Assume A; = A3 = 0. Then 7y(vp\) = $—3p > 0and 0 = A\yz; # 11(vp,)) forall z € V,(N).

Hence, 8(A,V,) = &. Similarly, (A, V,) =@ if A = A3 = 0.

e Assume A3 =0, Ay > 0 and A; > 0. Then v, \(N) = 1 and{z € Vo(N) | Az = v,A(N)} =

{(3,1,0)}. Hence, 6(7,V;) C {(3,1,0)}.

e Assume A3 > 0 and A; = 0. Using (18), M3(vp ») = 0 and

T1(vp,0) 2 m1(vp2) 2 vpA({1,3}) = Ma(vp0) = (1-p)A3 > 0.

Hence, 0 = Ayzy # 1y (vp,\) for all z € V,,(N) and 8(A,V,) = &. Analogously, (A, V,) = &
if A3 >0 and Ay = 0.

e Assume A} > 0, A2 > 0 and Az > 0. Using (18), m3(vp,n) = M3(vp,a) = ma(vp,n) = 0. Then,
since A3 > 0, z € 6()\,V,) implies that 3 = 0. Consequently, using the fact that A, > 0,
A2 > 0and v, \(N) = %/\1 + %/\2 it follows that

i [ |
(A, V,) C {z € Vp(N) | Az = v, A(N), 23 =0} C {(—2—, 5,0)}.
(b) Let p = % We show that

1 1 1 1
T‘(VP) ={I € RN ] Zy = 5, ro4z3 < 5} U{.’t € RN l Ty = §,$1+$3 < 5}

1 1
U{IERNll‘a =‘2-, 14z, < 5}

13



One can check that v, \ is quasi-balanced if and only if A; = 0 for some i € N. Using symmetry

considerations, it suffices to prove that

Il

| -

U 6(A,v,) = {z € V,(N) | 2
AEAN:A3=0
Let A € An be such that A3 = 0.
o Assume Ay = 0. Then (v, ) = (3,0,0) and (A, V,) = {z € V,(N) | z; = 3}
Analogously, if A; = 0, then 6(A,V;) = {z € V,(N) | 22 = }}.
e Assume Ay > 0 and Ay > 0. Then v, A(N) =1, {z € V(N) | Az = v, \(N)} = {(;—,%,0)}
and 6(\, V) C {(3.3,0)}.
Remark. Should one restrict attention to positive V -feasible vectors A only, there does not exist
an NTU r-value in case p = % and, for 0 < p < %, there is a unique NTU r-value (]7,% 0).
Finally, we discuss some properties of the (extended) NTU 7-value. Let (N,V) be an NTU-
game. It is straightforward to verify that the NTU r-value is efficient, i.e. if z € 7*(V'), then
z € V(N)\Dom(V(N)), and individual rational in the sense that for each z € 7%(V) which
corresponds to a positive V-feasible A € Ay we have that z > (v(7))ien. Further, the NTU
r-value is symmetric: if i,j € N are symmetricin V,z € (V) and y € RV is such that y; = Tiss

y; = x; and yx = zi for all k € N\{i,j}, then y € T*(V).

5. CONCLUDING REMARKS

(1) It would be interesting to provide an axiomatic characterization of the NTU 7-value. Prob-
ably, as in the characterization of Aumann (1985a) for the NTU-value, one should restrict
attention to a special subclass of NTU-games.
(ii) The definition of the compromise value given in section 3 is based upon bounds for the core.
Analogously, one can introduce a strong compromise value by means of bounds for the strong
core, and obtain similar results.

Schematically, this proceeds as follows. Let (N,V) be an NTU-game. The strong core
SC(V) is defined by

SC(V):={z € V(N)| ~Ise2n\{o} : Ts € Dom(V(5))},

where Dom(V(9)) := {a € RY | vy 1 b > a, b # a) for all S € 2V\{@}.
Note that Dom(V(S)) € Dom(V(5)) and SC' (V) C C('(V). Forz e N, define
Ki(V):=sup{t € R| I eqmiin) :(a,t) € V(N),a ¢ Dom(V(N)\{i})),a > (v(j))jen\{i}}

and

14



= V)= =S/
where

PL(V) = sup{t € R| (t, W s\(i1(V)) € V(S5)}.

Straightforwardly it follows that K(V) < K(V), k(V) < k(V) and z € SC(V) implies that
k(V) < z < K(V). Further, if V arises from a TU-game, we have that K(V) = K (V) and
(V) = k(V). For (two-person) bargaining games the two upper bounds again coincide, but the
lower bounds need not.

Defining an NTU-game V to be strongly compromise admissible if k(V) < K(V), k(V) € V(N)
and K (V) ¢ Dom(V(N)), the definition of the strong compromise value proceeds analogously
to (8). Moreover, modifying the characterizing properties given in theorem 3 in the obvious way

(introducing among others strong efficiency) the same kind of characterization carries through.

15



REFERENCES

Aumann RJ (1985a) An Axiomatization of the Non-Transferable Utility Value. Econometrica
53 : 599-612.

Aumann RJ (1985b) On the Non-Transferable Utility Value: A Comment on the Roth-Schafer
Examples. Econometrica 53 : 667-677.

Aumann RJ (1986) Rejoinder. Econometrica 54 : 985-989.

Harsanyi JC (1959) A Bargaining Model for the Cooperative n-Person Game. Annals of Math
Studies 40 : 325-355.

Harsanyi JC (1963) A Simplified Bargaining Model for the n-Person Cooperative Game. Intern
Econ Review 4 : 194-220.

Hart S (1985a) An Axiomatization of Harsanyi’s Non-Transferable Utility Solution. Econo-
metrica 53 : 1295-1313.

Hart S (1985b) Non-Transferable Utility Games and Markets: Some Examples and the Harsanyi
Solution. Econometrica 53 : 1445-1450.

Hart S, Kurz M (1983) On the Endogenous Formation of Coalitions. Econometrica 51 :
1047-1064.

Imai H (1983) On Harsanyi’s Solution. IJGT 12 : 161-179.

Kalai E, Smorodinsky M (1975) Other Solutions to Nash’s Bargaining Problem. Economet-
rica 43 : 513-518.

Kalai E, Samet D (1985) Monotonic Solutions to General Cooperative Games. Econometrica
53 : 307-328.

Kern R (1983) Zur Fortsetzung des 7-Wertes. Private communication

Kern R (1985) The Shapley Transfer Value without Zero Weights. IJGT 14 : 73-92.

Klein E, Thompson AC (1984) Theory of Correspondences. John Wiley, New York, pp
99-116.

Nash JF (1950) The Bargaining Problem. Econometrica 18 : 155-162.

Owen G (1971) Values of Games without Side Payments. 1JGT 1 : 95-109.

Roth A (1980) Values for Games without Side Payments: Some Difliculties with the Current
Concepts. Econometrica 48 : 457-465.

Roth A (1986) Notes and Comments on the Non-Transferable Utility Value: A Reply to Au-
mann. Econometrica 54 : 981-984.

Shafer W (1980) On the Existence and Interpretation of Value Allocations. Econometrica 48
: 467-477.

Shapley LS (1953) A Value for n-Person Games. In: Contributions to the Theory of Games
II (eds. Kuhn HW and Tucker AW), Princeton University Press, pp 307-317.

Shapley LS (1969) Utility Comparison and the Theory of Games. In: La Decision: Aggregation

16



et Dynamique des Ordres de Preference, Paris: Editions du Centre National de la Recherce
Scientifique, pp 251-263.

Tijs SH (1981) Bounds for the Core and the 7-Value. In: Game Theory and Mathematical
Economics (eds. Moeschlin O and Pallaschke D), North-Holland, pp 123-132.

Tijs SH (1987) An axiomatization of the r-value. Math. Soc. Sciences 13 : 177-181.

17



IN 1989 REEDS VERSCHENEN

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

Ed Nijssen, Will Reijnders
"Macht als strategisch en tactisch marketinginstrument binnen de
distributieketen"

Raymond Gradus
Optimal dynamic taxation with respect to firms

Theo Nijman
The optimal choice of controls and pre-experimental observations

Robert P. Gilles, Pieter H.M. Ruys
Relational constraints in coalition formation

F.A. van der Duyn Schouten, S.G. Vanneste
Analysis and computation of (n,N)-strategies for maintenance of a
two-component system

Drs. R. Hamers, Drs. P. Verstappen
Het company ranking model: a means for evaluating the competition

Rommert J. Casimir
Infogame Final Report

Christian B. Mulder

Efficient and inefficient institutional arrangements between go-
vernments and trade unions; an explanation of high unemployment,
corporatism and union bashing

Marno Verbeek

On the estimation of a fixed effects model with selective non-
response

J. Engwerda
Admissible target paths in economic models

Jack P.C. Kleijnen and Nabil Adams
Pseudorandom number generation on supercomputers

J.P.C. Blanc¢
The power-series algorithm applied to the shortest-queue model

Prof. Dr. Robert Bannink
Management's information needs and the definition of costs,
with special regard to the cost of interest

Bert Bettonvil
Sequential bifurcation: the design of a factor screening method

Bert Bettonvil
Sequential bifurcation for observations with random errors



383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

ii

Harold Houba and Hans Kremers
Correction of the material balance equation in dynamic input-output
models

T.M. Doup, A.H. van den Elzen, A.J.J. Talman
Homotopy interpretation of price adjustment processes

Drs. R.T. Frambach, Prof'. Dr. W.lH.J. de Freytas
Technologische  ontwikkeling  en marketing. len oriénterende beschou-
wing

A.L.P.M. Hendrikx, R.M.J. Heuts, L.G. Hoving
Comparison of automatic monitoring systems in automatic forecasting

Drs. J.G.L.M. Willems

Enkele opmerkingen over het inversificerend gedrag van multinationale
ondernemingen

Jack P.C. Kleijnen and Ben Annink
Pseudorandom number generators revisited

Dr. G.W.J. Hendrikse
Speltheorie en strategisch management

Dr. A.W.A. Boot en Dr. M.F.C.M. Wijn
Liquiditeit, insolventie en vermogensstructuur

Antoon van den Elzen, Gerard van der Laan
Price adjustment in a two-country model

Martin F.C.M. Wijn, Emanuel J. Bijnen
Prediction of failure in industry
An analysis of income statements

Dr. S.C.W. Eijffinger and Drs. A.P.D. Gruijters

On the short term objectives of daily intervention by the Deutsche
Bundesbank and the Federal Reserve System in the U.S. Dollar -
Deutsche Mark exchange market

Dr. S.C.W. Eijffinger and Drs. A.P.D. Gruijters

On the effectiveness of daily interventions by the Deutsche Bundes-
bank and the Federal Reserve System in the U.S. Dollar - Deutsche
Mark exchange market

A.E.M. Meijer and J.W.A. Vingerhoets

Structural adjustment and diversification in mineral exporting
developing countries

R. Gradus
About Tobin's marginal and average q
A Note

Jacob C. Engwerda

On the existenge_?f a positive definite solution of the matrix
equation X + A X A =1



1. i,

398 Paul C. van Batenburg and J. Kriens

Bayesian discovery sampling: a simple model of Bayesian inference in
auditing

399 Hans Kremers and Dolf Talman
Solving the nonlinear complementarity problem

400 Raymond Gradus
Optimal dynamic taxation, savings and investment

4Oo1 W.H. Haemers
Regular two-graphs and extensions of partial geometries

402 Jack P.C. Kleijnen, Ben Annink
Supercomputers, Monte Carlo simulation and regression analysis

403 Ruud T. Frambach, Ed J. Nijssen, William H.J. Freytas
Technologie, Strategisch management en marketing

4O4 Theo Nijman

A natural approach to optimal forecasting in case of preliminary
observations

405 Harry Barkema
An empirical test of Holmstrdm's principal-agent model that tax and
signally hypotheses explicitly into account

406 Drs. W.J. van Braband
De begrotingsvoorbereiding bij het Rijk

407 Marco Wilke
Societal bargaining and stability

408 Willem van Groenendaal and Aart de Zeeuw
Control, coordination and conflict on international commodity markets

409 Prof. Dr. W. de Freytas, Drs. L. Arts
Tourism to Curacao: a new deal based on visitors' experiences

410 Drs. C.H. Veld

The use of the implied standard deviation as a predictor of future
stock price variability: a review of empirical tests

411 Drs. J.C. Caanen en Dr. E.N. Kertzman
Inflatieneutrale belastingheffing van ondernemingen

412 Prof. Dr. B.B. van der Genugten

A weak law of large numbers for m-dependent random variables with
unbounded m

413 R.M.J. Heuts, H.P. Seidel, W.J. Selen

A comparison of two lot sizing-sequencing heuristics for the process
industry



b1y

415

416

b17

418

iv

C.B. Mulder en A.B.T.M. van Schaik
Een nieuwe kijk op structuurwerkloosheid

Drs. Ch. Caanen
De hefboomwerking en de vermogens- en voorraadaftrek

Guido W. Imbens
Duration models with time-varying coefficients

Guido W. Imbens
Efficient estimation of choice-based sample models with the method of
moments

Harry H. Tigelaar
On monotone linear operators on linear spaces of square matrices



IN 1990 REEDS VERSCHENEN

19

420

421

422

423

B2y

425

426

427

428

430

431

432

URES

43

Rertrand Melenberg, Rob Alessie
A method Lo construct moments in the multi-good Tife cycle  consump-
Lion model

J. Kriens 5
On the differentiability of the set of efficient (m,0”) combinations
in the Markowitz portfolio selection method

Steffen J@rgensen, Peter M. Kort
Optimal dynamic investment policies under concave-convex adjustment
costs

J:P.C. Blanc
Cyclic polling systems: limited service versus Bernoulli schedules

M.H.C. Paardekooper
Parallel normreducing transformations for the algebraic eigenvalue
problem

Hans Gremmen
On the political (ir)relevance of classical customs union theory

Ed Nijssen
Marketingstrategie in Machtsperspectief

Jack P.C. Kleijnen
Regression Metamodels for Simulation with Common Random Numbers:
Comparison of Techniques

Harry H. Tigelaar
The correlation structure of stationary bilinear processes

Drs. C.H. Veld en Drs. A.H.F. Verboven
De waardering van aandelenwarrants en langlopende call-opties

Theo van de Klundert en Anton B. van Schaik
Liquidity Constraints and the Keynesian Corridor

Gert Nieuwenhuis
Central limit theorems for sequences with m(n)-dependent main part

Hans J. Gremmen
Macro-Economic Implications of Profit Optimizing Investment Behaviour

J.M. Schumacher
System-Theoretic Trends in FEconometrics

Peter M. Kort, Paul M.J.J. van Loon, Mikulas Luptacik
Optimal Dynamic Fnvironmental Policies of a Profit Maximizing IFirm

Raymond Gradus

Optimal Dynamic Profit Taxation: The Derivation of Feedback Stackel-
berg Equilibria



I35

436

437

438

439

140

L1

Uly2

443

iyl

s

L6

U7

448

L9

vi

Jack P.C. Kleijnen
Statistics and Deterministic Simulation Models: Why Not?

M.J.G. van Eijs, R.J.M. Heuts, J.P.C. Kleijnen
Analysis and comparison of two strategies for multi-item inventory
systems with joint replenishment costs

Jan A. Weststrate

Waiting times in a two-queue model with exhaustive and Bernoulli
service

Alfons Daems
Typologie van non-profit organisaties

Drs. C.H. Veld en Drs. J. Grazell
Motieven voor de uitgifte van converteerbare obligatieleningen en
warrantobligatieleningen

Jack P.C. Kleijnen
Sensitivity analysis of simulation experiments: regression analysis
and statistical design

C.H. Veld en A.H.F. Verboven

De waardering van conversierechten van Nederlandse converteerbare
obligaties

Drs. C.H. Veld en Drs. P.J.W. Duffhues
Verslaggevingsaspecten van aandelenwarrants

Jack P.C. Kleijnen and Ben Annink
Vector computers, Monte Carlo simulation, and regression analysis: an
introduction

Alfons Daems
"Non-market failures": Imperfecties in de budgetsector

J.P.C. Blanc
The power-series algorithm applied to cyclic polling systems

L.W.G. Strijbosch and R.M.J. Heuts
Modelling (s,Q) inventory systems: parametric versus non-parametric
approximations for the lead time demand distribution

Jack P.C. Kleijnen
Supercomputers for Monte Carlo simulation: cross-validation versus
Rao's test in multivariate regression

Jack P.C. Kleijnen, Greet van Ham and Jan Rotmans
Techniques for sensitivity analysis of simulation models: a case
study of the CO2 greenhouse effect

Harrie A.A. Verbon and Marijn J.M. Verhoeven
Decision-making on pension schemes: expectation-formation under
demographic change



450

451

h52

453

4sh

455

456

vii

Drs. W. Reijnders en Drs. P. Verstappen
Logistiek management marketinginstrument van de jaren negentig

Alfons J. Daems
Budgeting the non-profit organization
An agency theoretic approach

W.H. Haemers, D.G. Higman, S.A. Hobart
Strongly regular graphs induced by polarities of symmetric designs

M.J.G. van Eijs
Two notes on the joint replenishment problem under constant demand

B.B. van der Genugten
lterated WLS wusing residuals for improved efficiency in the linear
model with completely unknown heteroskedasticity

F.A. van der Duyn Schouten and S.G. Vanneste
Two Simple Control Policies for a Multicomponent Maintenance System

Geert J. Almekinders and Sylvester C.W. Eijffinger
Objectives and effectiveness of foreign exchange market intervention
A survey of the empirical literature



Bibliotheek K. U. Brabant

17 O00 01086044 4




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28

