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Aóstract. This paper introduces two extensions of the r-value for TU-games towards NTU-

games: the compromise value and the NTLI r-value.

The cornpromise value is based upon upper and lower bounds for the core and coincides with

the I~alai-Smorodinsky solution for two-person bargaining games. The NTU r-value is defined

in analogy to the NTLJ (Shaple,y)-value and coincides with the Nash solution for two-person

bargaining games.

Both values are computed for the Roth-Schafer examples. For special classes of NTU-games

existencc is shown and an axiomatic characterization of the compromise value is provided.
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I. INTRODUCTION

The Shaploy value of'1'l1 (-'I'ransferable lltility)-games, introduced by .Shapley ( 1953), has

been generalized towards NTU (-Non Transferable lJtility)-games in various ways. Shapfcy

(1969) defined the NTU-value, flarsanyi (1959, 1963), Owen (1971) and lrnai (1983) considered

other possible extensions. For the NTU-value an axiomatic characterization has been provided

by Aumann (1985a) and liern (1985), for the Harsanyi solation by flart (1985a) and íor mono-

tonic solutions by h"alai and Samet (1985).

This paper introduces two extensions of the r-value of Tijs (1981) for quasi-balanced Tl1-

games towards special subclasses of NTU-games: the compromise value and the NTU r-value.

The compromise value is defined in section 3 for the class of compromise admissible NTU-games.

It is a one-point solution concept, that is ba-sed upon Lhe upper and lower bounds for the core of

an NTl1-game that are given in section 2. An axiomatic characterization is provided and it ís

shown Lhat tho cornprorniso value coincidc~s with the solution of h'alai and SmonxlirLSky (]975)

fur thc~ special c:~tie of two-persuu bargaiuiug games.

Section 4 introduces the NTU r-value as a multi-valued solution concept that is defined

by means of the r-value of corresponding (quasi-balanced) a-transfer games. The procedure is

analogous to the definition of the NTU-value with respect to the Shapley value. Also similar

to the NTU-value, we show existence of the NTU r-value for a class of compactly generated

NTU-games.

Roth (1980) and Shafer (1980) introduced two special classes of games for which, in their

opinion, the NTU-value leads to a strange and counterintuitive outcome. This led to an interest-

ing discussion of the NTU-value in the papers of Aumann (1985b, 1986), Roth (1986) and Hart

(1985b). In the present paper the Roth-Shafer examples are discussed in detail and it is seen

that the alternative outcomes of Roth and Shafer come forward if one applies the compromise

value or the NTU r-value.

Notations. For x,y E Rn, let x ~(1) y if and only if x; ~(~) y; for all i E {1,...,n},
n - -

xy :- ~ x;y; E R and 2. y:- (xryr,...,xnyn) E Rn. R~ :- {x E R"~x 1 0}.
~-i -

For C, D C R" the algebraic sum C'-~ D C R" is givcn by

C' } U:- {c-}d E R"~c E C,d E I)},

and Aff(C') (Conv(C')) dc~notes tlre affine (convex) hull of C.

Finally, with N :- {1,...,n}, S C N and x E Rn, xs :- (x;);ES E R's and x is identified with

(xS,xN`51~
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2. NTU-GAMES: BOUNDS FOR THE CORE

n u N'I'I ~-,yurnr iy a, p:rir ( N, L.' ) wlir,n~ N: { I,'l, ..., tc } in I,hr~ sr~t rrf playr~rs and L' iti a.

set-valucd function that assigus to each crxililiou 5' E 2N`{(d} a non-empty set V(S) C F:ti of

allainaólr' payofT vectors. I~or caeh player i E N we assume there is a individual mtional payoff

v(i) E R such that V({i}) - {a E F~ ~ a C v(i)} while, for each S E 2N~{~d},

(i) V(S) is closed and comprehensive (i.e. if a E V(S) and 6 E F~s is such that b G a, then

6 E V(S)).

(ii) V(S) fl {a E FPS ~ a~ w(7)~~ES} is bounded.

An NTU-game ( N, V) will be often identified with V. The com C(V ) consists of those attainable

payoff vectors for the grand coalition N which are stable with respect to (strict) domination.

More specifically, with

Dom (V(S)) :- {a E F~s ~ 3eEVls1 : b~ a} (1)

representing the set of dominated payoff vectors for a coalition S E 2N`{0},

C(V) :- {a E V(N) ~ ~3SEZN`{m} : as E Dom (V(S))}. (2)

Let i E N. Assuming that the coalition N`{i} will never agree with a payoff vector

a E~N`{i} w,ith a E Dom (V(N`{i})) or a~ G v(j) for some j E N`{i}, the highest possible

marginal contribution of player i by joining the coalition N`{i} is given by

lí;(l') :- sup{l E ft ~ 3nERN~t.i :(a,l) E V(N),a ~ I)om (V(N~{i}))
(.3)

and a ~ (v(7))iEN`{i}}-

lí;(V ) is called the utopia payoff of player i. By assumption (ii) in the definition of an NTU-game

we have that Ií;(V) C oo. However, lí;(V) - -oo might occur.

Assume líi(V) E F~ for all j E N and consider a coalition S to which player i belongs. The

formation of such a coalition is attractive for a player j E S`{i} if he gets (slightly) more that

the utopia payoff Iíi(V). Thus, player i can lay a rightful claim on the remainder ps(V) which

is given by

ps(V) :- sup{t E F~ ~ 3aERs~{.~ :(t,a) E V(S) and a 1 lís~{i}(V)}. (4)

Among the 2n-1 possible coalitions with i E S, player i can choose one where this remainder is

maximal. Let

k;(V) :- max ps(V)
S:iES

(5)
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denote the minimal right of player i. Clearly k;(V) 1 v(i), but it might occur that k;(V) - oo.

In this paper we concentrate on NTLI-games for which all utopia payofïs and minimal rights

for the various players are real numbers. ln particular, this is the case for NT~1-games with a

non-c~tnpty corc th~~orcm I shows ihat. lí(L') -( lí~(V))~EN and k(V) - (k~(V))~E~, establish

.~u uppi~r and lower buuu~l for t6~~ ciim, respi~rl.iv~~ly.

TtieortEM i. Let (N,l~) be au N'I'll-game with x E C(l~). "I'hen

k(V ) G x G h'(V ).

Proof. Obviously, ( 2) and (3) imply

1~J(V) ~ sup{t E R ~ 3aER,v~t,t :(a,t) E C(V)} ~ x~

for all j E N. Hence, x G I~ (V ).

Let i E N and choose a coalition T 3 i such that k;(V )- pT (V )- max p; (V ).
S:~ES

Suppose k;(V) 1 x;. Then we can choose e~ 0 such that k;(V) 1 z; ~-E. Further, by (4), there

exists a vector a E RT~{i} such that (x; f e,a) E V(T) and a~ líT~{i}(V).

However, this would imply that

xT C(xi, hT~{~}(V )) G (xi ~ e,a) E V(7'),

which contradicts the fact that x E C(V ). Ilence, k(V ) C x. O

The vectors k( V) and li (V ) induce familaz bounds for TU-games and two-person bargaining

games.

(a) TU-games. A TU-game is a pair (N,v) where v is a function that assigns to each coalition

S a real number v(S) with v(Qi) - 0. The core C(v) is defined by

C(v) :- {a E RN ~~ a; - v(N), ~ a; 1 v(S) for all S C N}.
iEN iE5

For a TU-game (N,v), Tijs (1981) introduced a utopia vector M(v) E RN and a minimal right

vector m(v) E RN as follows. For i E N,

M;(v) :- v(N) - v(N~{i}) and m;(V) :- mas(v(S) - ~ M~(v)). (6)
7ES`{i}

For x E C(v), it was shown that m(v) c x G M(v).

Associating an NTU-game (N,V) to a TU-game (N,v) by defining

V(S) :- {a E RS ~~a; G v(.S)}
iE.ti

(7)
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for all S E 2"'~{~}, it is stra.ighforward to verify thal C(v) - C(L'), and that A1( t~) - lí (V )
and rn(v) - k(V) if v is such that v(N~{i}) ~ ~ v(j) for all i E N.

)EN`(~}
(b) Bargaining games. In a two-person person bargaining ganae (C,d) the non-empty set.

C C F2z represents the set of feasible outcomes and d E C is the disagreement point. Moreover,

we assume that the following properties are satisfied:

(i) C is closed, convex and comprehensive.

(ii) There is an xo E C with xo 1 d.

(iii) Cd :- {x E C ~ x 7 d} is bounded.

For each bargaining game (C, d), Iíalai and Smorodinsky (1975) introduced the utopia point

u(C,d) E Rz by defining ut(C,d) :- max{a E F~ ~ 36ER :(a,b) E C"d}; uz(C,d) is defined

analogously. Associating an NTU-game ({1,2}, V) to a bargaining game (C,d) by setting

L'({i}) :- {a E f~ ~ a C d;} for i E{1,2} and V({1,2}) :- C,', one obtains that v(C,d) - li (V)

and d - k(V).

The class of games we consider in the following example was first introduced by Rolh (1980).
ExntvtrirE i. Let N- {1,2,3}. F'or a parameter p with 0 C p C z, the NTLI-garne (N,Vp) is
defined by (the subscripts denote players):

L'y({z}) - {a; E F~ ~ a, G 0} (i E N)

1 1
Lp({1,2}) - {(at,az) E ~z ~ (at,az) ~ (2, 2)}

Vy({1,3}) - {(at,as) E ~z ~ (at,as) C (P,1 -P)}

L'y({2,3}) - {(az,as) E ~z ~ (az,as) C (P,1 -P)}
1 1I~({1,2,3}) -{a-(at,az,a3)EFt3~aG6 for some 6 E Conv{(~, ~,0),(p,0,1-p),(O,p, 1-p)}}

Ií 0 ~ p ~ 2, then

c(vp) - con~{(2, 2,0),(2,p,o)} u conv{(2, 2,o~,(P, 2,0~},

{r~ (vp)} - {(2, 2,0~} and ~(vp~ - (P,P,o).

Further, (N,V~) is a symmetric game with

C(Vz) -{(2, ~,0),( 1,0, z),(~, 2, 2)}, ~~(V,~) -( 2, 2, ~) and k(V~) -(~,0.0).

The class of games in exarnple 1 provoked an interesting discussion between A. 2oth and

R.. Aumann about the credibility and interpretation of the N'f'U-value as introduced by .Shapley

(1953, 1969). lZolh (1J80 , 198G) argued that the (unique) N'1'U-value ( 3, ,-~t, ~) for all games Vy

with 0 ~ p G 2 seems rather counterintuitive and that the only reasonable outcome for these

games is the core-element ( 2, 2,0). Roth's arguments were countered by Aumann (1985b, 198fi).
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One of Auma.nu's argun~ents involves the role of safety (of accepting an offer from player 3 by
player 1 or 'l) as opposed to coordination (between player 1 and '2).

F'or a detailed discussion we refer to the papers of Aumann and Roth and also to Hart (1985a).

3. 'I'l1E ('OMPftOMIS(~; VAI.UE

In t.liiy noi tiun t.li~~ cunipru~nis~, va.lu~, iti inl.ruduci,d as an i~xli.usiun uf Lb~~ r-valu~~ for qiwsi

balanced TU-ganies (cf. 'I'ij., ( 192i1)) towards compromise ad~nissible~ N"1'U-games.

I{ere, a.n NTU-game ( N, l~' ) is callc~d conepronaise adrraissiGle if the utopia vector !í ( V) and the
minimal right vector A(V) of section 'L satisfy the following two properties:
(i) k(V) G fí(V).

(ii) k(V) E V(N), lí(V) ~ Dom(V(N)).
By CN we denote the does of all compromise admissible NTU-games with player set N. Clearly,
we have

LEMMA z. Every NTU-game with a non-empty core is compromise admissible.

Proof. Let (N,V) be an NTU-game with x E C(V). Then, using theorem 1, k(V) C x G Ií (V).
In particular, since a E V(N), comprehensiveness implies that k(V) E V(N).

Suppose lí(V) E Dom(V(N)). Then there is an y E V(N) such that y ~ lí(V) 1 r. Ilowever,
this contradicts the fact that x E C(V). We may conclude that the conditions ( i) and (ii) are
satisfied. 0

For V E CN Lhe corrapronazse value T(V ) E FiN is defined as the unique vector on the line
segment between k(V) and Ií (V ) which lies in V ( N) and is closest to the utopia vector lí (V ).
More specifically,

T(v) :- a~rí (v) ~- (I - a~)~(v~,

where

(g)

av :- max{~ E[0, 1] ~ ~fí(V) ~( 1-~)k(V) E V(N)}. (9)

Note that ay is well-defined because k(V) E V(N) and V(N) is closed and comprehensive.

EXAMPLE 2. FOi the games t'p of example 1 with 0 C p G z it follows that the compromise
value T(Vp) equals the core element lí (V) - (2, 2 ,0). Further, one finds that w~ - 3. So, for

p- 2, the compromise value equals the (unique) NTU-value ( á, 3, 3).

Using the notations of section 2, a TU-game (N,v) is called quasi-balanced if m(v) C M(v)

and ~ m;(v) C v(N) C~ M;(v). For a quasi-balanced TU-game ( N, v) the r-value r(v) E RN
~EN ~EN
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is defined as the unique vector lying on the line acgment betwoen na(r~) and h1(z~) which is
efficient, i.e. ~ r;(v) - v(N).

~EN
Assume v( N~{i} )~ ~ v(j ) for all i E N and let 1' be the NTU-game corresponding to r~

~EN`{~}

(cf. (7)). One easily verifies that r~ is quasi-balanced if and only if L' is cornpromise admissible,
and that the r-value of v coincides with the compromise value of V.

For a two-person bargaining garnc~ ( ~',d) one finds that thc~ compromise value of the corr~~-

sponding NTIi-game l~' is the uniqu~~ undoniiuatod feasible outcome lying on th~~ line segment

betweeu the disagreement point d and the utopia point u(C,d). 13y definition, this outcomc~

corresponds to the Ralai-Smorodinsky solution for the bargaining game (C,d).

lb'e now provide an axiomatic characterization fo the ( compromise) rule 7' : CN -. RN à la

Tijs ( 19R7).

Let F: CN ~ R"'. The rule F is said to have the rninirna! riykt property if

F(1') - k(V) f F(V - k(V )) for all V E CN, (10)

where the ( minimal right reduced) game ( N,V - h(V)) is defined by

(V - k(V ))(.S) :- ( a - A:s(V ) ~ a E V(S)} for all S E 2N~{P~} (11)

Onc easily checks that V E CN impli~,s that V - k(V ) E CN, while, lí (V - h(V )) - h( L') - t:(l )

a.nd k(V - k(V)) - 0.

Further, the rule F is called eJJicient if

F(V) E V(N)~Dom(V(N)) for all V E CN (12)

and F has the restricted proportionality property if F(V ) is a multiple of the utopia vector lí (V )

for all V E CN with k(V) - 0. These three properties characterize the compromise value.

~rxEOrtEtvt a. The compromise value T is the unique rule on CN that satisfies the minimal right

property, efTiciency and the restricted proportionality property.

ProoJ. (a) We first show that the compromise value T: CN --~ F3N satisfies the three properties.

The minimal right property and the restricted proportionality property are obvious. Let V E CN.

We show efficiency by proving that 7'(V) E V(N)`Dom(V(N)). By definition T(V) E V(N).

Suppose~ T(V) E Dom(V(N)). '1'hen there is an ~ E V(N) such that y~'I'(V). Cornprehen-

siveness and the definition of T(V ) irnply that T(V )- li (L''). Choose i E N with y; ~ h";(V ).

I3y comprehensiveness, (hN`{~}(~'),y,) E V(N). Since !íN`{~}(V ) ? ~N`{~}(V ) ? (T7(J))iEN`{~}

and y; ~!í;(1~), the definition of lí;(V) (cf. (3)) implies that IíN~{;}(V) E llom (V(N~{i})).

Let z E V(N~{i}) be such that z~ IíN~{;}(V ). "1'hr~n, howc~ver,

~~(~) ~ ~N~{i}(V)
i Zj ~ lí~(V)
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for all j E N`{i}, which contradicts the fact that l' is compromise admissible.
(b) Let F: CN ~ F3N satisfy thc~ three properties stated in the theorem. het V E Ct`'. ~'e prove
that F(l~') - 7'(L').

Using the minimal right property we have that F'(V) - k(L') ~- F(V - k(l')).
Since k(V - k(V )) - 0, the restricted propertionality property implies there is a a E FY such
that F(1-') - k(Y~) ~ ~Ií (V - k(L')) - .~li (l') ~ (1 - a)k(V).
By efficiency of F, it is clear that a- a~~ with a~ as in (9). llence, F(L') - T(L'). ~

Some further properties of the cornpromise value T are surnmarized below.
Clearly, 'T : C,N ~ Ft~~ is iradividual ratioraalbecause T(6') 1 k(V) ~(v(j))~E~, for all V E CN.
Two players i,j E N are called syrnmetric in the game V E Ci`' if the following two assertions
hold:

(i) for a.ll S C N~{i,j}, a E Fi` a.nd I E Fi wr~ have Lha1. (a,t) E l'(.5'U {i}) if and only if
(a,l) E V(S'U {j})

(ii) if a E l'(N) and G E FP'v is fiiven by b;,. - aA for k E IV`{i,j}, b, - a; and G~ - a;, then

b E l'(N).

Obviously, if the players i and j are symmetric in V, then 1~,(V) - le'~(V ), k;(L') - k~(V) and,

consequently, T;(V ) - T~(V ).

Finally, according the compromise value, each dummy player gets his individual rational payoff.

Mote specifically, if V E C`~ and i E N are such that V(S U {i}) - V(S) x V({i}) for all

S E 2N`{PJ} with i~ S, we have that 7;(L') - v(i).

4. THE NTU r-VALUE

In Shapley ( 1969) each NTU-game is associated to so-called ~-transfer TU-games and the
NTU (Shapley)-value is obtained from the Shapley value of these games. Analogously, this
section introduces the NTU r-value by means of the r-value of quasi-balanced ~-transfer games.

Let (N',V) be an NTU-game. Define ~N :- {~ E FPN ~ a 1 0, ~~; - 1}. A vector
- rEN

~ E ON is called Y"-Jeasible if sup{ ~ a;a, ~ a E V(.S)} c oo for all .5' E 2N`{ta}. For each
~ES

V-feasible vector a E~N the NTLi-game (N,va) with

n~(Cd) :- 0, ni(.5') :- sap{~ ~,a, ~ a E V(,S)} for ,S F'lN`{0}} (1:9)
~c ti

is called a 1-lrrerr.tifrr yatnr corresponding to V.

[f for all V-feasible a the corresponding ~-transfer games are quasi-balanced, then the game V

is called r-admissible. I3y AN we denote the class of all r-admissible NTU-games with player



set N. For L" E tlN the NTI~ r-value r(V ) E Fi~ is defined by

r(V) :- {x E V(N) ~ there is a V-feasible ~ E ON such that r(va) -~~ x} (14)

A special class of r-admissible NTU-games is given by the class Q"' of quasi-balanced
NTLJ-games. }{ere, an NTU-game (N,V ) is called quasi-balaraced if the following two properties

hold:

(i) Vo(S) f~ Vo(N~{i}) C ~S~Vo(N) for all S E 2N~{~d}.
iES

(rr) ~[Vo(Si) f ~ Vu(N~{j})] C (1 - n-f ~ ~Si~)Vn(N) for all (.Sr,Sz,..-,S„) with
iEN jES,`{i} iEN

S, E 2N and i E.S; (i E N).

wherc Vtt(S) :- {r E F~N ~ :c.ti E}'(S') aud rN~s - 0}, .S' E 2N~{rD}, rorresponds to thc

zcro-rrprescrtlalion of the game L'.

'fhis notion of a quasi-balauce~d N'I'll game~ w~r.ti suggested in a priva.le correspondence by

liern ( 1983). It may be uoted that thc~ propert.ies ( i) and (ii) are dirc~ct c~xtensions of tbe

conditions provided in the characterizatiou of quasi-balanced Tl1-games given in Tijs ( 1981).

Moreover, ( i) and (ii) are special balancedness conditions. For this, recall that an NTU-game is

cardinally óalanced if for each balanced map 7 : 2N`{PJ} ~ F~t (i.e. such that ~ y(S)es - eN)
s

it holds that ~ y(5)Vo(S) C Vo(N).
SE2N`{G1}

Summarizing, it is straightforward to prove

LEMMA 4. (i) I;very cardiually balanced N'}'U-game is quasi-balanced.

(ii) Every quasi-balanced NTU-game is r-admissible.

As an illustration we consider a modified version of the example of Shajer (1980) due to

Hart and h-urs (1983).

ExAMrLe s. ('onsider a.n c~xchange markot with three traders and two rommodities, where the

initial eudowrnent ~i E F~t and thc~ utility function u; : R} ---i F~ of tradcr i E{1,2,3} are given

by

wr - (} - F,0). ~2 - (0,1 - e), ~s - (E~E)
ui(cr,cz) - uz(cr,cz) - min{cr,cz} and u3(cr,cz) - 2(cr f cz) for all (ci,cz) E Fit.

for some 0 C E c 6.

This exchange market corresponds to an NTU-game (N, V) with N- { 1, 2, 3} and

v(s) :- {a E~s ~ 3ra~Rzv,Es : ui(j(i)) ? ai,~j(i) -~w;} for all s E 2~~{ra}.
jES jES

9



So, in particular, with subscripts representing players,

v({1})-{~,E~~n,~o},('({z})-{a.,ES~~a1~o},(~({s})-{a,E~~n~~E},
l'({1,2}) -{(n~,a.z) E F:z I ai t n~ G I- E, ni ~ I-" u.z C 1- F},

- 1 1 - -1 1
l'({1,3}) -{(ai.aa) E Ftz ~ ai t a:~ C l t l~, ai C" a:~ c L t ZE},

1'({2,3})-{(a~,a3)ERz~azfa~C ~ t ~~,nzC:,a~c 1 f ~~},
- 2 2 - 2 2

V({1,2,3}) - {(ar,a2,a~) E F2~ ~ at ~- az t a3 C 1, ai G 1, uz C 1, a3 C 1}.

One easily checks that each a E ON is 1'-feasible and that V is cardinally balanced. Further,

~((~) -{Íui,rtz,n3) E~} ~ ui t az t a~ - 1, nr ~ e,az 1 e,ua - e}.

Let a E.~N and z E V(N) be such that a~ x- r(v,t).

Suppose there exists a player i E N such that ~; c maxaj. Since va(N) - max~j and
jEN ~EN

~ rj(v,i) - v(N), one finds that x, - 0 and, consequently r;(v,t) - 0. i)istinguishing cases,
jEN
some calculation shows that 61;(v~) ~ 0, ~m;(va) ~ 0 and ~ mj(va) ~ va(N). Ifowever, since

iEN
this should imply that r;(va) ~ 0, we arrive at a contradiction.

We may conclude that a-(1, 3, 3). Then v,~ is given by

1 I 1
vra(~) - 0, r~.t({I}) - ri.i({2}) - 0, v.i({:3}) -~e, na({I,'l}) -:3 - 3F,

va({l,3}) - va({'L,3}) - ~ -F ~e and v~({1,2,3}) - ~
fi 6 3 ~

Hence, r(va) - M(va) - rn~(va) -('s - sE~'s -'sE~ áF) and r(V) -{(z - zF, 2-~e,e)}.

It may be noted that, since the utopia vector K(V ) also equals ( 2- 2 E, 2- 2 E, E), the compromise

value and the (unique) NTU r-value of V coincide.

The (unique) NTU-value of the game in example 3 is given by ( Lz - izf, z- iz~~ s f sE)~
So, according to the NT(J-value, player 3 who enters the market with an initial endowment

of (F,e), should end up with a utility oí at least s, no matter how small e is. Shafer (1980)

assails this outcome and argues in favour of the symmetric core element ( z- 2~, 2- 2~, E): this

outcome is prefered to the NTU-value by both player 1 and player 2 and can be accomplished

without the help of player 3.

For TU-games the NT(I r-value coincides with the r-value. Consider an NTU-game (N, V)

that arises from a quasi-balanced TU-game (N, v). Obviously, ~-( n, n, .. ., n) is the unique

V-feasible vector in D,v. Further, since v~(S) - n v(5') for all S E 'lN, r(va) - nr(v) - a.r(v).

}lence, r(L') - {r(v)}.
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I'ur 1.wu per,uu b:u'~a.ininl; t;:un~s, Ihe N'fU r v:rluo :rnd tlu~ N:Ltih barRaininR sulutiun (cf.
Na.tih (19`~0)) coincide. Let. ({ I,'L},V) correspond to a barga.ining game (C,d). Obviously, V is
r-adntissible. Since~ for oach (quasi-balauced) two-persun Tll-gatne, the Shaplc~y value ancl thc~
r-v:Jue cuiucide, it folluws thal t.he N"I~l~-va,lue and thc~ N'I'U r-value an~ Ihe satue for c~acó (two-
persou) barga.ining game~. Moreovor, since~ the N'I'lI-value coincides with tho Nash bargaining
solution (cf. Shaplc~y (1969)), this also holds for the N'I'l1 r-value.

We now show existence of the NTIi r value for the class of (r-admissible) zero-adjusted
compactly generated N"TU-games.
An NTiJ-game (N,V) is called zem-adjusted if v(i) ~ 0 for all i E N and compactly geraerated
if, for each S E 2~~{~} there exists a compact set C(S) C F~~s such that

V(5') - {a E Fis ~~~ECtsl : a G c}. (15)

~I'he Shafer game of example 3 satisfies these two properties.

The proof of theorem 5 follows the same line of argument as the existence proof of the
NTU-va.lue given by Shapl~~y ( 19~9).

THEOitEM a. Let the NTl?-game ( N, V) be r-admissible, zero-adjustcd and compactly gener-
a,ted. Then r(V) ~ fd.

ProoJ. Clearly, since V is compactly generated, each a E Onr is V-feasible. So it sufíices to
prove that thcre is a a E 0~, and an x E V(N) such that ~~ x- r(~~a).
For each .5' E 2h~`{2)} and a E Oh~, Ict C(5') be as in ( 15) and define~

C(S,~) :- {y E C(S) ~~ a;y; - va(S)}
~ES

Obviously, C(5', a) is non-empty, convex and compact. For fixed S E 2~`'`{(d}, using a maximum
theorem (cf. theorem 9.'l.l. in l~lcin and Tkompson (19K4)), it follows that the multifunction
a.-~ C'(.5', a) is upprr semicuntinnous and that the function .~ ~-. va(.S) is continuous. Consider
the rnultifunctiou ll : ON ---~ Aff(~N) defined by

fl(a):- {a~r(va)}-a.C(N,a))

where~~(':- {atc~rE ( '} fur('C FtN.

Il,iut; Lh~, curn,tipunJiut; prup~~rl.i~,s uf Lh~~ r;~~l. ('( N, ~) if fullnwn Lha.l. ll ( a) iti nun ~~int,L.Y, cunvrx

and cunipart, fur all a E.,N. I~ltrthor, siuc~. a.-, (.'( N, a) is ul~por seinicunliuuuu, and ~.-. r( ea)

is continuous, we have that fI is upper semicontinuous. If we can prove that ll has a fixed point

a E ON such that ~ E N(~), we are finished because this implies there is an i E C(N) such

that ~ a i - r(v~ ).

11



Since H is upper semicontinuous and compact-valued, we have that H(~N) is compact.

Consequently, we can choose a simplex ON such that II(ON) C ~N C Aff(~N). One can

extend the multifunction H to ON by defining

H~Ei) :- fl(f(~)) for all {r E~N.

where the coutinuous mapping f: ON -~ ~N is defined by

max{~;,0}
f(~), :- for all i E N.

~ max{p~,0}
)EN

The multifunction H satisfies al1 conditions of Iiakutani's fixed point theorem, so there exists
a~ E ON such that ~ E II(~c). Let ~:- f(~e) E ~N. Suppose ~~~. Then there is a player
i E N such that ~; c 0 and ~, - 0. Since fe E H(~), there is a z E FiN such that Éi - a~ z and
z E{r(vá)} -~. C(N,~). However, since Y' is zero-adjusted and r-value is individual rational,
this would imply that

0~~;-z;-r;(v~)1v~({i})~0.

IIence .~ -~ E H(~) - H(~) and a is a fixed point of H. p

Let (N,V) be an NTU-game. So far the NTU r-value is defined only if for all V-feasible
~ E ~1v the corresponding a-transfer games are quasi-balanced. f[owever, the definition can be
extended to a larger class of games by requiring that only sorne feasible a E ON give rise to
quasi-balanced ~-transfer games. More specifically, we introduce

r'(V) :- {x E L'(N) ~there is a V-feasible .~ E ON such that va is (16)

quasi-balanced and a~ 2- r(va}

Obviously, if V is r-admissible, then r"(V)- r(V ). Using this extended definition, the NTU
r-value can be calculated for the Roth games VP of example 1.

EXAMPLE 4. I'or 0 C p C 2, let (N,by) be as in example 1. Since VP is rompactly generated,
each a E ~N is VP-feasible. The corresponding .~-transfer games vP,a are given by vP,a({i}) - 0

for all i E N,

vP,a({1,2}) - 2(~r-~~z),vP.a({1,3}) - P~~-F(1-P)~~,vP.a({2,3}) - p~zf(]-p)a3 and

vP„~(N) - max{ ~(~~ f~z),p~i f(]-p)~:s, P~z -f- (1-p)a;~}.

Note that VP is uot r-admissihle because for ~-( ~ó, ~ó, ~ ) we have that

1
Mr(vP.a) - O C io - ~1(vP.a),

12



which impfies that vp á is not quasi-balanced.

Define B( ~, Vp ) C T ~( N) by

B(~ I, ~{x E Vy(N) ~ a ~ x- r(v~,a)} if up„a is quasi-balanced
p)~- ~ otherwise

For calculating r'(~y) - U B(a, Va) we distinguish between two cases.
AEON

(a) Let 0 C p C z. We show that

r'(V)-{(1 ~ 0)}U{xEF~N ~ ~x~C 1, x, Gp, x2Cp, x3-1-p}~' ~'
iEN

It is straightforward to verify that vv,a is (quasi)-balauced if and only if ~ -(0,0,1) or it holds
that

2 - 2p 1
aif~z ?

2i -3~
and ~(aif~z) ~ max{P~tf(1-P)~3.Paz-f(1-p)~3}. (18)

2 z
If a-(0,0, 1), then r(vp,a) - (0,0, 1-p). Ilence, {x E Vy(N) ~ x3 - 1-p} C r'(V).

Let a E ON satisfy (18). We prove that B(a,Vy) C {(z, z,0)}. E'irst note that by choosing

.~ :- (za(p), 2a(p),1-a(p)) with a(p) :- 2z -~s~, we have that r(vP ~) -(qcr(p), qa(p),0) and,

conseyuently, B(a,Vy) - {(z, 2,0)}.

. Assume al - a3 - 0. Then r,(vy,~) - 4-1p 1 0 and 0-~,x, ~ rt(vp,a) for all x E Lp(N).

Ilence, B(a,VD) -~. Similarly, B(a,Vp) - PJ if ~2 - a3 - 0.

. Assume .~3 - 0, .1t ~ 0 and .~z ~ 0. Then vy,a(N) - Z and{x E VP(N) ~.1x - vp,a(N)} -

{(z, z,0)}. Ilencc, B(~,Vy) C {( z, z,0)}.

. Assume a3 ~ 0 and a, - 0. Using (18), M3(vp,a) - 0 and

rl(~P,a) J ~l(tiP,a) ! VP,a({1,3}) - iiT3(vV.a) -(1-p)i1g i 0.

llonce, 0-~,x, ~ r,(vy,.~) for all x E Vp(N) and B(a, by) - P). Analogously, B(a,Vn) -~

ifa3~0and~z-0.

. Assurnc ~, ~ 0, az ~ 0 ancl ~3 ~ 0. lJsin~ (1K), r3(vy.~) - M3(2'y.a) - ni3(vp.a) - 0. Then,

since as ~ 0, x E B(a,Vs,) itnplies that xs - 0. Conseyuently, using the fxct that ~t ~ 0,

~2 ~ 0 and vy,a(N) - 2~, -} 1~1 it follows that

B(~,Vy) C{x E Vp(N) ~~x - vy,a(N), x3 - 0} C{(2, 2,0)}.

(b) Let p- z. We show that

r'(Vv) -{x E FiN ~ x, - 1, x2fx3 G 1} U{x E FiN ~ x2 - l,xifx3 C 1}
2 2 2 2

U{xE ÍN I23 - 2, xt-~x2 C ~}.

13



One can chc~ck that vr,,a is quasi-balanced if and only if ~; - 0 for some i E ~ti'. [lsing symmetry

considerations, it sufiices to prove~ that

~ B(~,~t'v) -{z E Lp(N) ~ xr -~ or x~ -~}
AE0N:,1i-0

I,et a E~.ti- he such thal aa - 0.

~ Assutne a.t - 0. "fhcn r(c~n..~) -( ~.0.0) and B(a,L''y) -{z E l'i,(.M1") ~ r~ - ~}

Analogously, if a~ - 0, then B( a, Vr,) - {x E 4p( N) ~ x~z - z}.

~ Assutne ~~ ~ 0 and a~l ~ 0. "1'hai vy.a(N) - 1, {r E l'N(N) ~ ax - vy..~(IV)} - {(2, 1,0)}

and f~(a.lP) C{( z, 2,0)}.

Remark. Should one restrict attention to positivc~ V-feasible vectors ~ only, there does not exist.

an N'TU r-value in case p- z and, for 0 C p ~ z, there is a unique NTU r-value ( z, z,0).

Finally, we discuss some properties of the ( extended) N'I'U r-vauc. Let ( N,V ) be an NTU-

game. It is straigVttforward to verify that the NTLI r-value is e~cienl, i.e. if x E r'(L'), then

x E V(N)`Dom(V(N)), and individual rational in the sense that for each x E r`(V) which

corresponds to a positive V-feasible a E ~rv we have that x 1 ( v(i)),EN. Further, the NTU

r-va.luc is .~i~naructric: if i, j E N a.rc~ symnietric iu V, T E r'( V) and ~ E F~N is such that y; - x~,

~~ - r; aud ~~; - xA for all k E N`{i,l}, then ~ E r'(V).

5. CONCLUDING REMARI~S

(i) It would be interesting to provide an axiomatic characterization of the NTU r-value. Prob-

ably, as in the characterization of Aumann ( 1985a) for the NTU-value, one should restrict

attention to a special subclass of NTU-games.

(ii) The definition of the comprornise value given in section 3 is based upon bounds for the core.

Analogously, one can introduce a slronq compromise value by means of bounds for the strong

core, and obtain sirnilar results.

Schematically, this proceeds as follows. Let (N,V) be an NTU-game. The strong core

SC(V) is defined by

SC'(L') :- {x E VÍN) ~ ~3sEZ"~Iml : zs E I)on~(V(,S)1},

whem Ih~tn(4"(.S')) :- {n F Fi` ~ 3~,E~"1ti) : b~ a, G~ a} for a.ll .4 F'1N`{QI}.

Nule Lliat I)uin(V(S)) C Uoni(L (.5')) ;ind .S'('(L") C( '(L"). I'~or i E N, defin~,

Í1 ~(1'") :- sup{! E ~ ~ ~aERN~I~) . (a.!) E L'(N),a ~ I)OIn(L (N)~{i})),a J (V(7))7EN~{~}}

and
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A~;(V) :- max P; (V),
S:iES

whPTP

P;(V ) :- sup{t E F~ ~(G, 1~ s~{i}(V )) E V(S)}.

Straightíorwardly it follows that Íí (V ) c I~ ( L'), k(V ) G k(V ) and x E SC(V ) itnplies that

k(V) G a G lí(V). Further, if V arises írom a TU-game, we have that Íí(V) - lí(V) and

k(V )- k(V ). For (two-person) bargaining games thP two upper bounds again coincide, but the

lower bounds need not.

Defining an NTU-game V to Le strnngly rnmpromisc adnaássible if k(V) G 1~(V), k(V) E V(N)

and 1í (V) ~ llom(V(N)), the definition of the strong compromisP value proceeds analogously

to (8). Moreover, modifying tbe characterizing properties given in theorem 3 in thP obvious way

(introducing among others strong efficiency) the same kind of characterization carries through.
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